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ABSTRACT 

Optimal statistical tests,  using the normality assumptions fo r  general 

interval hypotheses including equivalence testing and testing f o r  non- 

zero difference (or  for  non-unit) a r e  presented. These tests  a r e  based 

on the decision theory f o r  P6lya Type distributions and a re  compared , . 

with usual confidence tests  and with 'two one-sided tests '-  procedures. 

A formal relationship between some optimal tests  and the Anderson and 

Hauck procedure a s  well a s  a procedure recommended by Pate1 and Gupta 

is given. A new procedure f o r  a generalisation of Student's tes t  as  

well a s  f o r  equivalence testing f o r  the t-statistics is shown. 
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INTRODUCTION 

MEHRING 

The interpretation of a significant result of a usual tes t  for  

significance suffers  from the problem of saying nothing about the 

difference between the t rue value and the assumed value of the 

parameter of interest.  

Let us consider the following hypotheses : H  : 7 = 7 vs K : 7 * ro. If 0  
a test f o r  significance rejects  the hypothesis H then we still have no 

information about the distance between r and r o ,  which would be import- 

ant for  practical applications. Such a situation arises, when the 

available da ta  a re  extensive, a s  the test  becomes very powerful and can 

detect even small differences. The t e s t  then shows a significant result 

that  may be less important with respect t o  the problem in question. The 

usual way t o  overcome the difficulty i s  t o  plan the experiment properly 

based on sample size calculations. Let us regard the very common 

situation where the variables a r e  normally distributed. Sample size 

calculations require the specifications of the type I and type I1 

errors, a 'difference t o  detect' f o r  the means and the standard 

deviation. The lat ter  is crucial because the standard deviation is 

usually not well known. An overestimate of this parameter leads t o  an 

overestimate of the sample size so that  the t r ia l  has more power than 

expected and can lead t o  the situation described above. Another point 

has to  be raised. Even if the planning was correct,  one cannot conclude 

from a significant outcome that  the  difference between the means 

coincides with the assumed 'difference to  detect', a s  a significant 

result also can be caused by ( t rue)  differences of means less than 

those the experimenter wished to demonstrate. The probability of this 

event will be less than the power the sample size calculations were 

based on, but greater  than the type I error .  Therefore, the 'difference 

to  detect' should not only be included in the planning but also in the 

test procedure. The issue can be addressed by the following type of 

hypotheses : 

Dl H : . a  s . a = r ,  vs K : r < . a , o r a . > a .  
2 '  

where 7 and ;I a r e  real values (of practical interest) with ;rl s .a2. 
1 2  
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GENERAL INTERVAL-HYPOTHESES 1259 

If the hypothesis H is rejected by a suitable test  then we have precise 

information about the parameter 7 (i.e., 7 < 7 ,  or  7 > x2). Note that  

when 7 = r2 we have the usual two-sided hypotheses. The problem is 

usually solved by using the method of confidence estimation: If (c l ,cu)  

denotes a 1-2-0: confidence interval, 0 < a < 1, f o r  the parameter 7 

then H will be rejected if (c1,qU) lies outside the interval [xl,y2] . 
The opposite formulation, i.e., how to show tha t  a parameter (or  

differences between parameters) lies inside a given range, is well 

known a s  the problem of equivalence testing. The structure of the 

hypotheses fo r  an equivalence test  is  obviously related to  the above 

hypotheses. W e  only have t o  change the meaning of H and K : 

One would expect that  the test  f o r  equivalence is  analogous t o  the test 

f o r  a difference. This is clear.  f o r  the confidence interval method : 

equivalence is  accepted, Le., H is rejected, when the interval (cl ,cu)  

lies inside (;r,,~,). 

There may be situations where i t  is not clear whether one should test 

f o r  equivalence or  f o r  a difference. As an example we regard the 

development of a new drug in medicine. The problem is to  decide a t  a 

very early stage whether the new drug is different or equivalent t o  a 

known drug with respect t o  some parameters of interest. The case of 

equivalence could lead t o  a 'go go decision', i.e. there is  no interest 

in fur ther  developing the  new drug, whereas the demonstration of 

difference in the framework of D) would give a good argument for  

supporting a 'go decision'. Therefore we have t o  test  the hypotheses El 

and Dl simulaneously so tha t  the problem of adjustment of the a-error 

appears. Another way t o  solve the problem is a t es t  for  the combination 

of El and Dl a s  follows : 

where 7 7 a r e  given values satisfying the order 7 S...S~,. 
4 1 

The intervals ;rl s 7 : ;r and r3 5 7 5 r4 of the  hypothesis H can be 
2 

regarded a s  a region of 'indifference', as  the  data  support neither 

equivalence nor difference. The question what t o  do is open again. A 
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1260 MEHRING 

further  development of the new drug may then depend on other 

properties. 

The problem of equivalence E) has been discussed extensively since it  

was introduced t o  applied statistics by Westlake (1972) (see O'Quigley 

and Baudoin (1988) f o r  an overview and Anderson and Hauck (1983) fo r  

the rationale with respect t o  medical situations). The question Dl is 

much older and was already discussed by Berkson (1938) and by Hodges 

and Lehmann (1954). All these problems a r e  formally related, and i t  

seems resonable that  solutions can be derived within a general frame- 

work. This is the objective of the paper : optimal statistical tes ts  

a re  presented for  the problems D), El and E+D) based on the theory of 

Polya Type distributions fo r  the common one- and two- sample problems 

concerning the normal distribution f o r  the sample(s). The decision 

theory for  Polya Type distributions was f i r s t  established by Karlin 

(1956) in order t o  answer some theoretical questions without regard f o r  

any applications. Therefore, i t  may be interesting to  see how i t  can be 

used f o r  problems tha t  have arisen in the  biological field and seem t o  

be f a r  removed from original theory. The properties of these optimal 

tests will be discussed and compared with the usual solutions, i.e., 

confidence tes t s  and 'two one-sided tests'-procedures. Previous 

approaches to  the problem E) f o r  the mean of two normal distributions 

with equal but unknowns variances, i.e., the Anderson and Hauck 

procedure (1983) and the Gupta and Patel procedure (1984) a r e  formally 

related t o  some optimal tests.  This relationship is  helpful in order t o  

demonstrate easily the properties of these tests.  A s  a result we will 

establish better procedures fo r  equivalence testing and a new procedure 

for  testing a non-zero difference between the  means of two normal dis- 

tributions, i.e., a generalisation of Student's test.  Finally, a 

systematical overview of the field based on decision-theoretical 

arguments is attempted, although our main attention will be focused on 

Dl and El a s  these cover most applications. The problem of designing 

experiments fo r  applying these tests  meaningfully, is  beyond the  scope 

of this paper. Readers interested in this topic a r e  referred t o  a paper 

published by S .  Senn (1991). 
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GENERAL INTERVAL-HYPOTHESES 

I. MATHEMATICAL BACKGROUND 

In this chapter we present an overview of some important aspects of the 

decision theory f o r  P6lya Type distributions a s  the theory seems t o  be 

not well known, but without any proofs. Readers interested in fur ther  

details a r e  refered to Karlin (1957). 

1.1) DEFINITION (P6lya Type distributions) : 

Let (P7)7Er, where TGR, be a family of distributions and X an cr-finite, 

dominate measure. The distributions P7 may have the following 

A-densities : P = p(.,r)dA with continuous function p :RxT + R , YET. 
7 

We say, that  (P  ) belongs t o  Pblya Type n , n 4 ,  if 
7 ;YET 

for  all  m n and for  given numbers x <. ..< xm where xlc[R, 
1 

. and T . (P7);rer belongs t o  P6lya Type m , if (Py)7Er 

is P6lya Type n f o r  every nsN . 
One can show that  distributions belonging to the one-parameter 

2 exponential family (for example: the  normal, the x , the binomial, the 

Poisson distribution), the non-central t- and the non-central F- 

distribution all belong t o  Polya Type m. The Cauchy distribution is not 

P6lya Type. Therefore the most important distributions occuring in 

statistical practice can be regarded a s  belonging to the Polya Type. 

1.2) The theory deals with the following ' two action' decision problem: 

Let 11, ..., I be some closed intervals (i.e., proper or unbounded 
m 

m 
intervals or single points) with I n I = 0 f o r  i + j  and U I I  + T. 

I J  I = 1 

We define the decision problem f o r  general  interval  hypotheses of 

type n a s  follows: 
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1262 MEHRING 

m 

Here, n represents the number of boundary points of U 11, where an 
I = 1  

interval consisting of a single point is regarded a s  having two 

boundary points. There is n 5 2.m. 

