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General approaches to the problem of bioequivalence 
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Abstract. Apart from the Bayesian approach to the problem of demonstrating bioequivalence, all other 
existing approaches can be grouped under four headings (Rocke, 1984). We reconsider the problem 
from the standpoint of fiducial probability and illustrate how this leads to the immediate deduction of 
Rocke's findings. Furthermore, by taking this standpoint, much light is thrown on many of the other 
issues and controversies of the subject. 

1 Introduction 

Alternative formulations of the same drug or a pair of similar drugs are said to be 
'bioequivalent' if they produce, in some sense, equivalent therapeutic effects. In 
practice we will want to assess to what extent such drugs, or different formulations, 
are, in normal conditions of use, equivalent. 

Authors (Westlake, 1972, 1976, 1979, 1981; Dunnett & Gent, 1977; Selwyn et al., 
1981; Kirkwood, 1981; Blackwelder, 1982; Rocke, 1984; Hauck & Anderson, 1983, 
1984) have pointed out that a test of the usual null hypothesis is inappropriate since 
small and clinically insignificant differences may be detected with large sample sizes. 
Furthermore, as is always carefully underlined in introductory statistics courses, 
failure to reject the null hypothesis can in no way lead to its affirmation. Considerable 
controversy (Mantel, 1977; Westlake, 1977, 1981; Kirkwood, 1981) has arisen over 
the appropriateness of the different approaches. Comparative studies (Mandallaz & 
Mau, 1981) using the two-period crossover design (Grizzle, 1965) and leaning on 
simulations have led to somewhat ambiguous conclusions. In fact leaving aside the 
Bayesian method developed by Selwyn et a. (1981) and specific applications such as 
the equivalence problem with binomial outcome (Dunnett & Gent, 1977) or with 
ordered categorical data (Mehta, Patel & Tsiatis, 1984) the various methods can be 
seen to be closely related and to come under four broad headings. 

Before looking at these we recall the main ideas. Let 3 (20) measured on some scale 
represent the true difference between the two population treatment means. Should any 
true difference be negative, it only remains to reverse the direction of this difference to 
ensure that 3?0. In practice we will estimate 3 by 3 and try to make inferences 
regarding 3. As pointed out we will be unable to infer 3=0 and even were we able to 
infer '3 0 this is of little practical assistance. Thus we introduce A>0 as being the 
maximum value for 3 of negligible practical interest. The value of A chosen would in 
practice necessitate considerable discussion and this in itself is probably no bad thing. 

The four broad methods are briefly summarised in Section 2 and the relationship 
between them in Section 3. In Section 4 we briefly recall the main ideas of the fiducial 
argument, giving these a pictorial representation in Section 5. This representation 

* On leave from Unite 292 INSERM, France. 

This content downloaded from 128.173.127.127 on Thu, 5 Jun 2014 16:38:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


52 John O'Quigley & Claude Baudoin 

enables the immediate deduction of Rocke's findings (1984) and gives a context in 
which many of the results and controversies of the bioequivalence question can be 
more clearly understood. 

2 Methods 

2.1 Westlake's symmetric confidence interval method 

Westlake (1972, 1976) put the problem in the following way. Denote the new 
formulation of the drug by N, the standard by S, ,UN and us being the respective 
treatment means. In earlier work Westlake referred to these means as the mean 
amount of drug absorbed, although other authors, and subsequently Westlake himself, 
considered these population parameters to denote some mean response however 
measured. Thus, and this point does not seem to have given rise to much discussion in 
the bioequivalence literature, treatments may be bioequivalent in some respects and 
not in others. 

Some thought is needed to understand the notation of Westlake since at first sight 
there appears to be a lack of distinction between population parameters and their 
estimates based on the data. For instance he suggests the data from a trial be used to 
construct a confidence interval with specified confidence coefficient of the form 

,US+ C2,UN-US+ C1 

and to reject the hypothesis of bioequivalence if the interval is, in some accepted 
sense, too wide. In a numerical example this expression becomes 

0 727,us,uN? l.l 5/us 

and from a classical viewpoint we ought to feel unhappy with such an expression, 
since there is nothing obviously random in it. This is the clue to a point, first 
understood by Westlake, and that is that the intervals we are dealing with are not 
confidence intervals in the classical sense. Their motivation stems from the observa- 
tion that we are in a decision making context and that the classical methods of 
statistical decision making do not, in an appropriate way, address the problems being 
posed. 

