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The statistical test o f  the hypothesis o f  no difference between the average bioavailabilities o f  two 
drug formulations, usually supplemented by an assessment of  what the power of  the statistical 
test would have been i f  the true averages had been inequivatent, continues to be used in the 
statistical analysis of  bioavailability/bioequivalence studies. In the present article, this Power 
Approach (which in practice usually consists o f  testing the hypothesis o f  no difference at level 0.05 
and requiring an estimated power o f  0.80) is compared to another statistical approach, the Two 
One-Sided Tests Procedure, which leads to the same conclusion as the approach proposed by 
Westlake (2) based on the usual (shortest) 1 - 2 a  confidence interval for the true average difference. 
It is found that for the specific choice of  a = 0.05 as the nominal level of  the one-sided tests, the 
two one-sided tests procedure has uniformly superior properties to the power approach in most 
cases. The only cases where the power approach has superior plvperties when the true averages 
are equivalent correspond to cases where the chance of  concluding equivalence with the power 
approach when the true averages are not equivalent exceeds 0.05. With appropriate choice of  the 
nominal level of  significance o f  the one-sided tests, the two one-sided tests procedure always has 
uniformly superior properties to the power approach. The two one-sided tests procedure is compared 
to the procedure proposed by Hauck and Anderson (1). 
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INTRODUCTION 

The statistical issue associated with the analysis of bioavailability/bio- 
equivalence studies that has received the most attention in the phar- 
maceutical and statistical literature is the question of statistical methods 
for determining whether two formulations of a drug have been shown to 
be equivalent with respect to average bioavailability in the population. 
"Bioavailability," in this context, is to be characterized by one or more 
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blood concentration profile variables, such as area under the blood con- 
centration-time curve ( A U C ) ,  maximum concentration (Cmax), etc., and 
possibly by urinary excretion variables as well. 

Hauck and Anderson (1), in an article in which they proposed a new 
approach to this problem, gave a clear explanation of why the null hypothesis 
of no difference between the two averages, as tested by the "treatments" F 
test from the analysis of variance of a two-treatment (formulation) study, 
is the wrong statistical hypothesis for assessing the evidence in favor of a 
conclusion of equivalence. And yet, as Hauck and Anderson note, the test 
of the hypothesis of no difference is still utilized by many who seek to 
demonstrate equivalence of two formulations. In most cases those who 
utilize the test of the hypothesis of no difference supplement it with some 
assessment of what the power of the test would have been if the averages 
had been different enough to be considered inequivalent. This Power 
Approach, as it will be called, has been a standard method in bioequivalence 
testing, in spite of the fact that it is based on the test of an inappropriate 
statistical hypothesis. 

This article compares this power approach to another method for 
assessing the equivalence of two formulations which will be called the Two 
One-Sided Tests Procedure. Then the two one-sided tests procedure is com- 
pared to the proposed method of Hauck and Anderson. 

STATEMENT OF THE PROBLEM 

Suppose we have a bioavailability/bioequivalence study in which a 
test product  T and a reference product R are administered. The reference 
product could be an innovator's product and the test product a potential 
generic substitute manufactured by a different firm. Alternatively, the test 
and reference products could be, for example, two different dosage forms 
of a drug product, both manufactured by the same firm. Let /XT be the 
average bioavailability of the test product and/XR the average bioavailability 
of the reference product. For purposes of this discussion, we assume that 
/XT and /xR are in fact the mean bioavailabilities. 

As noted by Hauck and Anderson, the objectives of the statistical 
analysis may be incorporated into the following statistical hypotheses: 

Ho: ]ZT--/tZR~--- O~ or j~T--/&R ~ 0 2 

H~: 01 </.ZT-- ],ZR "~ 02 

The structure of these statistical hypotheses is determined by the objective 
of the analysis. The null hypothesis, Ho, states that t/d~T and tZR are not 
equivalent. The alternative hypothesis, HI, states that they are equivalent. 
If, on the basis of the results from the study, we may reject Ho, then we 
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may conclude that H1 is true, i.e., we may conclude that /xv and /xR are 
equivalent. If we do not reject Ho, we do not conclude that Ho is true. 
Rather, we say that it has not been shown that H1 is true. Further studies 
on the same products could conceivably establish that ~T and ~R are 
equivalent, even though the study in hand does not. 

The statistical hypotheses Ho and H1 given above will be referred to 
as the "interval hypotheses." Methods for testing these hypotheses will be 
called methods for "testing the interval hypothesis Ho 2' The interval [01,02] 
may be called the "equivalence interval." The limits 01 and 02 (01 < 02) may 
be stated as known numbers, expressed in the same units as the bioavailabil- 
ity variable of interest. In other cases, 0l and 02 may be defined as propor- 
tions of the unknown reference mean/x~.  The specification of 01 and 02 is 
made by the experts in the fields of biopharmaceutics and medicine (not 
by the statistician!). For purposes of this discussion, it is assumed that 01 
and 02 are known numbers. A brief discussion of  the case where 01 and 02 
are stated as proportions of ~R appears in Appendix A. 