The decision problems D) or El correspond t o  a decision problem f o r  

hypotheses of type 2 and the problem E+D) to  type 4. 

It is clear that  a t es t  f o r  the above hypotheses s t ructure i s  not a s  

simple a s  a test  fo r  the usual hypotheses H : g = go vs K : g + go. 

Therefore, the following definition is helpful: 

1.3) DEFINITION (monotone procedure): 

A (randomized) 

procedure, if 4 
decision 

is of the 

[a] denotes the greatest 

$ ( t )  represents the 

function $ : [R i [0,1] is  called a monotone 

following form: 

n 
f o r  C 2 . 1  < t  < C 2 . 1 + I *  i = 0,1, ..., [ 5 ] 
f o r t  = c  O s s  51,  j = l , 2  ,..., n 

J ' J 

elsewhere 

integer 5 a and co = -m. 

probability of accepting the alternative 

hypothesis, and t represents the outcome of a (sufficient) statistic.  

All decision funct ims of this  form will be summarized by the  class mn, 
if only two successive numbers c and c coincide. 

1 1+1 

(The term 'monotone procedure' has been taken from Karlin's paper.) 

1.4) The link between a decision function and a t es t  9 is  given by a 

statistic T : (f,B,(Pw)weR) + R , q(X) := #(T(X)), where X denotes 

the sample space, El a B-algebra on X and a family of distri- 

butions describing the data  from the experiment. X E f denotes a random 

vector, and T is regarded a s  sufficient o r  invariant. It  is  assumed 
T that f o r  every wen there exists a parameter g a r  with Pu = Pg . There- 

fore, the properties of a test  depend only on the  decision function. 

Usually, we do not distinguish between a t e s t  and the corresponding 

desicion function. The relationship between P6lya Type distributions 

and monotone procedures i s  given by the following theorem : 
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GENERAL INTERVAL-HYPOTHESES 1263 

1.5) THEOREM : 

i)  Let H'") K(n) vs be a given decision problem with a number 

0 < a < 1 and let us assume that  (P ) belongs to  P6lya Type n+l. 
7 7aT 

Then f o r  any randomized decision function $ not in !m exists a 

unique +* in mn such t h a t  R(r,+*) 5 R(y,$) with inequality every- 

where except f o r  ;T = rl with i=l, ..., n . R stands for  the risk 

function and is  defined with respect t o  Neyman-Pearson loss 

functions: 

ii) +(l(t) := a, t e  R,  is a randomized decision function for  every 

hypotheses H) vs K), hence a test  cp(X) = $*(T(X)), $* E mn is  

unbiased. 

iii) A monotone procedure @* E 1117 is (A-a.e.1 uniquely determined by 

the numbers c:, 2: satisfying the conditions : 

and ( in  a d d i t i o n )  i f  ;r = , 
1 

(Note, tha t  only two successive numbers r 
1 ' 

7 + , can coincide! ) 

Some remarks a r e  necessary concerning the theorem. 

The condition i) allows us t o  consider decision functions belonging t o  

the class a s  they reduce uniformly the type I and type I1 errors .  

These functions a r e  determined by iii). The trivial decision function 

$ (t) = a, tetR i s  improved in terms of risk by every $ E mn, therefore 
a 

all tes ts  based on the decision function belonging to mn will be un- 

biased (ii). The type I e r r o r  will only be reduced, if H contains a 

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
T

ec
h 

L
ib

ra
ri

es
] 

at
 1

5:
21

 2
7 

Ju
ly

 2
01

4 



1264 MEHRING 

proper interval. The maximum of th i s  e r r o r  i s  reached a t  t h e  boundary, 

i .e . ,  the  t e s t s  a r e  'similar on the  boundary'. 

I t  i s  worth mentioning t h a t  r e su l t s  f o r  t h e  formulations Dl, El were  

already given by Lehmann but f o r  t he  one-parameter exponential family 

only. Usually, t h i s  does not lead t o  any problems as the  common two- 

sample s ta t i s t ica l  t e s t s  in a multiparameter-exponential family  can be 

reduced to  a one-sample problem by conditioning (see  Lehmann (1986) f o r  

a recent presentation).  So, t he  theory of Polya Type dis t r ibut ions  can 

be regarded a s  a generalisation of Lehmann's theorem with respect  t o  

the  geometrical s t ruc tu re  of t he  hypotheses and the  c lass  of d is t r i -  

butions. Now, we a r e  in a position t o  be able t o  apply t h e  theory by 

addressing the  above introduced problems D) and E) t o  hypotheses of t he  

form H(" vs K(') and E+D) t o  H ( ~ '  vs  K '~ ' .  

11. MONOTONE PROCEDURES FOR THE MEAN OF THE NORMAL DISTRIBUTION 

Optimal decision functions f o r  t h e  normal distribution a r e  a n  excellent 

example f o r  demonstrating the  above discussed ideas a s  computations a r e  

very easy, although in pract ice  t e s t s  a r e  usually based on t h e  t- 

distribution ( i .e  variance(s1 unknown) r a t h e r  than  the  normal d is t r i -  

bution (i.e variance(s) known). However, normal t e s t s  make good ap- 

proximations. In what  follows we only need t o  regard  normal d is t r i -  

butions N(;r,vl with a s t anda rd  deviation u=l, a s  the  t e s t  s t a t i s t i c s  t o  

be used l a t e r  on a r e  s tandardised with respect  t o  v. The family 

(N(;r,l))rER of normal d is t r ibut ions  belong t o  t h e  exponential family,  

hence i t  i s  of P6lya Type a. The application of theorem I.5,iii) leads 

to  the  following equations f o r  computing t h e  c r i t i ca l  values 

c* = c7( r l , r z )  ( o r  C: = c*(y , r  , r  , r  1) (note  t h a t  the  number t 7  can 
1 1 1 2 3 4  

be chosen t o  be 0 because X i s  t h e  Lebesque measure  here) : 

Dl f o r  y.  < 7- : 
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GENERAL INTERVAL-HYPOTHESES 

2 Here, g( t -7)  denotes the density ( ~ . n ) - " ~ . e x ~ ( - ~ . ( t - ; y )  1, t , ~  E G?, 

of the normal distribution. The case ;y = ;y2 (;yl = ;y2 and/or ;y3 = ;y4) 
1 

can be handled by applying the second equation of theorem I.S,iii) or 

by simply allowing 7 + 7 (7 + 7 and/or ;y3 + ;r4). The figures 1 and 
1 2 1  2 

2 show graphically the relationship between 7 and the critical values 
1 

c: for  equations (2.1) and (2.2). 

With the help of 1.4) we present the t - test  with known variance(s1. 

We  make the  usual assumptions : Let X 1  X Y 1  Y be 
n' rn 

stochastically independent random variables, which a re  distributed 
2 ~ ( p ~ , $ ) ,  N ~ , ,  with known variances 02 > 0 and c2 > 0.  

1 

respectively. Differences between the means a re  of interest, therefore 

the decision problems a r e  of the following form : 

with p = p f o r  the one sample, p=p -p f o r  the two-sample problem and 
1 1 2  

a1 5 a2 (or  6 c . . . ~  a4). 
1 

Hence, the parameters 7 f o r  computing the critical values a re  
I 

The s tat is t ic  T=T(X) o r  T=T(X,Y) i s  given by 
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T - E Q U I V h L E N C E  T E S T  
C N O R U R L  D I S T R I B U T I O N >  

COMPUTING OF CRIT, UALUES T-STITISTIC UITH 
HYPOTHESES : H : v 1 -6, p 1 6 KNOUN UIRIINCECS> 

0 5 -  K : - 6 < P < d  - PRRIUETER 7 : 
ONE SIMPLE . r = b . . J N / r  
TUO SIMPLES : 7 n ~ . J C N . U > / ~ < M . U ~ ~ + N ~ ~ ~ ~ >  

8 . 4  - 

, 
0.3 - 7 

, 
\ 

'\ 

0 2 -  
'\ 

\ 

\ 

8 1 -  

_--- 
8 . B  ------------------ 

I l l  

Cl 8 c2 

C R I T I C A L  V A L U E S  

T - T E S T  
( N O R U I L  D I S T R I B U T I O N )  

I-SIITISIIC UITH 
HYPOTHESES : H : -6 I JI L 6 .... 

X : P <  - 6 , ~ > 6  
PIRIUETER r : 

ONE SIUPLE : T : 6 . W / r  

0 . 5  

0 . 2 -  . . .  

