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The Fisher and Neyman-Pearson approaches to testing statistical hypotheses are compared with respect to their attitudes to the 
interpretation of the outcome, to power, to conditioning, and to the use of fixed significance levels. It is argued that despite basic 
philosophical differences, in their main practical aspects the two theories are complementary rather than contradictory and that a 
unified approach is possible that combines the best features of both. As applications, the controversies about the Behrens-Fisher 
problem and the comparison of two binomials (2 X 2 tables) are considered from the present point of view. 
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1. INTRODUCTION 

The formulation and philosophy of hypothesis testing as 
we know it today was largely created in the period 1915- 
1933 by three men: R. A. Fisher (1890-1962), J. Neyman 
(1894-1981), and E. S. Pearson (1895-1980). Since then it 
has expanded into one of the most widely used quantitative 
methodologies, and has found its way into nearly all areas 
of human endeavor. It is a fairly commonly held view that 
the theories due to Fisher on the one hand, and to Neyman 
and Pearson on the other, are quite distinct. This is reflected 
in the fact that separate terms are often used (although 
somewhat inconsistently) to designate the two approaches: 
significance testing for Fisher and hypothesis testing for 
Neyman and Pearson. (Since both are concerned with the 
testing of hypotheses, it is convenient here to ignore this 
terminological distinction and to use the term "hypothesis 
testing" regardless of whether the testing is carried out in a 
Fisherian or Neyman-Pearsonian mode.) 

There clearly are important differences, both in philosophy 
and in the treatment of specific problems. These were fiercely 
debated by Fisher and Neyman in a way described by Zabell 
(1992) as "a battle which had a largely destructive effect on 
the statistical profession." I believe that the ferocity of the 
rhetoric has created an exaggerated impression of irrecon- 
cilability. The purpose of this article is to see whether there 
exists a common ground that permits a resolution of some 
of the principal differences and a basis for rational discussion 
of the remaining ones. 

Some of the Fisher-Neyman debate is concerned with is- 
sues studied in depth by philosophers of science (see, for 
example, Braithwaite 1953; Hacking 1965; Kyburg 1974; 
and Seidenfeld 1979). I am not a philosopher, and this article 
is written from a statistical, not a philosophical, point of 
view. 

Section 2 presents some historical background for the two 
points of view. Section 3 discusses the basic philosophical 
difference between Fisher and Neyman. (Although the main 
substantive papers [NP 1928 and 1933a] were joint by Ney- 
man and Pearson, their collaboration stopped soon after 
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Neyman left Pearson's Department to set up his own pro- 
gram in Berkeley. After that, the debate was carried on pri- 
marily by Fisher and Neyman.) Sections 4, 5, and 6 discuss 
three specific issues on which the two schools differ (fixed 
levels versus p values, power, and conditioning). Section 7 
illustrates the effect of these differences on the treatment of 
two statistical problems, the 2 X 2 table and the Behrens- 
Fisher problem, that have become focal points of the con- 
troversy. Finally, Section 8 suggests a unified point of view 
that does not resolve all questions but provides a common 
basis for discussing the remaining issues. 

For the sake of completeness, it should be said that in 
addition to the Fisher and Neyman-Pearson theories there 
exist other philosophies of testing, of which we shall mention 
only two. There is Bayesian hypothesis testing, which, on 
the basis of stronger assumptions, permits assigning proba- 
bilities to the various hypotheses being considered. All three 
authors were very hostile to this formulation and were in 
fact motivated in their work by a desire to rid hypothesis 
testing of the need to assume a prior distribution over the 
available hypotheses. 

Finally, in certain important situations tests can be ob- 
tained by an approach also due to Fisher for which he used 
the term fiducial. Most comparisons of Fisher's work on hy- 
pothesis testing with that of Neyman and Pearson (see, for 
example, Barnett 1982; Carlson 1976; Morrison and Henkel 
1970; Spielman 1974, 1978; Steger 1971) do not include a 
discussion of the fiducial argument, which most statisticians 
have found difficult to follow. Although Fisher himself 
viewed fiducial considerations to be a very important part 
of his statistical thinking, this topic can be split off from 
other aspects of his work, and here I shall consider neither 
the fiducial nor the Bayesian approach any further. 

Critical discussion of the issues considered in this article 
with references to the extensive literature, in a wider context 
and from viewpoints differing from that presented here, can 
be found in, for example, Oakes (1986) and Gigerenzer et 
al. (1989). 

