**Houman Owhadi**

Professor of Applied and Computational Mathematics and Control and Dynamical Systems,

Computing + Mathematical Sciences

California Institute of Technology, USA

**Clint Scovel**

Senior Scientist,

Computing + Mathematical Sciences

California Institute of Technology, USA

** “On the Brittleness of Bayesian Inference: An Update”**

Dear Readers,

This is an update on the results discussed in http://arxiv.org/abs/1308.6306 (“On the Brittleness of Bayesian Inference”) and a high level presentation of the more recent paper “Qualitative Robustness in Bayesian Inference” available at http://arxiv.org/abs/1411.3984.

In http://arxiv.org/abs/1304.6772 we looked at the robustness of Bayesian Inference in the classical framework of Bayesian Sensitivity Analysis. In that (classical) framework, the data is fixed, and one computes optimal bounds on (i.e. the sensitivity of) posterior values with respect to variations of the prior in a given class of priors. Now it is already well established that when the class of priors is finite-dimensional then one obtains robustness. What we observe is that, under general conditions, when the class of priors is finite codimensional, then the optimal bounds on posterior are as large as possible, no matter the number of data points.

Our motivation for specifying a finite co-dimensional class of priors is to look at what classical Bayesian sensitivity analysis would conclude under finite information and the best way to understand this notion of “brittleness under finite information” is through the simple example already given in http://errorstatistics.com/2013/09/14/when-bayesian-inference-shatters-owhadi-scovel-and-sullivan-guest-post/ and recalled in Example 1. The mechanism causing this “brittleness” has its origin in the fact that, in classical Bayesian Sensitivity Analysis, optimal bounds on posterior values are computed after the observation of the specific value of the data, and that the probability of observing the data under some feasible prior may be arbitrarily small (see Example 2 for an illustration of this phenomenon). This data dependence of worst priors is inherent to this classical framework and the resulting brittleness under finite-information can be seen as an extreme occurrence of the dilation phenomenon (the fact that optimal bounds on prior values may become less precise after conditioning) observed in classical robust Bayesian inference [6]. Continue reading