I I I 

cl e c 2 

C R I T I C A L  U A L U E S  
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GENERAL INTERVAL-HYPOTHESES 

Now, we a re  able t o  establish the test  procedure : 

1.) Define numbers 6 Ci2 ( o r  6 1 , .  . . , 6 4 )  on t h e  basis 

of p r a c t i c a l  c o n s i  d e r a t i o n s  

2.) C a l c u l a t e  the  p a r a m e t e r s  ; r l ,  y2 ( o r  r l ,  . . . , T ~  1. 

3.)  C a l c u l a t e  t h e  c r i t  i c a l  va lues  c:, c* ( o r  c*,  . . . , c : ) .  
2 

4.) C a l c u l a t e  t h e  t - v a  l u e .  

5.) Accept K ( r e j e c t  H I ,  i f  T l i e s  ins ide  t h e  c r i t i c a l  

region i . e .  D) : T<c: o r  T>cH , El : c:<T<c; , 

E+D) : T < C * ~  o r  T>c* or c;<T<cj . 

It is  interesting t o  compare the above solution with standard 

approaches. 

11.1) Firstly, we focus on the equivalence test  problem; the others can 

be handled in a very similar manner. There are  two procedures in use: 

the confidence test  $'Onf, which was aready outlined and a ' two one- 
E 

sided tests9-procedure $L2' (see Hodges and Lehmann (195411. This means 

we have t o  test each of the following two one-sided hypotheses a t  the 

level of a : 

HI : ;). 5 7, vs K1 : ;r > 7, and Hz : ;r 2 72 vs K2 : T < T2 

If K1 and K2 a r e  accepted then equivalence will be accepted (i.e., 

7 E [rl,a2] 1. Hence, the t es t  $(2) has the form : 
E 

(2) 
$E ( t )  = 1 ( t ) ,  teR, where 7 are the numbers of (2.5)  

( ~ ~ - ~ + r , , u ~ + r ~ )  I 

and u denotes the a-fractile of q, where rk stands f o r  the probability a 
function of the normal distribution N(0,l). (By IS we denote the char- 

acteristic function of the  se t  S, i.e., lS( t)  = 1 if t& and lS( t )  = 0 

if tdS.1 The size is  always lower than the nominal level because the 

critical region of $:2) i s  the intersection of the critical regions of 

the one-sided tests.  (By the  size of a t es t  we mean a s  usual the upper 

bound of i t s  probability of f i r s t  kind error.).  If the confidence test $rf is  based  on a 1-2.a confidence interval then $") = $rnf, a s  the 
E 

density of the normal distribution is  symmetric. This is  why we have to 

compare the optimal t es t  with the confidence test  only. 

Without loss of generality we assume ;). = -r2 where ;r t 0 ,  hence 
1 2 

C*(V ) = -c*(r ), c*(r  ) > 0. This can be seen from the following con- 
1 2  2 2  2 2  
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1268 MEHRING 

siderations: If H : p 6 (61,82) vs K : p E (61,82) a r e  any hypotheses 
- - 1 

to test  with 61 t -S2 then we can define 6; = 6,-6, 6 = 2 . ( 6  +6 and 
1 2  

have t o  test  the hypotheses H' : p-6 e (6;,6;) vs K' : p-6 E (6;,6;) 

that a re  symmetric around zero. 

From (2.21 i t  follows : a = I g( t )d t  = 

therefore c*(g ) > u +g and c:(g2) < u , - ~ + T , .  These inequalities de- 
2 2  a 2  

monstrate again the well known 'conservatism' of the confidence test  : 

Here we have denoted the decision function for  the optimal equivalence 

test by $;(t). The critical values ua+;rz and c*(g a re  asymptotically 
2 2 

equal. This is a result of the inequality f o r  0 < a < I (appendix I): 

@(-2 .g2  + U1-a) 

c p 2 ) - ( u a + g 2 )  < f o r  r2 2 min(0,u 1 (2.7) 
1) 1-a 

min(g(u , )x(u( l+a , ,2  

(It  is m i n ( g ( ~ ~ ) , g ( u ( ~ + ~ , , ~ ) )  = g(u ) fo r  the usual choice of a.)  a 

Clearly the confidence test  cannot be used f o r  parameters g1,g2cR with 
1 5 .  ) T ~ - T ~ )  5 min(0,u 1, because a' = 0. However, the power of the 

1-a 

optimal t es t  @: is  limited f o r  these parameters by the number 

\ Z l ( c ~ ( m i n ( O , u l ~ a ) ) ) - ~ ( c f ( m i n ( O , u ~ ) ~ ~ .  

A remark should be added about the meaning of these results. Although 

the theory of P6lya Type distributions improves the confidence test  

method, one is  inclined t o  regard the improvement a s  unimportant f o r  

practical purposes. The power of the optimal test  is  very low f o r  those 

parameters where the confidence test  fails. It  ranges from 0.05 to 

0.18 f o r  a = 0.05 (see figures 3 and 4). One can see that  the confi- 

dence test  is a very good approximation t o  the optimal test  if the 
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T - E Q U I V A L E N C E  T E S T  

' P I R A H E T E R  r 

T - E Q U I V A L E N C E  T E S T  
C O H F I D E N C E  T E S T  - O P T I M G L  T E S T  

4 C O N F I D E N C E  T E S T  

FIGURES' 3 AND 4 
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1270 MEHRING 

power is  above a certain level (>  50 Z). The optimal test  cannot only 

be applied by computing the critical values c * ( ~  ) because the symmetry 
1 2  

of g allows the following alternative formulation in p-values : 

Following from this, however, both tests  can easily be applied. 

What can one say about the  problems D) and E+D) ? 

11.2) An optimal test  f o r  the problem D) can be obtained from $; , 

because of the identity 4; = 1-9: (A-a.e.1, where @* is based on a 
E 

level of 1-a. The analogous identity holds f o r  t h e  confidence tes t ,  

which corresponds to the 'two one-sided tests'-procedure and is  there- 

fore of the form 
conf 9 ( t )  = 1 ( - ~ , U ~ + T ~ ) U ( ~ ~ - ~ + T ~ , ~ )  (t), teR, T~ = - T ~ ,  r2 2 0. 

We learn from the inequality ( t )  = 

$$(t), teR, that  the size always exceeds the nominal level, but the 

optimal test  can be approximated by the confidence tes t  even when the 

parameters tend to small values, i.e., 

the following formula, which follows 

1-a : 

rz > 1. This is  the meaning of 

from (2.7) by changing a into 

f o r  y > 0 a n d &  < - 
2 2 (2.9) 

But the reader should be aware of the fac t  tha t  the  confidence test  

becomes very 'liberal' in the neigbourhood of v2 = 0. The size of the 

test reaches the maximum of 2 - a  f o r  y2 = 0. This can be overcome by 

using 1-a instead of 1-2.a fo r  the confidence level, but the size then 

tends t o  a/2 fo r  larger values of 7, and testing f o r  difference is  only 

of interest fo r  larger parameters y The test  can also be used in 
2' 

terms of p-values : 

Accept K,  if 1 - q ( ( T I - g 2 1 + ~ ( - I ~ ( - r 2 )  < a . 
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GENERAL INTERVAL-HYPOTHESES 

11.3) Recall that  the hypotheses of a test  f o r  E+D) a r e  of the form 

H : r , = g = ; r 2  or . r 3 = g s r 4  vs K = K  E v K  D 

with KD : a. < gl o r  g > r4 and KE : r2< 7 < r3 where r L,. . . , r4  are 

real numbers satisfying the order 7 5. ..i r4 (only two successive 

numbers yl, rI+, may be equal). 

The critical values c* = c:(rl, ...,y 4)  a r e  determined by the equation 
I 

(2.3). The test  is  of the form $E+.,(t) = l ~ - m , C ~ ) u ( C ~ , m ) Y ( C f , C * )  ( t )  = 
1 4  2 3 

( t )+l  , , ) ( t ) ,  ~ E R  and can be regarded a s  the addition 
l - m , c u c , w  (c2.c3 

of a test  for  equivalence and for  a difference. In what follows, we 
- consider the case of symmetric hypotheses only, i.e., rl - -y4, 

7, = -7,, ;r3 > 0 and y4 = y3+d with d 2 0. Using this procedure, we are  

not only interested in accepting the global alternative hypothesis K ,  

but we wish to  decide whether the data  support equivalence or a differ- 

ence. Therefore another type of e r ror  is t o  consider: the probability 

of accepting equivalence (i.e., r2 < ;y < r3) when there is  a t r u e  dif- 

ference (i.e., ;y < rl or r > g4) and vice versa. 