2. TESTING STATISTICAL HYPOTHESES 
The modern theory of testing hypotheses began with Stu- 

dent's discovery of the t test in 1908. This was followed by 
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Fisher with a series of papers culminating in his book Sta- 
tistical Methods for Research Workers (1925), in which he 
created a new paradigm for hypothesis testing. He greatly 
extended the applicability of the t test (to the two-sample 
problem and the testing of regression coefficients) and gen- 
eralized it to the testing of hypotheses in the analysis of vari- 
ance. He advocated 5% as the standard level (with 1% as a 
more stringent alternative); through applying this new 
methodology to a variety of practical examples, he established 
it as a highly popular statistical approach for many fields of 
science. 

A question that Fisher did not raise was the origin of his 
test statistics: Why these rather than some others? This is 
the question that Neyman and Pearson considered and which 
(after some preliminary work in Neyman and Pearson 1928) 
they later answered (Neyman and Pearson 1933a). Their 
solution involved not only the hypothesis but also a class of 
possible alternatives and the probabilities of two kinds of 
error: false rejection (Error I) and false acceptance (Error II). 
The "best" test was one that minimized PA (Error II) subject 
to a bound on PH (Error I), the latter being the significance 
level of the test. They completely solved this problem for the 
case of testing a simple (i.e., single distribution) hypothesis 
against a simple alternative by means of the Neyman- 
Pearson lemma. For more complex situations, the theory 
required additional concepts, and working out the details of 
this program was an important concern of mathematical 
statistics in the following decades. 

The Neyman-Pearson introduction to the two kinds of 
error contained a brief statement that was to become the 
focus of much later debate. "Without hoping to know 
whether each separate hypothesis is true or false", the authors 
wrote, "we may search for rules to govern our behavior with 
regard to them, in following which we insure that, in the 
long run of experience, we shall not be too often wrong." 
And in this and the following paragraph they refer to a test 
(i.e., a rule to reject or accept the hypothesis) as "a rule of 
behavior". 

3. INDUCTIVE INFERENCE 
VERSUS INDUCTIVE BEHAVIOR 

Fisher considered statistics, the science of uncertain in- 
ference, able to provide a key to the long-debated problem 
of induction. He started one paper (Fisher 1932, p. 257) with 
the statement "Logicians have long distinguished two modes 
of human reasoning, under the respective names of deductive 
and inductive reasoning. . . . In inductive reasoning we at- 
tempt to argue from the particular, which is typically a body 
of observational material, to the general, which is typically 
a theory applicable to future experience." He developed his 
ideas in more detail in a later paper (Fisher 1935a, p. 39) 

. . .everyone who does habitually attempt the difficult task of 
making sense of figures is, in fact, essaying a logical process of 
the kind we call inductive, in that he is attempting to draw in- 
ferences from the particular to the general. Such inferences we 
recognize to be uncertain inferences. . .. 

He continued in the next paragraph: 
Although some uncertain inferences can be rigorously expressed 
in terms of mathematical probability, it does not follow that 

mathematical probability is an adequate concept for the rigorous 
expression of uncertain inferences of every kind. . . . The in- 
ferences of the classical theory of probability are all deductive in 
character. They are statements about the behaviour of individuals, 
or samples, or sequences of samples, drawn from populations 
which are fully known. . . . More generally, however, a math- 
ematical quantity of a different kind, which I have termed math- 
ematical likelihood, appears to take its place [i.e., the place of 
probability] as a measure of rational belief when we are reasoning 
from the sample to the population. 

Neyman did not believe in the need for a special inductive 
logic but felt that the usual processes of deductive thinking 
should suffice. More specifically, he had no use for Fisher's 
idea of likelihood. In his discussion of Fisher's 1935 paper 
(Neyman, 1935, p. 74, 75) he expressed the thought that it 
should be possible "to construct a theory of mathematical 
statistics . . . based solely upon the theory of probability," 
and went on to suggest that the basis for such a theory can 
be provided by "the conception of frequency of errors in 
judgment." This was the approach that he and Pearson had 
earlier described as "inductive behavior"; in the case of hy- 
pothesis testing, the behavior consisted of either rejecting the 
hypothesis or (provisionally) accepting it. 

Both Neyman and Fisher considered the distinction be- 
tween "inductive behavior" and "inductive inference" to lie 
at the center of their disagreement. In fact, in writing ret- 
rospectively about the dispute, Neyman (1961, p. 142) said 
that "the subject of the dispute may be symbolized by the 
opposing terms "inductive reasoning" and "inductive be- 
havior." How strongly Fisher felt about this distinction is 
indicated by his statement in Fisher (1973, p. 7) that "there 
is something horrifying in the ideological movement repre- 
sented by the doctrine that reasoning, properly speaking, 
cannot be applied to empirical data to lead to inferences 
valid in the real world." 