Westlake further observed that in practice the applied worker, be they clinician or 
pharmacologist, tend to make equivalent statements in a symmetrical manner so that 
if the absolute value of J=IUN-,IS, or possibly log 5 where J=/UN//IS, is less than some 
given value then we have bioequivalence. He, therefore, introduced the idea of the 
'effective' length of the confidence interval which is not C1 - C2 but 2K where 
K=min{J C1 ,I C2J}. This motivated the introduction of symmetric intervals. 

These are obtained as follows. Let XN and xs be the sample means and S2, the 
estimated residual variance based on n-1 degrees of freedom. Let 

t(u; n -1) ={(n -1) 112 f(l/2,(n -1)/2) - Ill +U2/(n -l)}-n12 

where 
7r12 

fl(z,w)=2J 0 sin2zl1(0) COS2wl (6) dO 

i.e. the density for a t-variate on n-1 degrees of freedom. Further suppose that 

fK2 t[ V{(XN Xs) -}/s /V 2;n-1 ]du = O* 9 5 
for some K1 and K2. Then Westlake (1976) shows by simple algebra that if we can find 
K1 and K2 such that 

(K1 +K2) V 2s21n=2(Xs-XN) 
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then the above interval, viewed as a confidence interval for uN, will be symmetrical 
about js. Westlake suggested we determine K1 and K2 by trial and error although 
algorithms arid tables have since been provided (Spriet & Beiler, 1978). He further 
demonstrates that the confidence coefficient is in fact always greater than 1--a, if, for 
instance, we construct a 100(1- a)% confidence interval. 

In practice then we will calculate a (1- a)100% confidence interval for 5, on the 
basis of 3, symmetric about zero. Reducing a will increase the interval size. The limits 
(-A,A) will be encroached on simultaneously, at which point a can be interpreted as 
the degree of significance against the null hypothesis-absence of bioequivalence. 

2.2 Kirkwood's method 

Kirkwood's approach (1981) stemmed from his view that testing for bioequivalence 
and checking that drug potencies conform to specified levels should share a common 
statistical approach. He disagreed with the symmetrical intervals of Westlake for a 
number of reasons and constructed an example whereby we would conclude bioequi- 
valence using symmetrical intervals and yet the data give strong indication for a 
difference between the treatments, albeit small. 

Kirkwood underlined an apparent paradox in the symmetrical interval method, 
whereby, as A/ls increases and the evidence for non-equivalence becomes stronger, the 
criterion for accepting bioequivalence actually becomes more lax (here Kirkwood talks 
about rejecting rather than accepting bioequivalence and this is presumably an error). 
The reason for this, as noted by Kirkwood, is that, under symmetry and assuming 
do 0, a two-sided interval progressively becomes one-sided. 

His proposed method would be to calculate a (1 - a) 100% confidence interval for 5 
on the basis of J. If the interval is entirely contained within (-A,A) then bioequiva- 
lence is concluded. In order to obtain a significance level it suffices to vary a noting, 
once again, that this varies inversely with interval size. As a decreases, at some point, 
one of the limits (-A,A) will be encroached upon and we can take this corresponding 
a to be the degree of significance. 

2.3. Westlake's one-sided method 

Westlake (1981) takes issue with Kirkwood, emphasising that in the context of 
bioequivalence, confidence intervals are being used as an aid to decision making and 
should not necessarily be given a rigorous classical interpretation. Thus no philo- 
sophical problem is raised should we simultaneously, on the basis of a single data set, 
conclude that treatments differ significantly and that they are also bioequivalent. 
Kirkwood's second point prompted Westlake to suggest that use of a (1 - a) 100% 
confidence interval is, in fact, unduly conservative. Since we can suppose, without loss 
of generality, that o5>0 we need only concern ourselves with A (and not -A). Westlake 
suggests we ought then work with a (1 - 2a) 100% confidence interval, the main reasons 
for not doing so being more to do with conservatism and traditional practice than 
statistical. Using this approach the degree of significance will be obtained as before by 
reducing a up until encroachment of the, now one-sided interval, at the point A. 