If the f i r s t  probability is denoted by P(KEIKD) and the second one by 

P(K I K  1 then we obtain the following lower and upper bounds : D E 

The formulae show tha t  these e r rors  depend basically on the distance 

between the  hypotheses KE and KD and this f a c t  can be used for  

adjusting the a-error  by applying i t  twice t o  the confidence test :  once 

for  equivalence and once for  difference, respectively. This is 

possible, a s  4 can be approximated by a test = 

( t )+ l  ( t ) ,  tdR f o r  large values of '(-w,u -g -d)v(u2+r3+d,m) (uI-r3,u2+v3) 
1 3  

r (i.e., g3 2 2.51, where the numbers u u ER a r e  t h e  (uniquely deter- 
3 1' 2 

mined) solution t o  the equation (appendix 11): 

u u 
1 m 1 m 

( J + J1 g ( t )d t  = J + J) g(t-d)dt = a f o r  a < 1 
Z 
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1272 MEHRING 

Usually, one is unwilling to  apply the confidence test  twice by solving 

the above equation f i rs t .  Therefore, we compute the size fo r  the 

confidence test method based on a given confidence level. We let 

f 3  > u ~ - ~  and obtain the 

on f 3  or y4, respectively : 

following expressions fo r  the size depending 

I t  i s  El mi:;' = E + 2 . a  f o r  d = 0 a s  7 + . This means that  
3 T ,  E+D 

the confidence level has simply to  be halved for  a hypothesis 

H = { 7 , = ~ , ,  x3=y4}, which consists of two single points only. This re- 

sult can also be obtained by (2.10) fo r  letting d + 0. The left sides of 

the formulae differ  from zero f o r  d > 0, but they become negligible fo r  

the usual choice of a .  The size of the t es t  can be calculated with the 

help of E mConf a+Wu -dl, i=l, ... 4. 
T i  E+D a 

111. MONOTONE PROCEDURES FOR THE NON-CENTRAL AND 

SHIFTED T-DISTRIBUTION 

We obtain optimal decision functions f o r  the noncentrality parameter 

ER of the non-central t-distribution in a completely analogous manner 

a s  we did fo r  the  mean of the normal distribution; in the  formulae 

(2.1)-(2.3) we change only g(t-7) t o  the density p ( t )  of the non- 
k;7 

central t-distribution. The usual application is the t-test (with 

unknown variance(s)) : 

The assumptions a r e  the same a s  in the previous section, but we regard 
2 2 2 the variance 6 o r  t h e  variances 6 = 6 =: c t o  be unknown. The non- 
1 2  

centrality parameter is of the form 

7 = F . G  o r  ;r = 
6 

- and the s tat is t ic  T is given 

6 . G  
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GENERAL INTERVAL-HYPOTHESES 

A 
J n+rn-2# 

o(Y) respectively. 

The test procedure is the same a s  (2.6) but s t a r t s  with the definition 

of the values T,, i = 1,2 (or  i = 1 ,..., 4) , a s  c is now considered to 

be unknown. In the case of a symmetric equivalence interval i .e . ,  

= -T2, T2 z 0, the critical values c:(y2) = -cfl(;r2), c;(;).,) > 0 can 

be computed by the non-central F-distribution (see Johnson and Kotz 

(19701, p. 2051 : 

Here p ( t )  stands f o r  the density of the non-central F-distribution 
1,k;7 

The result i s  that  we have found an optimal solution for  the problems 

E), D) and E+D) but f o r  the noncentrality parameter ;). and not f o r  the 

mean. This is  consequence of the invariance of the  t-statistic,  hence 

the  result is  not surprising. 

Unfortunately, a tes t  fo r  the noncentrality parameter says nothing 

about the parameters of the distribution of the original data  a s  a 

rat io  of the form is  considered and not the parameters themselves. 

This is clear f o r  the one-sample problem. 

However, a t es t  concerning the decision problems El, Dl and E+D) f o r  

the difference of means can be obtained by approximation, f o r  example 

by the confidence test  method. There a r e  two other approaches described 

f o r  equivalence testing : a procedure suggested by Anderson and Hauck 

(1983) and another one recommended by Patel and Gupta (1984). In all 

procedures one has t o  estimate the unknown parameters ;)., by estimating 
1 

2 
the unknown variance o . Although the properties of these procedures 

have been studied intensively during the last years (e.g. see Frick 

1987, 1991 and 1992) i t  seems t o  be worth mentioning how they can be 
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1274 MEHRING 

obtained from the approach discussed above. The relative merits of this 

approach is t o  provide a detailed look into their features from a sys- 

tematical viewpoint. As a result, we a r e  able to  present 'average' 

tests tha t  improve the Anderson and Hauck procedure and the confidence 

test a s  well. 

111.1) Anderson and Hauck's procedure deals with the decision problem 

of the  form (2.4,E)), but 6 = -6 62 := 6 > 0. The alternative hypo- 
1 2' 

A A thesis is  accepted if Fk( IT1 -r2)-Fk(- IT1 -5) < a. Here, T is  the usual 

t-statistic,  Fk denotes the central t-distribution with k degrees of 

freedom (k  = n-1 or K = n+m-2) and 92 is an estimate of the parameters 

A 
by substituting o. fo r  o. (i.e., = &x) or  = &x,Y)). Let pk(t)  := 

~ ~ ; ~ ( t ) ,  tcR be the desity of the t-distribution and c ~ ~ ( $ ~ )  > 0 a 

A (uniquely determined) solution t o  the equation pk(t-lz)dt = a,  with 

-X 

x > 0, then equivalence will be accepted if J T J  < ~ ~ ~ ( 9 ~ )  ('AH' stands 

for  'Anderson and Hauck'). This is  a result of the inequality : 

IT1 
c 1 

A H  2 
A J A Fk( I T I  - $ 2 ) - ~ k ( - ~ ~ ~ - $ 2 )  = I pk(t-az)dt < pk(t- tz)dt  = a. The sym- 

- I T !  -cAH(rz)  A 

A A 

' A H ' ' ~ )  C A ~ ( t 2 )  

metry of p implies A I A A A 

k pk(t-al)dt  = pk(t- tp)dt  with = -a2 . 
-c (0  

A H  2 
-c ( 0  

AH 2 
(3 .3)  

AH Theref o re  the corresponding decision function q5E (t  = 

( t ) ,  teR can also be obtained by solving the equa- 
l(-cAH($z),cAH($z)) 

tion (2.21, replacing the density g(t-rz) by the shifted density of the  
A central t-distribution pk(t-yZ). The family of shifted t-distributions 

is not Polya Type ! Thus the theory of P6lya Type distributions cannot 
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GENERAL INTERVAL-HYPOTHESES 1275 

be applied. However, the formula (3.3) coincide with (2.8) when the 

variance i s  known and the t-distribution is replaced by the normal dis- 

tribution. This formal relationship between the Anderson and Hauck 

procedure with unknown variance and the optimal test 4: fo r  the mean 

with known variance(s1 is quite helpful for  a further discussion of the 

procedure. In chapter 11.1) we found that  the confidence test  Q~~~~ is 
E 

a very good approximation t o  the optimal test  4: with regard t o  

practical applications. It seems reasonable that  a similar result will 

be obtained for  the Anderson and Hauck procedure. Let us write 

4;Onr(tl = 1 A +$! p ) ,  tcR f o r  the confidence test  based 
(tr,l-a-7z'tk,a 2 

on the t-distribution ( with k degrees of freedom 1. Repeating the 

considerations of (11.1) and appendix I) leads to  the result f o r  

O < a < l :  
A A A A 

cAH(r2) > tk,a+72 , -cAH(r2) < tk,l-a-72 , and (3.4) 

We obtain f o r  the power function the expression (see appendix 111) : 

E = I ( c  ( 7  ) )  , where 1 (c(y2)) denotes the integral 
7 E 7 AH 2 7 

Q,(X) s t a n d s  f o r  t h e  d e n s i t y  (3.6) 

where g stands fo r  the normal density. 

It should be noted that  the power function of the confidence tes t  can 
A A be obtained by changing the critical values cAH(y2) into 

tk,a+z'2 in 
(3.6) .  
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1276 MEHRZNG 

The power function of the  tests a r e  related to  the distribution 

function of the noncentrai t that would appear, if the critical values 

would not depend on u (see appendix 111, (111.1)). 
6 A word regarding the notation is needed. The parameter ;r2 = ;r2(k,;) (or. 