4. FIXED LEVELS VERSUS p VALUES 

A distinction frequently made between the approaches of 
Fisher and Neyman-Pearson is that in the latter the test is 
carried out at a fixed level, whereas the principal outcome 
of the former is the statement of a p value that may or may 
not be followed by a pronouncement concerning significance 
of the result. 

The history of this distinction is curious. Throughout the 
19th century, testing was carried out rather informally. It 
was roughly equivalent to calculating an (approximate) p 
value and rejecting the hypothesis if this value appeared to 
be sufficiently small. These early approximate methods re- 
quired only a table of the normal distribution. With the ad- 
vent of exact small-sample tests, tables of X2, t, F, . . . were 
also required. Fisher, in his 1925 book and later, greatly 
reduced the needed tabulations by providing tables not of 
the distributions themselves but of selected quantiles. (For 
an explanation of this very influential decision by Fisher see 
Kendall [ 1963]. On the other hand Cowles and Davis [ 1982] 
argue that conventional levels of three probable errors or 
two standard deviations, both roughly equivalent [in the 
normal case] to 5% were already in place before Fisher.) 
These tables allow the calculation only of ranges for the p 
values; however, they are exactly suited for determining the 
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critical values at which the statistic under consideration be- 
comes significant at a given level. As Fisher wrote in ex- 
plaining the use of his X2 table (1946, p. 80): 

In preparing this table we have borne in mind that in practice we 
do not want to know the exact value of P for any observed X2, 
but, in the first place, whether or not the observed value is open 
to suspicion. If P is between . 1 and .9, there is certainly no reason 
to suspect the hypothesis tested. If it is below .02, it is strongly 
indicated that the hypothesis fails to account for the whole of the 
facts. We shall not often be astray if we draw a conventional line 
at .05 and consider that higher values of x2 indicate a real dis- 
crepancy. 

Similarly, he also wrote (1935, p. 13) that "it is usual and 
convenient for experimenters to take 5 percent as a standard 
level of significance, in the sense that they are prepared to 
ignore all results which fail to reach this standard . . ." 

Fisher's views and those of some of his contemporaries 
are discussed in more detail by Hall and Selinger (1986). 

Neyman and Pearson followed Fisher's adoption of a fixed 
level. In fact, Pearson (1962, p. 395) acknowledged that they 
were influenced by " [Fisher's] tables of 5 and 1% significance 
levels which lent themselves to the idea of choice, in advance 
of experiment, of the risk of the 'first kind of error' which 
the experimenter was prepared to take." He was even more 
outspoken in a letter to Neyman of April 28, 1978 (unpub- 
lished; in the Neyman collection of the Bancroft Library, 
University of California, Berkeley): "If there had not been 
these % tables available when you and I started work on 
testing statistical hypotheses in 1926, or when you were 
starting to talk on confidence intervals, say in 1928, how 
much more difficult it would have been for us! The concept 
of the control of 1st kind of error would not have come so 
readily nor your idea of following a rule of behaviour. 
Anyway, you and I must be grateful for those two tables in 
the 1925 Statistical Methods for Research Workers." (For 
an idea of what the Neyman-Pearson theory might have 
looked like had it been based on p values instead of fixed 
levels, see Schweder 1988.) 

It is interesting to note that unlike Fisher, Neyman and 
Pearson (1 933a, p. 296) did not recommend a standard level 
but suggested that "how the balance [between the two kinds 
of error] should be struck must be left to the investigator," 
and (1933b, p. 497) "we attempt to adjust the balance be- 
tween the risks PI and PI, to meet the type of problem be- 
fore us." 

It is thus surprising that in SMSI Fisher (1973, p. 44-45) 
criticized the NP use of a fixed conventional level. He ob- 
jected that 

the attempts that have been made to explain the cogency of tests 
of significance in scientific research, by reference to supposed 
frequencies of possible statements, based on them, being right or 
wrong, thus seem to miss the essential nature of such tests. A 
man who 'rejects' a hypothesis provisionally, as a matter of ha- 
bitual practice, when the significance is 1% or higher, will certainly 
be mistaken in not more than 1% of such decisions. . . . However, 
the calculation is absurdly academic, for in fact no scientific worker 
has a fixed level of significance at which from year to year, and 
in all circumstances, he rejects hypotheses; he rather gives his 
mind to each particular case in the light of his evidence and his 
ideas. 

The diffierence between the reporting of a p value or that 
of a statement of acceptance or rejection of the hypothesis 

was linked by Fisher in Fisher (1973, pp. 79-80), to the 
distinction between drawing conclusions or making deci- 
sions. 