The interval hypotheses presented above do not represent a standard 
problem in statistical methods. Discussion of the interval hypotheses has 
not been generally included in the one- or two-semester statistical methods 
courses that graduate students in the sciences are usually required to take. 
As noted above, the problem of testing the interval hypothesis Ho has 
received attention in the statistical community for many years, but the 
proposed solutions have not found their way into the standard statistical 
methods texts. 

In comparing the power approach to the two one-sided tests procedure, 
it is assumed that the data arise from a normal distribution. We also assume 
that the within-subject (intrasubject) variances of the test and reference 
products are the same, although this is not a critical assumption. Further- 
more, we assume that the study is a balanced crossover study. By a balanced 
study we mean that there is an equal number of subjects in each treatment- 
administration sequence and there are no missing observations from any 
subject. The conclusions drawn here concerning the two procedures remain 
valid if the study is not balanced, but there are certain technical complica- 
tions involved in the analysis of unbalanced studies. The balance assumption 
is thus made for simplicity. A brief discussion of unbalanced studies appears 
in Appendix B. Finally, we also make the assumption that 01 = - 0 2 ,  i.e., 
that the equivalence interval is symmetric about zero. This assumption is 
not needed for the assessment of the two one-sided tests procedure, but it 
is needed for the power approach. 

) ? v -  J~R is the difference between the observed average bioavailabilities 
of products T and R, respectively. The precision of )?-r- J?R as an estimator 
of /-*v-~R is measured by its standard deviation, which for a balanced 



660 Schuirmann 

study is cr 2,r where n is the total number of subjects in the study and 
o- is the intrasubject (i.e., within-subject) standard deviation of the observa- 
tions. Since cr is unknown, we estimate it with s, the square root of the 
"error"  mean square from the crossover design analysis of variance. The 
resulting quantity, s4~/n,  is called the standard error of J?T--J?R, based 
on v degrees of freedom (the number of degrees of freedom associated with 
the "error"  mean square), and is our estimate of the precision with which 
J~T-- J~R estimates txa---/ZR- 

In terms of the data from the bioequivalence study, both of the pro- 
cedures described depend only on the estimate XT--JCR, its standard error 
s, /2/n,  and the degrees of  freedom v. In order to compare these procedures, 
it will be interesting to examine which pairs of values of )~T-- J~R and s-,/-2/n 
lead to rejection of the interval hypothesis H0, and thus to a conclusion of 
equivalence of/XT and /ZR. 

THE TWO ONE-SIDED TESTS PROCEDURE 

The Two One-Sided Tests Procedure, as its name implies, consists of 
decomposing the interval hypotheses Ho and Ha into two sets of one-sided 
hypotheses 

Hol:  ~ZT --  ],~ R ~ 01 

Hl1: ]&T -- ~.s > 01 

and 

Ho2: ] s  ]s ~ 02 

H12: /XT--/ZR< 02 

The two one-sided tests procedure consists of rejecting the interval 
hypothesis Ho, and thus concluding equivalence of/XT and /XR, if and only 
if both Hol and Ho2 are rejected at a chosen nominal level of significance a. 
The logic underlying the two one-sided tests procedure is that if one may 
conclude that 01 < /.ZX-- ~R , and may also conclude that ~a~T--].s < 02 ,  then 
it has in effect been concluded that 01 </XT--/ZR < 02. 

Under the normality assumption that has been made, the two sets of 
one-sided hypotheses will be tested with ordinary one-sided t tests. Thus 
it will be concluded that/xT and tZR are equivalent (for a balanced study) if 

( ~ -  J?R) - 01 o2 - ( 2 ~ -  2 R )  
tl = S 2 x / ~  >--- t l_~(.)  and t2= s~/2/n >- q-=~") 
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where, once again, s is the square root of  the "error"  mean square from 
the crossover design analysis of  variance, tl_~(~) is the point that isolates 
probabili ty a in the upper  tail of  the Student's t distribution with u degrees 
of  freedom, where v is the number  of  degrees of  freedom associated with 
the "er ror"  mean square. 

The two one-sided tests procedure turns out to be operationally identical 
to the procedure of  declaring equivalence only if the ordinary 1 - 2 a  (not 
l - a )  confidence interval for /-~T--/XR is completely contained in the 
equivalence interval [ 01, 0~]. For this reason, it is sometimes referred to as 
the confidence interval approach.  In this form, it has been recommended 
by Westlake (2). 