7 = k ,  i s  a function of the degrees of freedom k and the 

noncentrality paramter (o r  f 1. In what follows, we denote the 
(r 

dependence of ;r upon 7 = (or 7 upon p )  for  given sample size(s) by 
2 

;r2(7) (or by ;r(p)).  We wri te  g2(k) if r2 i s  regarded a s  a function of 
6 the sample s ize(s)  fo r  given rat io  -. 
Q 

Differentation of the power function t o  p shows immediately that  both 

tests  a re  unbiased, a s  we get the expression : 

a AH a 0 ,  f o r  p=o 
-E a ( )  ( 1  - E mC0"?;r,) = acr d p )  E < 0, f o r  p O  

The power reaches the maximum for  p = 0 fo r  both tests  and decreases 

strictly to  zero if I p ) +  m. Hence, the size can be obtained by setting 

L 

The asymptotic behaviour of the size E $AH(72) can be studied easily 
rz 

with the help of the lower and upper bounds given below. This is a 

direct application of (3.4) and (3.5) on (3.6). 

The following inequalities hold for  all  ;r2 = y2( t )  with r 2 7 > 0 
0 

(appendix IV): 

and 
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GENERAL INTERVAL-HYPOTHESES 1277 

The unequality (3.8) proves a statement mentioned by Schuirmann (1987) 

that  the size of the confidence test  is  always dominated by the size of 

the Anderson and Hauck procedure. 

Application of Lebesgue's theorem ('dominated convergence') on the 

right side of these formulae (7 -t m)  and on (3.6) leads to : 
0 

The f i r s t  formula says that  the size of the confidence test  coincides 

approximately with Anderson and Hauck's procedure. Both tests  maintain 

the level f o r  large values of 7 a s  well a s  the latter one if we let s 

tend t o  zero (second equation). We learn from (3.8) that the size of $rf i s  always lower than a and converges to  zero as 7 -t 0. From 

numerical computation shown in figure 5, it  follows that the size of 

Anderson and Hauck's tes t  is always higher than the given level f o r  

r2 > 0. (The reader should be aware of the f a c t  that  this statement has 

not the same strength a s  the others a s  no mathematical proof is 

presented. The evaluation of (3.6) i s  ra ther  arduous, but ought t o  be 

done sometime for  completition. ) 

However, the asymptotic behaviour f o r  7 2 7 > 0 and increasing degrees 
0 

of freedom is  the same f o r  both tests  : 

The confidence test  a s  well a s  Anderson and Hauck's procedure converge 

uniformly t o  a for  t z r > 0 . 
0 

This follows from (3.71, (3.8) and (111.2) (see appendix 111). 

Finally, we note tha t  the Anderson and Hauck procedure is 

asymptotically equal t o  the optimal t es t  $* as k -t m : 
E 

1 im (C AH (7 2 (k))-cE(r2(k))) = 0 ,  because 1 cA,,(r,(k))-c;(r,(k)) 1 5 

k+ m 

where c*(7 (k))  denotes the critical value of the optimal test  $* . 
2 2 E 

The Anderson and Hauck procedure is  always 'liberal', whereas the con- 
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T - E Q U I V A L E N C E  T E S T  
A N D E R S O N  R N D  H A U C K  P R O C E D U R E  

R N D  C O N F I D E N C E  T E S T  
( O N E  S a M P L E  P R O B L E M )  

(1.87 

a - ERROR 1 
NOMINAL a-ERROR 8 .  €35 
CONFIDENCE LEVEL: 1-2 .a  
S T A T I S T I C  : 

T - S T A T I S T I C  UITH 
ESTIMATED U A R i k i i C E  

HYPOTHESES : 
H :  P i - d , P L d  
x :  - d < j J < d  

DEGREES O F  FREEDOM : 
1 0 , 3 0 , 5 0  

T - E Q U I V A L E N C E  T E S T  
R N D E R S O H  O N D  H A U C X  P R O C E D U R E  

A N D  C O N F I D E N C E  T E S T  
( O N E  S A M P L E  P R O B L E M )  

ESTIMATED URRIANCE 
HYPOTHESES : 

P  S -6, P  2 6  

FIGURES' 5 AND 6 
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GENERAL INTERVAL-HYPOTHESES 1279 

fidence test  is  'conservative', particularly f o r  low sample sizes. This 

fac t  has been noted rather  often. A better procedure can be established 

by 'averaging' and will be described in the next section. 

111.2). The method of 'averaging' and i ts  rationale can be explained 

with a few words. The decision problem and the tes t  statistics a r e  the 

same a s  before, but the critical values a re  determined differently. 

Therefor, we note that the integral (3.6) is an increasing functional 

in d . 1 ,  i.e. 

if 0 c c ( 7  ) 5 c2(;r2) f o r  7 2 0 then I ( c  ( 7  ) )  5 I ( c  (a. 1) for  
1 2  2 7 1 2  7 2 2  

7 ,  ; I ~  2 0. This means t h a t  any function of critical values c(;r2), 

a.2 2 0 that  dominate those of the confidence test  increases the size of 

the confidence test .  We consider the following example : 

('LB' stands f o r  'lower bound'). The 'lower bound test ' ,  i.e, the test 

belonging t o  the critical values ~ ~ ~ ( 7 ~ )  improves already the 

confidence tes t  and maintains the level f o r  ;r2 = 0 and a. -t m (see 
2 

(3.9)). The t e s t  is  also strictly 'conservative' (verified by numerical 

computations.) We have cLB(r2) 5 cAH(;r2) f o r  ;I 2 0 . 
2 

Let us define 'average' critical values c ( 7  ) with weight functions 
AV 2 

w (7  ) a s  follows : 
1 2  

cAV(;r2) = w ~ ( ~ ~ ) . c  (;I + w2(r2)-cAH(r2)  , w ~ ( ; I ~ ) ~  w2(;r2) 2 0 and 
LB 2 

w ( y )  + w ( 7 )  = 1, for  y2 2 0 .  
1 2  2 2 

There is c ( 7  ) c cAV(;r2) s cAH(rz)  , 72 2 0 for  all  weight functions. 
LB 2 

AV 
Hence, .any tes t  $E ( t )  = 1 ( t ) ,  t E R, with cAV = cAV(r2)  im- 

(-cAV,cAv) 

proves the confidence t e s t  a s  well a s  the Anderson and Hauck procedure. 

The problem t o  find appropriate weight functions is  as  difficult as  to  

find an optimal test.  In what follows, we set  the weight functions to  
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1280 MEHRING 

constants. In that case the weight function should depend a t  least on 

the degrees of freedom t o  take into account the f a c t  that  Anderson and 

Hauck's procedure is  asymptotically equal t o  the optimal t es t  4:: as 

k 3 m . A meaningful and easily t o  handle criterion to determine the 

weight functions could be t o  ensure an 'average' level of a. From the 

f i rs t 'equat ion in (3.9) we know t h a t  fo r  smaller parameters 0 s r 5 r 

(rl depends on k E [N) the deviation of the size from the given level 

becomes important. We a r e  able t o  compute the weights in a way tha t  the 

T 

1 AV 
equation - . I EIJT)+E ( ~ J T ) )  d~ = a is fullfilled, i.e., 

T 
1 

0 

the 'average' level is  provided f o r  0 s r S 7 Therefore, we have only 
1 ' 

to  note that  tes t  becomes strictly 'conservative' when wl tends to  1 

and strictly 'liberal' when w2 tends to  1 and that the t rue  level 
AV E 4 (7 depends continuously on w w The examples given in figure 

T2 E 2 1' 2' 

7 show that  'average' tes ts  provide quite accurate results even f o r  low 

degrees of freedom k, i.e., k s 20. Clearly, an 'average' tes t  is  also 

unbiased and converges uniformly t o  a ,  for  T 2 zo > 0. The test  cannot 

be expressed in terms of p-values. The equation (3.3) has always ' t o  be 

solved. It  needs only t o  be applied when the confidence test  shows an 

insignificant result but the Anderson and Hauck procedure a significant 

result. 'Average' t e s t s  increase the  power of the confidence test ,  but 

the improvement seems t o  be of minor importance a s  this i s  the case 

with any improvement of the confidence test.  This can be seen from fig- 

ures 5 and 6 tha t  summarize the  above considerations graphically. The 

power of any test  tha t  maintains the  a-level i s  bounded by the power of 

Anderson and Hauck's procedure and the confidence test  (the 'lower 

bound test '  gives a slighly sharper lower bound) and will lie inside 

these bounds. The point with equivalence testing is  that  the power is 

limited by the length of the alternative hypothesis and can only be in- 

creased by increasing the sample size so t h a t  asymptotic features  be- 

come relevant. If the size of the  test is  regarded a s  a function of the 

power and if we assume that  a meaningful experiment has t o  have a t  

least 50 9. power in the middle of the equivalence interval (-6,6), 
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T - E Q U I U O L E - N C E  T E S T  
f i V E R R C E  T E S T  U S  A N D E R S O N  R N D  H A U C K  P R O C E D U R E  