The conclusions drawn from such tests constitute the steps by 
which the research worker gains a better understanding of his 
experimental material, and of the problems which it presents. 

. More recently, indeed, a considerable body of doctrine has 
attempted to explain, or rather to reinterpret, these tests on the 
basis of quite a different model, namely as means to making de- 
cisions in an acceptance procedure. 

Responding to earlier versions of these and related objec- 
tions by Fisher to the Neyman-Pearson formulation, Pearson 
(1955, p. 206) admitted that the terms "acceptance" and 
"rejection" were perhaps unfortunately chosen, but of his 
joint work with Neyman he said that "from the start we 
shared Professor Fisher's view that in scientific inquiry, a 
statistical test is 'a means of learning' " and "I would agree 
that some of our wording may have been chosen inade- 
quately, but I do not think that our position in some respects 
was or is so very different from that which Professor Fisher 
himself has now reached." 

The distinctions under discussion are of course related to 
the argument about "inductive inference" vs. "inductive be- 
havior," but in this debate Pearson refused to participate. 
He concludes his response to Fisher's 1955 attack with: 
"Professor Fisher's final criticism concerns the use of the 
term 'inductive behavior'; this is Professor Neyman's field 
rather than mine."' 

5. POWER 

As was mentioned in Section 2, a central consideration 
of the Neyman-Pearson theory is that one must specify not 
only the hypothesis H but also the alternatives against which 
it is to be tested. In terms of the alternatives, one can then 
define the type II error (false acceptance) and the power of 
the test (the rejection probability as a function of the alter- 
native). This idea is now fairly generally accepted for its 
importance in assessing the chance of detecting an effect 
(i.e., a departure from H) when it exists, determining the 
sample size required to raise this chance to an acceptable 
level, and providing a criterion on which to base the choice 
of an appropriate test. 

Fisher never wavered in his strong opposition to these 
ideas. Following are some of his objections: 

1. A type II error consists in falsely accepting H, and 
Fisher (1935b, p. ) emphasized that there is no reason for 
"believing that a hypothesis has been proved to be true merely 
because it is not contradicted by the available facts." This is 
of course correct, but it does not diminish the usefulness of 
power calculations. 

2. A second point Fisher raised is, in modem terminology, 
that the power cannot be calculated because it depends on 
the unknown alternative. For example (Fisher 1955, p. 73), 
he wrote: 

The frequency of the 1 st class [type I error] . . . is calculable and 
therefore controllable simply from the specification of the null 
hypothesis. The frequency of the '2nd kind must depend ... 
greatly on how closely they [rival hypotheses] resemble the null 
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hypothesis. Such errors are therefore incalculable . . . merely 
from the specification of the null hypothesis, and would never 
have came into consideration in the theory only of tests of sig- 
nificance, had the logic of such tests not been confused with that 
of acceptance procedures. (He discussed the same point in Fisher 
1947, p. 16-17.) 

Fisher was of course aware of the importance of power, 
as is clear from the following remarks (1947, p. 24): "With 
respect to the refinements of technique, we have seen above 
that these contribute nothing to the validity of the experiment 
and of the test of significance by which we determine its 
result. They may, however, be important, and even essential, 
in permitting the phenomenon under test to manifest itself." 
The section in which this statement appears is tellingly en- 
titled "Qualitative Methods of Increasing Sensitiveness." 
Fisher accepted the importance of the concept but denied 
the possibility of assessing it quantitatively. 

Later in the same book Fisher made a very similar dis- 
tinction regarding the choice of test. Under the heading 
"Multiplicity of Tests of the Same Hypothesis," he devoted 
a section (sec. 61) to this topic. Here again, without using 
the term, he referred to alternatives when he wrote (Fisher 
1947, p. 182) that "we may now observe that the same data 
may contradict the hypothesis in any of a number of different 
ways." After illustrating how different tests would be appro- 
priate for different alternatives, he continued (p. 185): 

The notion that different tests of significance are appropriate to 
test different features of the same null hypothesis presents no 
difficulty to workers engaged in practical experimentation but 
has been the occasion of much theoretical discussion among stat- 
isticians. The reason for this diversity of view-point is perhaps 
that the experimenter is thinking in terms of observational values, 
and is aware of what observational discrepancy it is which interests 
him, and which he thinks may be statistically significant, before 
he inquires what test of significance, if any, is available appropriate 
to his needs. He is, therefore, not usually concerned with the 
question: To what observational feature should a test of signifi- 
cance be applied? 

