Congratulations to Faye Flam for finally getting her article published at the Science Times at the *New York Times*, “The odds, continually updated” after months of reworking and editing, interviewing and reinterviewing. I’m grateful too, that one remark from me remained. Seriously I am. A few comments: The Monty Hall example is simple probability not statistics, and finding that fisherman who floated on his boots at best used likelihoods. I might note, too, that critiquing that ultra-silly example about ovulation and voting–a study so bad they actually had to pull it at CNN due to reader complaints[i]–scarcely required more than noticing the researchers didn’t even know the women were ovulating[ii]. Experimental design is an old area of statistics developed by frequentists; on the other hand, these ovulation researchers really believe their theory, so the posterior checks out.

The article says, Bayesian methods can “crosscheck work done with the more traditional or ‘classical’ approach.” Yes, but on traditional frequentist grounds. What many would like to know is how to cross check Bayesian methods—how do I test your beliefs? Anyway, I should stop kvetching and thank Faye and the NYT for doing the article at all[iii]. Here are some excerpts:

Statistics may not sound like the most heroic of pursuits. But if not for statisticians, a Long Island fisherman might have died in the Atlantic Ocean after falling off his boat early one morning last summer.

The man owes his life to a once obscure field known as Bayesian statistics — a set of mathematical rules for using new data to continuously update beliefs or existing knowledge.

The method was invented in the 18th century by an English Presbyterian minister named Thomas Bayes — by some accounts to calculate the probability of God’s existence. In this century, Bayesian statistics has grown vastly more useful because of the kind of advanced computing power that didn’t exist even 20 years ago.

It is proving especially useful in approaching complex problems, including searches like the one the Coast Guard used in 2013 to find the missing fisherman, John Aldridge (though not, so far, in the hunt for Malaysia Airlines Flight 370).

Now Bayesian statistics are rippling through everything from physics to cancer research, ecology to psychology. Enthusiasts say they are allowing scientists to solve problems that would have been considered impossible just 20 years ago. And lately, they have been thrust into an intense debate over the reliability of research results.

When people think of statistics, they may imagine lists of numbers — batting averages or life-insurance tables. But the current debate is about how scientists turn data into knowledge, evidence and predictions. Concern has been growing in recent years that some fields are not doing a very good job at this sort of inference. In 2012, for example, a team at the biotech company Amgen announced that they’d analyzed 53 cancer studies and found it could not replicate 47 of them.

Similar follow-up analyses have cast doubt on so many findings in fields such as neuroscience and social science that researchers talk about a “replication crisis”

Some statisticians and scientists are optimistic that Bayesian methods can improve the reliability of research by allowing scientists to crosscheck work done with the more traditional or “classical” approach, known as frequentist statistics. The two methods approach the same problems from different angles.

The essence of the frequentist technique is to apply probability to data. If you suspect your friend has a weighted coin, for example, and you observe that it came up heads nine times out of 10, a frequentist would calculate the probability of getting such a result with an unweighted coin. The answer (about 1 percent) is not a direct measure of the probability that the coin is weighted; it’s a measure of how improbable the nine-in-10 result is — a piece of information that can be useful in investigating your suspicion.

By contrast, Bayesian calculations go straight for the probability of the hypothesis, factoring in not just the data from the coin-toss experiment but any other relevant information — including whether you’ve previously seen your friend use a weighted coin.

Scientists who have learned Bayesian statistics often marvel that it propels them through a different kind of scientific reasoning than they’d experienced using classical methods.“Statistics sounds like this dry, technical subject, but it draws on deep philosophical debates about the nature of reality,” said the Princeton University astrophysicist Edwin Turner, who has witnessed a widespread conversion to Bayesian thinking in his field over the last 15 years.

Countering Pure Objectivity

Frequentist statistics became the standard of the 20th century by promising just-the-facts objectivity, unsullied by beliefs or biases. In the 2003 statistics primer “Dicing With Death,”Stephen Senn traces the technique’s roots to 18th-century England, when a physician named John Arbuthnot set out to calculate the ratio of male to female births.

…..But there’s a danger in this tradition, said Andrew Gelman, a statistics professor at Columbia. Even if scientists always did the calculations correctly — and they don’t, he argues — accepting everything with a p-value of 5 percent means that one in 20 “statistically significant” results are nothing but random noise.

The proportion of wrong results published in prominent journals is probably even higher, he said, because such findings are often surprising and appealingly counterintuitive, said Dr. Gelman, an occasional contributor to Science Times.

Looking at Other Factors

Take, for instance, a study concluding that single women who were ovulating were 20 percent more likely to vote for President Obama in 2012 than those who were not. (In married women, the effect was reversed.)

Dr. Gelman re-evaluated the study using Bayesian statistics. That allowed him look at probability not simply as a matter of results and sample sizes, but in the light of other information that could affect those results.

He factored in data showing that people rarely change their voting preference over an election cycle, let alone a menstrual cycle. When he did, the study’s statistical significance evaporated. (The paper’s lead author, Kristina M. Durante of the University of Texas, San Antonio, said she stood by the finding.)

Dr. Gelman said the results would not have been considered statistically significant had the researchers used the frequentist method properly. He suggests using Bayesian calculations not necessarily to replace classical statistics but to flag spurious results.

…..Bayesian reasoning combined with advanced computing power has also revolutionized the search for planets orbiting distant stars, said Dr. Turner, the Princeton astrophysicist.

Others say that in confronting the so-called replication crisis, the best cure for misleading findings is not Bayesian statistics, but good frequentist ones. It was frequentist statistics that allowed people to uncover all the problems with irreproducible research in the first place, said Deborah Mayo, a philosopher of science at Virginia Tech. The technique was developed to distinguish real effects from chance, and to prevent scientists from fooling themselves.

Uri Simonsohn, a psychologist at the University of Pennsylvania, agrees. Several years ago, he published a paper that exposed common statistical shenanigans in his field — logical leaps, unjustified conclusions, and various forms of unconscious and conscious cheating.

He said he had looked into Bayesian statistics and concluded that if people misused or misunderstood one system, they would do just as badly with the other. Bayesian statistics, in short, can’t save us from bad science.

[i]“Last week CNN pulled a story about a study purporting to demonstrate a link between a woman’s ovulation and how she votes, explaining that it failed to meet the cable network’s editorial standards. The story was savaged online as “silly,” “stupid,” “sexist,” and “offensive.” Others were less nice.”

[ii] I used it here as an illustration of an example that fell below my “limbo stick” cut-off of being worth criticizing.Doing so tends to lead to what I call the Dale Carnegie Fallacy.

[iii] Faye was really exceptional in her attempts to understand the ideas, and to avoid biasing the story too much more than necessary. I look forward to more from Flam at her new gig.