C O N E  S A M P L E  P R O B L E M )  

L3 0 7  

ANDERSON AND H l U C K  PROCEDURE 

W D F = 8  
N - 
v, 0.05 

RVERPICE T E S T  

. . . . . . . . . . . . . . . . . . . . . 
H E I G H T S .  : 

DF A+H L B  
8 0.60 0.40 

1 6  0 . 7 5  8 . 25  
2 4  0.82 0.18 

a - ERROR 
NOMINAL =-ERROR : 0 . 0 5  
S T A T I S T I C  : 

T - S T A T I S T I C  WITH 
E S T I M R T E D  V A R I A N C E  

H Y P O T H E S E S  : 
H :  P i - 6 , P L 6  
K :  - d < P < 6  

D E C R E E S  O F  FREEDOM : 8 . 1 6 . 2 4  

T - E Q U I V A L E N C E  T E S T  
P A T E L  A N D  G U P T A  P R O C E D U R E  

C O N E  S A M P L E  P R O B L E M )  

I 

H Y E H E S E s  : . ...,. 
V L - A ,  V L 6 

- d < J I < A  
DECREES O F  FREEDOM . 

18.38, 58 

FIGURES-7 AND 8 
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1282 MEHRING 

which is clearly a week condition, then the  size of the confidence test 

is about 4 ,9  % (k=lO) when a is  set to  5 9. ! 

111.3) What about the procedure recommended by Patel and Gupta ? This 

procedure also leads t o  a decision on hypotheses (2.4,E)) with IS = -6, 
1 

62 = 6 > 0. The alternative hypothesis is  accepted if the s tat is t ic  

A 2  2 A 2 T' 5 ~ ~ ~ ( n . r n . ~ ~ . a )  =: c I t .  I . The critical value cG,,($2)2 is 
G P 2  A 2  

C G P ( r 2 )  

determined by the  equation ~ z ( x ) d x  = a, where p ~2 denotes 1 p*.kt2 l,k;t2 
0 

the density of the non-central F-distribution with 1 and k degrees of 

freedom and noncentrality parameter t2 The relationship to  the f i rs t -  
2' 

mentioned optimal test  f o r  the noncentrality parameter is a s  follows : 

If c*($ ) is the  critical value of the optimal test  computed (by 
2 2 

A A A 
setting ; Y ~  = 7 then c (y ) = c*(y 1. This follows from the identity 

2 GP 2 2 2 
(3.1). Therefore the procedure of Patel and Gupta coincides with the 

optimal test  f o r  the noncentrality parameter if the unknown standard 

deviation o in (3.2) is replaced by i t s  estimator and the usual t -  

s ta t is t ic  T is used instead of T ~ .  The power function can be obtained 

by changing the number c(f ) in (3.6) into c (y 1. This test  i s  also 
2 GP 2 

unbiased. The t rue level can be computed by setting ;r = ;I and it  is 
6 

2 

shown a s  a function of r = - in the figure 8. The curves in the  graph 
o 

support the conjecture tha t  the size tends t o  zero f o r  every fixed 

degree of freedom if the parameter r tends t o  infinity and converges 

uniformly t o  zero f o r  r r r > 0. A short proof i s  given in appendix V. 
0 

These properties a r e  rather  strange a s  convergence t o  'normality' is 

expected a t  least f o r  increasing degrees of freedom. We know from the 

lemma in appendix V tha t  c ( i  ) = d +d .a. is  an upper bound f o r  c (7 
2 O k 2  CP 2 

a s  7 + rn . The number d does not play a role f o r  the asymtotic be- 
0 

haviour and may differ f o r  every k (as  long a s  the  set  of these numbers . 

is bounded). Therefore we se t  do = t t o  be able to  compare the 
k,O: 

critical values c 2  with those of the confidence tes t .  For 

sufficiently large > 0 we obtain : 
2 
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GENERAL INTERVAL-HYPOTHESES 1283 

Now, it  is easy to  see tha t  the fac tor  dk < 1 is t o  blame f o r  the con- 

vergence of the size t o  zero a s  r + m when the degrees of freedom are 

kept constant. The (uniform) convergence of the size depends on the 

asymptotic properties of the sequence (dk)k,N . If (dkIkEDJ tends 

'slowly' t o  1 then the size of the t e s t  converges t o  zero (see appendix 

V) although c(;r ) tends to  the critical value of the confidence test.  
2 

Any higher ' ra te '  of convergence of (d ) t o  1 leads to a value of 
k k € N  

the size that  lies between zero and a ! Therefore, the Gupta and Pate1 

procedure is really worth studying a s  a nice example that some slight 

changes in the definition of a procedure may lead to completely un- 

expected results, but i t  cannot be recommended f o r  equivalence testing. 

111.4) A word should be said about the  problem of testing a non-zero 

difference of means, i.e., a generalisation of Student's t-test.  The 

problem is t o  test  H : -6 s p 5 6 vs K : p < -6 or p > 6 with 6 2 0 . 

This question was already covered by of a paper published by Hodges and 

Lehmann (1954). They presented a geometrical construction and proved 

when there is  one degree of feedom that  the construction leads to  a 

conditional t es t  which i s  'similar on the boundary' and improves the 

power of the  'two one-sided tests'-method based on a level of a. The 

problem f o r  higher degrees of freedom seems still t o  be unsolved. 

The hypotheses can be tested with the  'two one-sided tests '  procedure 

which coincides with the  confidence tes t  a s  we described in 11.2) and 

we have the same delimma with t h e  size : the t es t  exceeds the given 
A 

a-level in a neigbourhood of ; I ~  = 0, if it is based on a 1-2.a confi- 

dence interval, i.e. $ionf( t )  = 1 A A ( t ) ,  taR. 
(-m,tk,a-irz h(tk +;rz'm) 

A The size i s  kept f o r  rz = 0, if 1-a is used f o r  the confidence level 
A 

but tends t o  a/2 for  larger  values of ; Y ~ .  

Therefore we ask the following : What will happen, if we replace in the 

formula (2.1) the density of the shifted normal distribution g(t-$1 by 

the density of the shifted t-distribution pk(t-$) a s  we did fo r  the 

Anderson and Hauck procedure ? 
A 

The notation may be the same a s  in III.l), but we denote by ~ ~ ( 7 , )  a 

solution t o  the equation 
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T - T E S T  
R N R L O G O U S  T O  l N D E R S O N  R N D  H R U C X ' S  P R O C E D U R E  

( O N E  S R ~ P L E  P R O B L E M )  

a - ERROR 
N O n l  N I L  =-ERROR : 0.85 

T - S T R T I S T I C  U I T H  
E S T I W R T E D  U R R I R N C E  

H Y P O T H E S E S  : 
H :  - 6 i P A 6  

P < - 6 ,  P > 6 
DEGREES O F  FREEDOM . 

10,38,50 

C H I z - E Q U I V C I L ' E N C E  T E S T  

1.8 1.5 2.8 2 . 5  3.0 3.5 4 . 0  4 . 5  5.0 

P A R A H E T E R  R =  

FIGURES 9 AND 10 
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GENERAL INTERVAL-HYPOTHESES 

A A 
-cD ( ;r2 1 m -cD ( r2 m 

A I ~ ~ ( t - $ ~ ) d t  + I p k ( t a 2 ) d t  = 
A I pk(t+G2)dt + I pk( t+r2)d t  = cz 

-m A -m A 
cJ;r2) c0( ; r2 )  

and by d:H the following decision function 

AH 
@, ( t )  = 1 ( t ) ,  tsR. $iH is linked to Anderson 

AH and Hauck's procedure. If @:" is based on a 1-a level then @tH = l-@E 

(A-a.e.1. Therefore, the properties of )g can be obtained from (AH 
E 

easily: The power function of the test  is given by the formula 

E CH(;r2) = I - E ~ # ? ( ; ~ ~ ) .  The test i s  unbiased and coincides 
7 D 

asymptotically with the confidence test  ( fo r  1-2.a) because of the in- 

equality 

The size can be computed by setting ;r = ;r and converges uniformly to a 
2 

f o r  all r 2 r > 0. Figure 9 shows that  the test  is  slightly 'conser- 
0 

vative', a s  expected, even f o r  small degrees of freedom. Therefore, 

this procedure may be recommended a s  an acceptable generalisation of 

Student's test.  The test can also be handled in terms of p-values as  

follows : 

Accept K, i.e., p < -6 or p > 6 , if l - ~ ~ (  I T ( - $ ~ ) + F ~ ( - I T \ - $ ~ )  < a . 