2.4 Rocke's method 

Rocke felt that much of the controversy could be cleared up by formulating the 
problem squarely in terms of a statistical test. The traditional null and alternative 

This content downloaded from 128.173.127.127 on Thu, 5 Jun 2014 16:38:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


54 John O'Quigley & Claude Baudoin 

hypotheses change roles and we test HA: I(j >A/ against Ho: I <A. Under the null 
hypothesis HA we will consider the distribution of 5 to be centered around A and under 
this distribution a critical region will be defined between -do and d0. The value of do 
will depend not only on the variance of 5 but also on a. We then note that if the real 
difference is even greater than A then the effect of the distribution being centered 
around A can only be conservative. Secondly, the problem being expressed in terms of 
absolute values, the same reasoning follows through if we deal with negative quanti- 
ties. Detailed discussion is given by Rocke (1984), Anderson & Hauck (1983) and by 
Hauck & Anderson (1984). Similar ideas are exploited in the case of proportions 
(Dunnett & Gent, 1977; Blackwelder, 1982). From a classical viewpoint this method is 
in many ways the only one (of those considered here) with a solid foundation in 
statistical theory, at least as conceived by Neyman & Pearson. It has however been 
pointed out that the other methods do give rise to formal statistical tests, and this no 
less so because they find their expression in the language of confidence intervals. Even 
so the problem stated in the terms expressed by Rocke does clear up some confusion 
and assists the practitioner who, for example, finds the null hypothesis of Mandallaz & 
Mau (1981) the alternative of Hauck & Anderson (1984) and vice versa! 

3 Relationship Between the Methods 

Denote the methods as method i (i= 1, . . ., 4) where the relevant method is described 
in 2.i of the previous section. Following Rocke (1984) let 

T(x)= J t(u;n-1 )du. 
x 

Suppose J5?A (assuming without loss of generality that 5 is positive), then under 
method 1 bioequivalence will be concluded whenever 

T{(A-(5ls}+ T{(A+(l/s}a<a. (3.1) 

For method 2 bioequivalence will be concluded whenever 

2T{(A-(l/s}?Ca. (3.2) 

For method 3 bioequivalence will be concluded whenever 

T{(A-' )ls}la. (3.3) 

For method 4 bioequivalence will be concluded whenever 

TI{(A- ls}-T{(A + )ls}?ca (3.4) 

Similar expressions are given by Rocke in the case a >A. In either event, defining as pi 
the significance level obtained for the ith method, some algebra (Rocke, 1984) shows 
that 

P2>P1 >P3>P4. 

This result is made much more transparent by appealing to the idea of fiducial 
probability. This is considered in the next section where the associated idea of a 
pictorial representation of a confidence interval for translation families is anticipated, 
and used in the remaining section. It is our view that this device leads to much 
clarification of many of the issues raised by the apparently different approaches to 
bioequivalence. 
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4 The Fiducial Argument 

Let T be a sufficient statistic for the parameter 0 and let 
pr (T<t) = F(t,0) 

f(t,0) = aF(t,6)/dt. 
Denote the range of possible values for 0 by Ro and that for f(t,0) continuous, t fixed, 

af(t,0)/6 0 6 0 eR,, 0 , * 

af(t,6)/da 20 Oc0Ro , 6?6* 

492f(t,0)/a62<0 OeR0 , 060*. 
Once again considering t fixed, define 6L and 6 u such that 

f(t,OL)=f(t,09 and 
F(t,o U 9-F(t,0t)= 1-a. 

The (1 -a)100% fiducial interval for 0 is then defined as (6L, I-). 
The area of fiducial inference is certainly no less controversial than that of bioequi- 

valence. However, controversy in the first case arises when 0 is of dimension greater 
than one or when 0 is other than a translation parameter, invariant under the group of 
linear transformations (see Fraser, 1961). This second condition is satisfied if we can 
factorise the density g(xl 6) of the data x in the form (Fisher, 1934) 

g(xl 0)==h(-0*) 0 (A) 
where A is ancillary. In the cases considered here it has been assumed that (N= (S, in 
which case the ancillary statistic A is just s2(nKI + ns71) where nN and ns are the 
respective sample sizes for the formulations N and S. Were we not to suppose Nk= S 
then the various techniques, advanced as solutions to the Behrens-Fisher problem, 
could be applied to the area of bioequivalence, leading to results other than those yet 
obtained. 

Our aim here though is not to propose new solutions but simply to show how, from 
the standpoint of fiducial inference, additional light can be thrown upon these 
solutions currently in use. For the methods described in Section 2 the above factorisa- 
tion is usually appropriate, possibly after having transformed the original data. 