The idea that there is no need for a theory of test choice, 
because an experienced experimenter knows what is the ap- 
propriate test, is expressed more strongly in a letter to W. E. 
Hick of October 1951 (Bennett 1990, p. 144), who, in asking 
about "one-tail" vs. "two-tail" in X 2, had referred to his lack 
of knowledge concerning "the theory of critical regions, 
power, etc.": 

I am a little sorry that you have been worrying yourself at all with 
that unnecessarily portentous approach to tests of significance 
represented by the Neyman and Pearson critical regions, etc. In 
fact, I and my pupils throughout the world would never think of 
using them. If I am asked to give an explicit reason for this I 
should say that they approach the problem entirely from the wrong 
end, i.e., not from the point of view of a research worker, with a 
basis of well grounded knowledge on which a very fluctuating 
population of conjectures and incoherent observations is contin- 
ually under examination. In these circumstances the experimenter 
does know what observation it is that attracts his attention. What 
he needs is a confident answer to the question "ought I to take 
any notice of that?" This question can, of course, and for refine- 
ment of thought should, be framed as "Is this particular hypothesis 
overthrown, and if so at what level of significance, by this particular 
body of observations?" It can be put in this form unequivocally 
only because the genuine experimenter already has the answers 
to all the questions that the followers of Neyman and Pearson 
attempt, I think vainly, to answer by merely mathematical con- 
sideration. 

6. CONDITIONAL INFERENCE 

While Fisher's approach to testing included no detailed 
consideration of power, the Neyman-Pearson approach 
failed to pay attention to an important concern raised by 
Fisher. To discuss this issue, we must begin by considering 
briefly the different meanings that Fisher and Neyman attach 
to probability. 

For Neyman, the idea of probability is fairly straightfor- 
ward: It represents an idealization of long-run frequency in 
a long sequence of repetitions under constant conditions (see, 
for example, Neyman 1952, p. 27; 1957, p. 9). Later (Ney- 
man 1977), he pointed out that by the law of large numbers, 
this idea permits an extension: If a sequence of independent 
events is observed, each with probability p of success, then 
the long-run success frequency will be approximately p even 
if the events are not identical. This property adds greatly to 
the appeal and applicability of a frequentist probability. In 
particular, it is the way in which Neyman came to interpret 
the value of a significance level. 

On the other hand, the meaning of probability is a problem 
with which Fisher grappled throughout his life. Not surpris- 
ingly, his views too underwent some changes. The concept 
at which he eventually arrived is much broader than Ney- 
man's: "In a statement of probability, the predicand, which 
may be conceived as an object, as an event, or as a propo- 
sition, is asserted to be one of a set of a number, however 
large, of like entities of which a known proportion, P, have 
some relevant characteristic, not possessed by the remainder. 
It is further asserted that no subset of the entire set, having 
a different proportion, can be recognized" (Fisher 1973, p. 
113). It is this last requirement, Fisher's version of the "re- 
quirement of total evidence" (Carnap 1962, sec. 45), which 
is particularly important to the present discussion. 

Example 1 (Cox 1958). Suppose that we are concerned 
with the probability P(X < x), where X is normally distrib- 
uted as N(,u, 1) or N(,u, 4), depending on whether the spin 
of a fair coin results in heads (H) or tails (T). Here the set 
of cases in which the coin falls heads is a recognizable subset; 
therefore, Fisher would not admit the statement 

P(X < x) = 4 (x - A) + 2(1) 
22 2 

as legitimate. Instead, he would have required P(X < x) to 
be evaluated conditionally as 

P(X<xIH)=4(x- A) or 

P(X?<xlIT)= 4(Xj)A (2) (2) 

depending on the outcome of the spin. 
On the other hand, Neyman would have taken (1) to pro- 

vide the natural assessment of P(X < x). Despite this pref- 
erence, there is nothing in the Neyman-Pearson (frequentist) 
approach to prevent consideration of the conditional prob- 
abilities (2). The critical issue from a frequentist viewpoint 
is what to consider as the relevant replications of the exper- 
iment: a sequence of observations from the same normal 
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distribution or a sequence of coin tosses, each followed by 
an observation from the appropriate normal distribution. 

Consider now the problem of testing H: ,u = 0 against the 
simple alternative , = 1 on the basis of a sample X1, . . .. 
X, from the distribution (1). The Neyman-Pearson lemma 
would tell us to reject H when 

1 1 e-z(xi-l)I/ 1 1 2-_(X,-1)2/8 
2 2 22 

2 2 e-x2 + 
- 

e-x 8 ], (3 

where K is determined so that the probability of (3) when ,u 
= 0 is equal to the specified level a. 