IV. MONOTONE PROCEDURES FOR THE ('STRETCHED') x2- 
AND ('STRETCHED') F-DISTRIBUTION 

Monotone procedures f o r  the X2-distribution appear in various 

situations. The classical problem is t o  compare the (unknown) variance 

of a normal distribution with a given value. Another application may 

consist of an approximate approach t o  the goodness of f i t  testing. 

We concentrate here on the  equivalence and 'difference' testing only. 

Theorem 1.5) easily allows us t o  set  up appropriate tests .  

The assumptions a r e  the same a s  in 11). We regard the  random variables 
2 X ,,..., X a N(pl,rl),  Yl,....Y m a ~ ( p ~ , ~ r i )  a s  stochastically inde- 
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1256 MEHRING 

2 pendent and the variances o > 0, o: > 0 and means pl. p2 t o  be un- 
1 

known. The hypotheses a r e  the following: 

E) H : (o l /o l )2  (r:,r:) K : Q o 2 c r 1 2  2 2  , i = 0'2 
1 

D) H : o 2  G r K : Q ~ / Q ~ ~  e [ r ]  , i = 0.2 

2 
Here, o > 0 is a given constant f o r  i = 0, the variance of the second 

1 
2 distribution is given when i = 2, and 0 < r 5 r2 represent real 
1 2  

numbers. 

A remark should clarify the notation. The expression 'difference' is 

not appropriate in this  context a s  a rat io  and not a difference of 

parameters is considered. In order t o  avoid new notation, we also use 

this term for  the ratio. The reader should keep in mind this  

distinction. 

In what follows, we express the  above decision problems in a 

standardized form by multiplying by l/rl .  The above hypotheses a re  then 

equivalent t o  the hypotheses below : 

D'1 fi' : (cl/c1 .r l)2 E [1.r2] K' : ( Q ~ / Q ,  .r112 6 [l,r2] , i = 0.2. 

where r=r2/rl. 
- .  

We define S(X) = . f (X - a 2 ,  S(Y) respectively. The s tat is t ic  
n-1 i = i  

1 

2 (n - l ) 'S (X)  is  a s  'stretched' x2-distributed with n-1 degrees of 
X =  2 2 o ' r  

0 1 
Q 

2 1 freedom and the parameter a. = ( . The density xZ2 can be ex- 
o I 7 ; n  

pressed by the density x2 of the central X2-distribution: 

2 1 2 x  x , (x) = s ~ ~ ( ~  1, xeR, ncH, y2 > 0. The statistic f o r  the two 
7 ;n  r ;r 

sample problem is  F = S ( X  ) , which is  a s  'stretchedB-F distributed 
~ : . s ( Y )  

Q 

with n-I, m-1 degrees of freedom and the parameter yZ = ( 12. 
= ~ ' ~ 1  

The density f of this distribution can also be given using t h e  
r ;n,m 

density f of the central F-distribution : 
n m  

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
T

ec
h 

L
ib

ra
ri

es
] 

at
 1

5:
21

 2
7 

Ju
ly

 2
01

4 



GENERAL INTERVAL-HYPOTHESES 1287 

1 X 

2 
(x)  = - sf (- ) ,  XER, n ,m~H,  g2 > 0 (Witting (19851, p. 217). 

72 n m  g z  -a ;n,m 

In order t o  apply the theory of P6lya Type distributions, we have to 

check whether these families a r e  of Polya Type. The 'stretched' 

X2-distribution ( x ~ ~  dh) is  of exponential type, hence of Pblya 
7 ; n  g ER+ 

Type m. The 'stretchedv-F distribution (f 
2 d h ) 2  

also belongs to  
7 ; n , m  7 ER+ 

P6lya Type a. (This can be proved applying complete induction on 

definition 1.1) and with the help of lemma 1 of Karlin's paper (1957), 

p.285). All assumptions of theorem 1.5) a r e  fillfulled so that  part iii) 

can be applied t o  compute the critical c* = c;(r) values for  1 < r 2  : 
I 

2 Here, qr( t )  denotes the 'stretched' x -distribution for  the one sample 

problem or  the 'stretched' F-distribution f o r  the two sample problem, 
2 

respectively. These equations can be solved using the central x - or F- 

C* 
2 

c*/r2 
2 

distribution because of the identity J q 2Lt)dt = J q,( t )dt  . .. 

The tes t  procedures a r e  analogous t o  (2.6): 

1.) Define numbers 0 < rl < rz depending on the material problem. 

2.) Standardize the hypotheses by multiplying r, and r2 by l / r l .  

3.)  Calculate the critical values cy, c:. 

4.) Calculate the (standardized) x2- or F-statistic. 
2 

5 . )  Accept K (reject  HI if 2 or F lies inside t h e  critical region, 
2 i.e., Dl: x2 (or  F) < c t  or x (or F) > c: , El: c: < x2 (or  F)  < c; . 

Finally, we want t o  compare the optimal t es t s  with the ' two one-sided 

tests'-procedure as we did in the previous section. (It is known that  a 
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1288 MEHRING 

confidence test  does not coincide with the ' two one-sided tests '-  
2 

procedure. This is caused be the asymmetry of the x - and F- 

distribution, which means that  the critical values do not correspond to 

a/2- or 1-a/2 fractiles. See Lehmann (1986) p. 217 or  Witting (1985) p. 

263, 378) In order t o  simplify the notation, we denote by z the a 
2 a-fractile of the central x -distribution with n degrees of freedom or 

the a-fractile of the central F-distribution with n and m degrees of 

freedom, respectively. 

The decision function of the procedure f o r  equivalence is of the  form 

':(s) = l(c:(r),c:(r)) (s) with s 2 0. The test  is 'conservative' and 

2 
can only be used for  a rat io  of parameters r > r,_/za. The 2- and F- 

distributions a r e  not symmetric, therefore we need different inequali- 

ties f o r  the lower and upper critical values. 

1 2 
We obtain the formulae f o r  a < 5 and r > =: 

Z a 

The value c0( r )  is the (uniquely determined) solution t o  the equation 

p (x) = p (x) ,  x > 0 with c ( r )  = 2.n.  
2 0 r'. l n  f o r  the X2-distribution 

r 2 r -1 - 2 

with n degrees of freedom and co(r)  = ( $. (r2)n*m - 1) r 
n 

fo r  the F-distribution with n and m degrees of freedom. Finally, we can 
2 

gain power using an optimal test  procedure. The optimal 2 -equivalence 

test  increases the power by about 0.21 (a = 0.05, 10 degrees of 

freedom). Therefore, the results a r e  quite similar t o  those tha t  a r e  

discussed a t  the end of 11.1). 
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GENERAL INTERVAL-HYPOTHESES 1289 

The 'two one-sided testsp-procedure f o r  the problem Dl is ~ : ~ ' ( s l  = 

2 (s) ,  s r 0 and exceeds the nominal level a, a s  the 
1(o,za)u(zl-4.*r ,m) 

relation (A2) > (i holds, where (:(s) = 1 o c r u c r S  ' ' O 
denotes the optimal test .  This fac t  seems t o  be less important, a s  a 

test for  'difference' is  usually of interest f o r  larger parameters 

only. The following expressions tell u s  that this procedure approxi- 

mates t o  the optimal test  f o r  a < 1 
2 :  

Z 
2 1 - a / 2  f o r r  > -  

I -a 

APPENDIX I 

Proof of (2.71, (2.91, (3.51, (3.101, (4.3) and (4.4): 

The inequality (2.7) can be seen by partitioning of ] g l t - ~ ~ l d t  into: 

5 g(t-r2)dt = [ g(t-12)dt = a , because of the equation (2.2). 

-m -c;(r,) 

c p 2 )  - c * ( r 2  2 1-r2 $ ( a 2 )  

Hence : J g(t-r21dt = g( t l d t  . A lower bound of J g(t-y2)dt is 
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< u for  7 > 0. Otherwise we would obtain the contradiction: 
(r+a)/z 2 

The inequality -c*(r ) < - ( u , + ~ ~ )  leads t o  the result: 
2 2 

The analogous formula (2.9) f o r  the problem Dl can be obtained from 

(2.7) by changing a into 1-a. The same method works f o r  the shifted t -  

distribution (see (3.5) and (3.10)) a s  well a s  f o r  the 2'- and F- 

distributions. W e  only demonstrate the f i r s t  formula in (4.3). The 

others can be shown in a very similar manner. 