T H E  P O W E R  A P P R O A C H  

The Power Approach is an ad hoc method of testing the interval 
hypothesis Ho which has been a standard method until recently. The power 
approach consists of testing the Hypothesis of No Difference 

H~: ~ T - - ~ R = O  

H'I: ~a--/zR # 0 

at the 0.05 level of  significance, using a standard two-sided t test. I f  the 
bioavailabil i ty/bioequivalence study is a two-treatment study, then this t 
test corresponds to the " t reatments"  F test in the crossover design analysis 
of  variance (if there are more than two products in the study, the t test and 
the treatments F test are not  the same). 

Under  the Power Approach,  if the hypothesis of  no difference H i  is 
rejected, then the interval hypothesis H0 is not rejected, i .e,,  one does not 
conclude that tXT and/xR are equivalent. I f  the hypothesis of  no difference 
Hi  is not rejected, then the question arises of  what the Power of  the test 
of  H~ would have been if #T--/-~R had in fact been equal to 02, i.e., if 
IX~--/XR had been large enough for the means to be considered inequivalent. 
This power depends on the true value of o.. Arbitrary convention has dictated 
that this power should be at least 0.80 before failure to reject the hypothesis 
of  no difference may be taken as evidence that txv and IXR are equivalent. 
There exists a value o-o.8o such that if cr_< o'o.so, then the power of  the test 
of  no difference (Hi)  to detect txv-/XR = 02 (or -- 02) is greater than or equal 
to 0.80. Unfortunately, since o. is unknown, it cannot be compared to o.o 8o, 
nor can the actual power be calculated. The best that can be managed is 
to estimate the unknown cr by s. The power approach then consists of  
rejecting the interval hypothesis Ho, and thus concluding that txv and/~R 
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are equivalent, if 

--t0.975(v)-< S 2x//~/n <-t0.975(~, ) and s-<tro.so 

That is, if the hypothesis of no difference Hi  is not rejected and the power 
of the test to detect /z-r-/zR = 02 is estimated to have been at least 0.80. 
Note that this procedure is based on estimated power, since the true power 
is a function of  the unknown o-. 

The logic underlying the power approach is that if/z-r-/zR had actually 
been as large as 02 (or as small as 01 = -02) it is likely (provided the estimate 
of this likelihood is at least 80% ) that the hypothesis of no difference H~ 
would have been rejected. Thus if H~ is not rejected, it is concluded that 
I/za--/zR] was not as large as 02, i.e., the interval hypothesis Ho is rejected. 

The two one-sided tests procedure depends on the choice of the nominal 
level of significance a. In the case of the power approach, it is of course 
possible to carry out the test of the hypothesis of no difference at a level 
other than 0.05 and /o r  to require an estimated power other than 0.80, but 
this is virtually never done. We consider only the power approach with the 
test carried out at the 0.05 level and the required power 0.80. 

COMPARISON OF THE REJECTION REGIONS 
F O R  T H E  T W O  P R O C E D U R E S  

The set of values of 37-r-3~R and s,,/2/n which lead to rejection of  the 
interval hypothesis Ho, and thus to the conclusion that #T and /ZR are 
equivalent, is called the rejection region for the procedure. Figure 1 presents 
the values of -~-r--37R and s~/2/n leading to rejection of the interval 
hypothesis Ho using the power approach, for the specific example of 02 = 20 
units and the degrees of freedom v = 10. Any values of 3~-r- 3~R and s v ~  
falling in the illustrated triangle lead to a conclusion that /~-r and /ZR are 
equivalent. One of the most notable aspects of this figure is its flatness. For 
sx/2/n > 6.44, no value of 3~-r--XR leads to rejection of the interval 
hypothesis H0, not even 3~-r--XR = 0. This corresponds to the estimated 
power being less than 0.80. For s~/2/n -< 6.44, the figure has a very interesting 
shape, in that as the precision (as estimated by s 2 ~ / n )  of 3~-r-3~ R as an 
estimate of/z-r-/ZR improves, 3~-r-X'R must be closer to zero, until in the 
limit as s , f 2 /n  approaches zero, X-r-  37R must be zero if we are to conclude 
-20-</z-r-/ZR<- 20. SO if we were to observe 3~T-3~R = 10 and s , /2 /n  = 6, 
we would conclude - 2 0 -  </~-r-/ZR-< 20 using the power approach, but if 
we were to observe 3~T-3JR= 10 and s~/2/n = 2, we would not conclude 
-20  <-/ZT--/ZR<- 20! It should be apparent that this is an illogical property 
for the procedure to have. Surely if the estimate is close enough to zero, 
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Fig. 1. Rejection region for the power approach, for the example of 
02 = -01=20 units and u= 10. Any study for which the pair (JfT- X R, 
s 2x/~) falls in the illustrated triangle results in the conclusion that /xT 
and /x R are equivalent, using the power approach. 

for a given level of precision, for us to consider/xv and/XR equivalent, then 
the same estimate with better precision should also enable us to declare 
equivalence. So this lack of  what might be called convexity of the rejection 
region is a problem with the power approach. (Stated simply, a rejection 
region is called convex if it does not get wider as s-,/2/n increases.) 