On the other hand, a Fisherian approach would adjust the 
test to whether the coin falls H or T and would use the re- 
jection region 

1 2 e -z(xi1)2/ 2 K1 e -x2/2 

when the coin falls H (4) 

and 

_2:-(X._1)2/8 2K 1 -X2:/8 e > K2 e~xI 
2V1 21/ 

when the coin falls T, (5) 

where K1 and K2 are determined so that the null probability 
of both (4) and (5) is equal to a. It is easily seen that these 
two tests are not equivalent. Which one should we prefer? 

Test (3) has the advantage of being more powerful in the 
sense that when the full experiment of spinning a coin and 
then taking n observations on X is repeated many times, and 
when ,u = 1, this test will reject the hypothesis more fre- 
quently. 

The second test has the advantage that its conditional level 
given the outcome of the spin is a both when the outcome 
is H and when it is T. [The conditional level of the first test 
will be <a for one of the two outcomes and >a for the 
other.] 

Which of these considerations is more important depends 
on the circumstances. Echoing Fisher, we might say that we 
prefer (1) in an acceptance sampling situation where interest 
focuses not on the individual cases but on the long-run fre- 
quency of errors, but that we would prefer the second test 
in a scientific situation where long-run considerations are 
irrelevant and only the circumstances at hand (i.e., H or T) 
matter. As Fisher put it (1973, p. 101-102), referring to a 
different but similar situation: "It is then obvious at the time 
that the judgment of significance has been decided not by 
the evidence of the sample, but by the throw of a coin. It is 
not obvious how the research worker is to be made to forget 
this circumstance, and it is certain that he ought not to forget 
it, if he is concerned to assess the weight only of objective 
observational facts against the hypothesis in question." 

The present example is of course artificial, but the same 
issue arises whenever there exists an ancillary statistic (see, 
for example, Cox and Hinkley 1974; Lehmann 1986), and 

it seems to lie at the heart of the cases in which the two 
theories disagree on specific tests. The two most prominent 
of these cases are discussed in the next section. 

7. TWO EXAMPLES 
For many problems, a pure Fisherian or Neymann- 

Pearsonian approach will lead to the same test. Suppose in 
particular that the observations X follow a distribution from 
an exponential family with density 

po,a(x) = C(0, d)e'U(x)+?0=1aiTl(x) (6) 

and consider testing the hypothesis 

H: 0 = 00 (7) 

against the one-sided alternatives 0 > 00. Then Fisher would 
condition on T = (T1, . . , Tk) and would in the conditional 
model consider it natural to calculate the p value as the con- 
ditional probability of U 2 u, where u is the observed value 
of U. At a given level a, the result would be declared sig- 
nificant if U 2 C(t), where C(t) is determined by 

P[U> C(t)1T= t] = a. (8) 

A Neyman-Pearson viewpoint would lead to the same test 
as being uniformly most powerful among all similar tests. 

But as we have seen in Example 1, the two approaches do 
not always lead to the same result. We next consider the two 
examples that have engendered the most controversy. 

Example 2: The 2 X 2 table with onefixed margin. Let 
X, Y be two independent binomial variables with suc- 
cess probabilities Pi and P2 and corresponding to m and n 
trials. The problem of testing H: P2 = Pi against the al- 
ternatives P2 > Pi is of the form given by (6) and (7) with 
0 = log[(p2/q2)/(p1/1q)], T = X + Y and U = Y. Ba- 
sically, there is therefore no conflict between the two ap- 
proaches. However, because of the discreteness of the con- 
ditional distribution of U given t, condition (8) typically 
cannot be satisfied. Fisher's exact test then chooses C(t) to 
be the largest constant for which 

P[U > C(t) I T = t] ? a. (9) 

For small values of t, this may lead to conditional levels 
substantially less than a; for small m and n, the same may 
be true for the unconditional level. For this reason, Fisher's 
exact test has been criticized as being too conservative. Many 
alternatives have been proposed for which the unconditional 
level (which is a function of Pi = P2) is much closer to a. 
Upton (1982) lists 22; for other surveys, see Yates (1984) 
and Agresti (1992). 

The issues are similar to those encountered in Example 
1. If conditioning is considered appropriate (and in the pres- 
ent case it typically is), and if control of type I error at level 
a is considered essential, then the only sensible test available 
is of the form U > C(t), where C(t) is the largest value 
satisfying (9). If, on the other hand, only the unconditional 
performance is considered relevant, then we may allow the 
conditional level of the region U> C( t) to exceed az for some 
values of t in such a way that the unconditional level (which 
is the expected value of the conditional level) gets closer to 
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a while remaining <a for all values of P2 = Pl. This is es- 
sentially what the alternatives to Fisher's exact tests try to 
achieve. (The same issues arise also when analyzing 2 X 2 
tables in which none of the margins are fixed.) 