I q( t )d t  , because z 5 c*(r) < z < za . r2  < c;(r), This is  
1-2-u 1 I-a 

c p  

t r u e  as  the contrary assumption c:(r) < z ~ - ~ . ~  would lead to : 

c p )  z 
I -a 

a = I q(t)dt  > I q(t)dt  = a . In order t o  get an upper bound. 

where the value c*(r) does not appear, we see tha t  : 
2 

c*(r)  < c (r) < c;(r) for  all r 2 1. 
1 0 

APPENDIX I1 

Proof of (2.10) : We demonstrate the property f o r  the usual choice of 
1 

a: let 0 < a < 2 and d > 0. The test  is  'similar on the boundary', 
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GENERAL INTERVAL-HYPOTHESES 

therefore we get f o r  r = r4 = r3+d : 

c p 3 ) - r 3  c;(r3)-r3 m 

a ( I + I + 1 g(t-d)dt and this  is also t rue fo r  

-a c * b 3 ) - r 3  c p 3  )-r3 
2 

;r = 7 . The differences c;(;r3)-r3 and c*( r  )-7 tend t o  as  r3 + m l  

3 2 3  3 

because c*(y ), c*(;r ) < 0. The difference cy(r3)- converges to a real  
1 3  2 3  

number, say u Hence, l i m  c : ( ~ ~ ) - r ~  = u2 and u,, u is a solution t o  
1' 2 

y3+m 

(2.10). This is ensured since : 

i)  c;(O) > 0. 

ii) There exists a number s ,  so tha t  c*(;r ) < ;r3 for  2 s. 
3 3 3 

iii) The function 7 -, c*(y )-;r has a lower bound. 
3 3 3  3 

iv) The function r3 -t ~ : ( 7 ~ ) - 7 ~  decreases. 

i )  follows from equation (2.3). If ii) is false we would obtain the 

I 1 
contradiction : I g(t-r3)dt  2 g(t)dt  + 2 > a f o r  f3+ OI , because 

c p 3 )  -2.;r3 

ad iii) : The assumptions l i m  ~ j ( r ~ ) - ; ~ ~  = -m would lead t o  : 
T3+W 

m m 

l i m  c:(y3)-y3 =: u' with I glt-dldt = g( t )d t  = a f o r  d > 0 , a s  the 

7 +m 3 u s  u' 

f i r s t  identity holds also f o r  ;r = 7,. 

Proof of iv): The function ;r3 + C ; ( ~ ~ ) - T ~  cannot be increasing. 

Otherwise c*(7 1-;r3 would be strictly positive, because of i) .  But  this  3 3 
contradicts ii). 

The case. 'd = 0' can be  obtained from the above one by letting d + 0. 

APPENDIX 111 

Proof of (3.6) : Let c(;rz), ;rz 2 0 be any critical value, the power 
2 

function - < T < c 2  u = (p,o ) E RxR+, with T = T(XI or 
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1292 MEHRING 

T = T ( X , Y )  then can be obtained by Fubini's theorem ('conditioning on 

s ' ) .  This yields : 

y2(s) is  of the form (3.21, but o replaced by s and ;). denotes the non- 

centrality parameter. The estimation of the mean and standard deviation 
u 0 2  is stochastically independent, hence T is  distributed a s  N(r.;,(;) 1. 

So, the identity 

fi k holds. I t  is a,(s) = a2. with u = 5-fi . 2 
0- 

follows a 
u 2 

2 
X -  distribution with k degrees of freedom, hence u is  qk(x)dh 

distributed, where nk(x)  stands f o r  the following density : 

k-1, . x  g (x)  , f o r  x = 0 
nk(x)  = * r ( 5 )  k c N ,  

where g denotes the normal density. This gives the identity below when 

c ( r  ) is  replaced by c ( 7  ) : 
2 AH 2 

m 

di2 u 
E 7~ mAH(r2) = J k( $ .cAH( .a2)-a)-*(- - -s i - .a )-a) n ~ u ~ u  

A H U  2 
0 ) k  

for the power function that shows a formal relationship t o  the distri- 

bution function of the noncentral t : 

0) 

We note fo r  later purposes that  the application of the substitution 
z z 

u = fi on $ u ) d u  shows the identity : J viuldu = p(x2 5 2) where 

0 0 
2 P(x'+ t )  denotes the distribution function of x with k degrees of 

freedom. If k is sufficiently large, we have 
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GENERAL INTERVAL-HYPOTHESES 

APPENDIX IV 

Proof of (3.7) and (3.8) : Some lower and upper bounds for  the true 

level E #"(r,) can be established a s  follows : We set  7 = r 2 ( r l  with 
r2 2 

T 2 t > 0 and use the partition : 
0 

m 

The application of (3.4) leads to  

stands f o r  the function on the right in (3.51, which decreases 

monotonously in ;r2. Therefore, the integrant of the f i r s t  term is 

u fi dominated by 9( - , t  + 'K .R( t- -).ire)) and the  second by 1. This 
r/i; k9u fi 

proves (3.7). , 

A lower bound can be given using the same partition : 

z ( t 1  

fi fi From (3.4) i t  follows that  c ( - .a. 1- - -7  > t 
AH U 2 U 2 k ,U  

and 

a fi fi 
-cAH( y '3' 1- - < -t - 2 . ~  .;r,(t) fo r  0 < u 5 z.  

2 u 

Finally, we get t h e  expression: 
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1294 MEHRING 

APPENDIX V 

Some bounds for  the critical values cGp(r )  of the Gupta and Patel 

procedure can easily be established with the help of (3.11,(III.l) and 

(111.21. 

LEMMA : Let a < f and define c(.) = d + d . r  , where d s tands fo r  
0 k 0 

any real number and d f o r  a positive real number with dl < 1, dl 1 
1 

then the unequality cGp(r )  < ~ ( 7 )  holds for  sufficiently large para- 

meter 7 > 0. 

Proof : From (3.1) we learn that  we have to demonstrate the  unequation 

c ( r )  

J p k ; r  
( t ) d t  = F (c ( r ) ) -F  ( -c ( r ) )  > a . There is -c(;r) < 0 and 

k,;Y 
-c (7)  

F (0 )  = N-7).  This leads t o  
k,a' 

F ( c ( ~ ) ) - F ~ , ~ ( - c ( d )  > F c - -  F ( ~ ( 7 ) )  can be treated 
k, r k97 br 

m z m  

with the help of formula (111.1) using the partition J' = J + J with 

Z =  " - + c for  c  > 0 and c  sufficiently small : 
1 

m  

u 1 
~ ( d ~ + p . t ) - I  n P ) d u  , because there is  - 2 1 and u. - - 1 2 p > 0 

fi dz 
z 

m 

r 2 
fo r  u z z. From (111.2) i t  follows : [ q P ) d u  = 1 - P ( x ' ~  ( & + & I  1 . We 

d k  
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GENERAL INTERVAL-HYPOTHESES 1295 

2 K 2 1  2 have P(x 5 ( - +c) EZ 5 , as the expected value for  is k .  Hence, 
1 

the final result is obtained : 

In order t o  prove the statement of the Patel and Gupta procedure we 

define f o r  every degree of freedom k 2 1 and r 2 t > 0 an upper bound 
0 

of the critical values a s  follows : 

c(g = c( r ,k )  = do+ dk.;r2 , with, dk = - 
2 

where f = n for  the 
-1/4' 

one sample problem and k = n-1 o r  f = n.m/(n+m) and k = n+m-2 for  the 

two samples problem, respectively. 

The above lemma tells us that  there exists a number a: > 0 so  that 

c (a  ) dominates cGp(r2) when y2 = r2(s .k)  2 ri . From (111.1) and the 
2 

0 
above used partition with z = z( r ,k )  = h?e;r2/r2, we obtain the un- 

Using the  notation given in III.Z),, we have 

m 

There i s  1 im n,(u)du = 0 f o r  every degree of 
2+m J 

Z(T) 

also converges t o  zero with respect t o  k when 

follows from (111.2) : 

freedom k. The integral 

r is kept fixed. This 
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convergence is uniform on .c 2 r > 0 , as T ( k , t )  increases monotonously 
0 2 

in t. - 
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