For our purposes we will assume that the constraint f(t,6OL)=f(t,6U), generally 
deemed necessary for generating a fiducial interval, be relaxed. In the next section 
then, we see that the methods put forward in Section 2 can be formulated in the above 
terms and that a pictorial representation of this formulation leads to an immediate 
deduction of Rocke's findings. 

-aE + ea 

Fig. 1. P-value for method 2 using 'confidence intervals' symmetric about 3 
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-A o a +A 

Fig. 2. P-value for method 1 using 'confidence intervals' symmetric about 0. 

5 The Calculation of p-values 

In a strictly decision making context we would fix a in advance and for method 4 for 
instance carry out a test at level a. For the other methods confidence intervals for a of 
size 1--a would be calculated and if these are wholly contained within the interval 
(-A,A) then the conclusion of bioequivalence is made. In practice we will more often 
than not calculate p-values. For method 2 (assuming without loss of generality that a is 
positive) we will calculate that (1-a) 100% confidence interval whose right-hand limit 
just touches A. The p-value will then be equal to twice the probability associated with 
values greater than A and this is illustrated graphically in Fig. 1. For method 1 the 
(1-a) 100% confidence interval is centered around zero and once again we vary a 
until the right-hand limit of the confidence interval touches A, by symmetry the left- 
hand limit will also toAuch -A. This is shown in Fig. 2 and note that we use the same 
curve centered about a and not about zero in accordance with the fiducial argument. 
For method 3 illustrated in Fig. 3 it is clear we end up with half the p-value associated 
with method 2. Conceptually method 4 operates in quite a different way in calculating 
a rejection region under the alternative hypothesis (i.e. I1 >A) which in a classical 
sense is now viewed as the null hypothesis. As with the confidence interval approaches 
we proceed less formally by calculating the probability (p-value) associated with the 
interval (-,). The syAmmetry in Fig. 4 means that the shaded area corresponding to 
the p-value between -3 and 3 under the broken curve is the same as that between A 
and A+ 23 under the unbroken curve. If we denote by p, the p-value corresponding to 
the ith method we only need look at Figs. 1-4 to see straightaway that 

P2>P1 >P3>P4 
the central result obtained from Rocke (1984). 

Fig.3.-valu foret 0 +A 

Fig. 3. P-value for method 3 using one sided 'confidence interval'. 
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Figs 1-4 are helpful in appreciating other results and controversies arising in the 
area of bioequivalence. The simulations of Mandallaz & Mau (1981) led them to 
conclude P2>P1 and as already pointed out this is immediate upon comparing Figs 1 
and 2, where we see that the critical region (unshaded area) for method 1 contains that 
for method 2. A little thought is needed here since the critical regions are unshaded 
whilst the associated p-values correspond to the shaded areas. In terms of these figures 
it is also very much easier to understand the Westlake method for calculating 
symmetrical intervals. In effect we start with Fig. 2, progressively transferring portions 
of shaded area from left to right until the resulting figure looks like Fig. 1, although 
with a different A since here the shaded areas are not equal. 

, I \~~~~~~~~~~~~~~~~~~~~~~~I 

/- i \i \ 

-A X O + 

Fig. 4. p-value for method 4 based upon conventional test. 

Selwyn & Hall (1985) have strongly criticised method 4 on two grounds. Firstly they 
say there is no intuitive rationale for defining a p-value to be the difference of two tail 
areas and secondly, an anomaly noted by Rocke (1984) whereby for fixed 5 and A 
p4-O>0 as s2__Oo, should in their view disqualify the method. The first criticism does not 
seem to rest on any statistical or logical foundation although the second was consi- 
dered sufficiently serious by Rocke (1985), one of the method's main proponents, to 
suggest its abandonment in favour of method 3. This contrasts with the conclusion of 
his 1984 paper where, despite this anomaly, he considered the overall properties of 
method 4 indicated its preference to method 3. Our view is that this problem needs 
further thought and that it would be hasty to abandon a method with many attractive 
aspects. The anomaly is readily appreciated by considering Fig. 4 where, if we keep 3 
and A fixed and increase s2 the curves become flatter and flatter. We see that Pi, P2-i> 1, 
p3-k 1/2 and p4->O. Even so, if the standard error of 5 is as great as A, let alone 
several times greater, it is hard to imagine the serious practitioner carrying out a 
formal test of bioequivalence. In other words the problem is probably of academic 
rather than practical interest. 
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