Example 3. Behrens-Fisher problem. Here we are deal- 
ing with independent samples X1, . .. , Xm and Y1, . . ., Yn 
from normal distributions N(Q, a2) and N( q, r2) and we 
wish to test the hypothesis H: q = t. Against the two-sided 
alternatives * 7 (, there is general agreement that the rejection 
region should be of the form 

Y- 5 (Sy (10) 
+ 

m n 

where S2 and S2 are the usual estimators of a2 and r2. 
Suppose that we consider it appropriate, as Fisher does, 

to carry out the analysis conditionally on the value of 
S2y /S. If the conditional distribution of the left side of( 10) 
given S2 IS2 = c were independent of the parameters and 
hence known, there would be no problem. Everyone would 
agree to calculate g so that the conditional level is a for each 
c, which would then also result in an unconditional level 
identically equal to a. Unfortunately, the conditional dis- 
tribution depends on the unknown variances. Two principal 
ways out of this difficulty have been proposed. 

1. From a Neyman-Pearson point of view, the attempt 
has been to construct a function g for which the probability 
of (10) is --a under H for all a and r (it actually depends 
only on the ratio 0 = r2/ a2). After much effort in this di- 
rection, it became clear that an acceptable function g satis- 
fying this condition does not exist. But Welch and Aspin 
have produced tests whose level differs from a so little over 
the entire range of 0 that, for all practical purposes, they can 
be viewed as solutions to the problem. (For a discussion and 
references see, for example, Stuart and Ord 1991, sec. 20.33.) 

2. These tests are unacceptable to Fisher, however, be- 
cause they admit recognizable subsets. In particular, Fisher 
( 1956) produced an example for which the conditional level 
given S2j/S2 = 1 is always >a + e for some positive e. 
Fisher's own solution to the problem is the so-called Behrens- 
Fisher test, which he derived by means of a fiducial argument. 
Although it does not follow from this derivation, numerical 
evidence (Robinson 1976) strongly suggests that this test is 
conservative; that is, its unconditional level is always <a. 
But a proof of this fact for all m, n, and 0 is not yet available. 

Let us call a set C in the sample space for which there 
exists e > 0 such that 

PH[rejecting I X E C] > a + e for all distributions in H, 

a liberally biased relevant subset. (The corresponding concept 
for confidence intervals is called negatively biased.) Robinson 
(1976) showed that no such subsets exist for the Behrens- 
Fisher test. (Because of this test's conservative nature, this 
is perhaps not too surprising.) He proposed calling a test 
conservative if its unconditional level is always ?az and if it 
does not admit a liberally biased relevant subset, and ex- 

pressed the hope that "perhaps the Behrens-Fisher test is 
optimal in some sense among the class of procedures which 
are conservative" (Robinson 1976, p. 970). This conjecture 
seems to have been disproved by Linssen (1991). 

8. ONE THEORY OR TWO? 

From the preceding sections it is clear that considerable 
differences exist between the viewpoints of Fisher and 
Neyman-Pearson. Are these sufficiently contradictory to 
preclude a unified theory that would combine the best fea- 
tures of both? 

A first difference, discussed in Section 4, concerns the re- 
porting of the conclusions of the analysis. Should this consist 
merely of a statement of significance or nonsignificance at 
a given level, or should a p value be reported? The original 
reason for fixed, standardized levels-unavailability of more 
detailed tables-no longer applies, and in any case reporting 
the p value provides more information. On the other hand, 
definite decisions or conclusions are often required. Addi- 
tionally, in view of the enormously widespread use of testing 
at many different levels of sophistication, some statisticians 
(and journal editors) see an advantage in standardization; 
fortunately, this is a case where you can have your cake and 
eat it too. One should routinely report the p value and, where 
desired, combine this with a statement on significance at any 
stated level. (This was in fact common practice throughout 
the 19th Century and is the procedure frequently used by 
Fisher.) Two other principal differences, considered in Sec- 
tions 5 and 6, are the omissions of power (by Fisher) and of 
conditioning (by Neyman-Pearson). It seems clear that a 
unified approach needs to incorporate both of these ideas. 

For some problems this will cause no difficulty, because 
both approaches will lead to the same test, as illustrated at 
the beginning of Section 7. But the principles of conditioning 
on the one hand and of maximizing the unconditional power 
on the other may be in conflict, as is seen from Examples 
1-3. This conflict disappears when it is realized that in such 
cases priority must be given to deciding on the appropriate 
frame of reference; that is, the real or hypothetical sequence 
of events that determine the meaning of any probability 
statement. Only after this has been settled do probabilistic 
concepts such as level and power acquire meaning, and it is 
only then that the problem of maximizing power comes into 
play. 

This leaves the combined theory with its most difficult 
issue: What is the relevant frame of reference? It seems clear 
that even in the simplest situations (such as Ex. 1), no uni- 
versal answer is possible. In any specific case, the solution 
will depend on contextual considerations that cannot easily 
be captured by a general theory. 

That conflicting considerations argue for different solu- 
tions in specific cases is not an indictment of a theory, pro- 
vided that the theory furnishes a basis for discussing the is- 
sues. Although Neyman and Pearson never seem to have 
raised the problem of just what constitutes a replication of 
an experiment, this question is as important for a frequentist 
as it is for an adherent of Fisherian probability. This was 
recognized, for example, by Bartlett (1984, p. 453), who 
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stated "I regard the 'frequence requirement of repeated sam- 
pling' as including conditional inferences." A common basis 
for the discussion of various conditioning concepts, such as 
ancillaries and relevant subsets, thus exists. The proper choice 
of framework is a problem needing further study. 

We conclude by considering some more detailed issues 
and by reviewing Examples 2 and 3 from the present point 
of view. 

1. Both Neyman-Pearson and Fisher would give at most 
lukewarm support to standard significance levels such as 5% 
or 1%. Fisher, although originally recommending the use of 
such levels, later strongly attacked any standard choice. 
Neyman-Pearson, in their original formulation of 1933, rec- 
ommended a balance between the two kinds of error (i.e., 
between level and power). For a disucssion of how to achieve 
such a balance, see, for example, Sanathanan (1974). Both 
level and power should of course be considered conditionally 
whenever conditioning is deemed appropriate. Unfortu- 
nately, this is not possible at the planning stage. 

2. A second point on which there appears to be no conflict 
between the two approaches is "truth in advertising." Even 
if a particular nominal level a, say 5%, is the target, when it 
cannot be achieved because of discreteness the test should 
not just be described as conservative or liberal relative to the 
nominal level; instead, the actual (conditional or uncondi- 
tional) level should be stated. If this level is not known be- 
cause it depends on unknown parameters, at least its range 
should be given and, if possible, also an estimated value. 

3. In both the 2 X 2 example and the Behrens-Fisher 
problems, the conflict between the solutions proposed by the 
two schools is often discussed as that of a desire for a similar 
test (i.e., one for which the unconditional level is -a) versus 
a suitable conditional test. The issue becomes clearer if one 
asks for the reason that Neyman-Pearson proposed the con- 
dition of similarity. The explanation begins with the case of 
a simple hypothesis where these authors take it for granted 
that in order to maximize the power, one would want the 
attained level to be equal to rather than less than a. For a 
composite hypothesis H, they therefore stated that the level 
should equal a for each of the simple hypotheses making up 
H. The requirement for similarity thus has its origin in the 
desire to maximize power, the issue discussed in Section 5. 

In the light of (1) and (2), a unified theory less concerned 
with standard nominal levels might jettison not only the 
demand for similarity but also that of conservatism relative 
to a nominal level. 

When similarity cannot be achieved and conservation is 
not required, various compromise solutions may be available. 
Thus in the 2 X 2 case of Example 2, one could, for example, 
select for each t the conditional level closest to a. If this 
seems too permissive, then the rule could be modified by 
adding a cap on the conditional level beyond which one 
would not go. Tests with a variable conditional level that 
will sometimes be <a and sometimes >a have been discussed 
by Barnard (1989) under the name "flexible Fisher." Alter- 
natively, one might give up on a nominal level altogether 
and instead for each t adjust the level to the attainable (con- 
ditional) power. 

The situation is much more complicated for the Behrens- 
Fisher problem. On the one hand, the arguments for con- 
ditioning an S2 /S2 seems less compelling; on the other 
hand, even if this conditioning requirement is accepted, the 
conditional distribution depends on unknown parameters, 
and thus it is less clear how to control the conditional level. 
Robinson's formulation, mentioned in Section 7, provides 
an interesting possibility but requires much further investi- 
gation. But such work can be carried out from the present 
point of view by combining considerations of both condi- 
tioning and power. 

To summarize, p values, fixed-level significance state- 
ments, conditioning, and power considerations can be com- 
bined into a unified approach. When long-term power and 
conditioning are in conflict, specification of the appropriate 
frame of reference takes priority, because it determines the 
meaning of the probability statements. A fundamental gap 
in the theory is the lack of clear principles for selecting the 
appropriate framework. Additional work in this area will 
have to come to terms with the fact that the decision in any 
particular situation must be based not only on abstract prin- 
ciples but also on contextual aspects. 

[Received January 1992. Revised February 1993.] 
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