Figure 2 presents the values of ) ( r -  XR and sx/2x/~ leading to rejection 
of  the interval hypothesis Ho using the two one-sided tests procedure, for 
the example of 02 = 20 units, the degrees of freedom v = 10, and nominal 
level oz = 0.05. For values of s~/2/n higher than 02/to.95(~o) = 11.04, no value 
of)(T-- )(R leads to rejection of the interval hypothesis Ho. The interpretation 
of this is that the estimated precision of ) ( v -  XR as an estimate of kiT-- P~R 
is tOO poor to make a reliable determination of whether - 20  ~/~v-/~R -< 20. 
For s~/2/n- < 11.04, the smaller s~/2/n is, the wider is the interval o f ) ( v -  )(R 
values leading us to conclude that - 2 0 -  < ~ZT--~R-<20. That is, as the 
precision (estimated by s 2 ~ )  of ) f v - ) ( R  as an estimate of ~T--/ZR 
improves, Xv--k(R can be farther from zero and we will still conclude 
--20 --< ~T-- #R -< 20. Thus the rejection region for the two one-sided tests 
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Fig. 2. Rejection region for the two one-sided tests procedure, for the 
example of 02 =-01 = 20 units, u = 10, and nominal a = 0.05. 

procedure has the "convexity" property that was lacking in the case of  the 
power approach.  In general the rejection region for the two one-sided tests 
procedure has the same basic triangular shape as illustrated in Fig. 2, with 
the peak of the triangle occurring at s 2~-~/n = 02/t]_~(v). 

Figure 3 presents the rejection regions for the power approach (Fig. 
1) and the two one-sided tests procedure with nominal  a = 0.05 (Fig. 2) on 
the same graph. It is seen that most values of ( ~ ' x -  XR, s,,/2/n) leading to 
rejection of the interval hypothesis H0 using the power approach also lead 
to rejection using the two one-sided tests procedure, but not all. A small 
area of  values in the upper  corners of the power approach rejection region 
do not lead to rejection using the two one-sided tests procedure, c~ = 0.05. 
For the rejection region of the two one-sided tests procedure to completely 
contain the rejection region of the power approach,  we would have to do 
the two one-sided tests at a nominal level of  about 0.20. 

It should be apparent  from examination of Figs. 1-3 that the two 
one-sided tests procedure is superior to the power approach as a test of the 
interval hypothesis H0. The shape of the rejection region of the power 
approach is simply not that of  a sensible test. However,  some may not be 
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Fig. 3. Comparison of the rejection regions for the power approach (Fig. 
1) and the two one-sided tests procedure with nominal a = 0.05 (Fig. 2), 
for the example of 02 =-0~ = 20 units and u = 10. 

convinced by this intuitive argument ,  so we examine the actual probabi l i ty  
characteristics o f  the two procedures .  

C O M P A R I S O N  OF T H E  PROBABILITY C H A R A C T E R I S T I C S  
OF THE T W O  P R O C E D U R E S  

In order  to compare  the probabil i ty characteristics o f  the two one-sided 
tests p rocedure  to the power  approach ,  it is necessary to in t roduce a measure 
that  indexes the sensitivity of  a bioequivalence study~ This measure,  which 
shall be called V, is the ratio o f  the width o f  the equivalence interval to the 
true s tandard deviation o f  our  est imator of/-~w--/~R. For a ba lanced  study, 
this is given by 

02 - 01 202 
V = o . ~  cr 2v~/n if 0 1 = - 0 2  

I f  V is high, it means that  the precision (as measured by o" 2-/~/n) o f  our  
estimate o f  /~T--/ZR compares  favorably to the width of  the equivalence 
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interval, i.e., we have a sensitive study. If V is small, we have an insensitive 
study. The performance of both of the test procedures depends on V. 

The probability of rejecting the interval hypothesis Ho (and thus declar- 
ing the average bioavailabilities to be equivalent) when tZv and t-tR are not 
in fact equivalent is largest when/x-r-/xR is on the edge of the equivalence 
interval, i.e., when /.ZT--].~R = 0 2 o r  01 ( = - 0 2 ) .  The symmetry of the pro- 
cedures makes these probabilities equal. The probability of rejecting the 
interval hypothesis Ho when /Xv-/ZR = +02 will be called the true level of 
significance of the procedure, representing the maximum probability of 
saying the means are equivalent if in fact they are not equivalent. (See 
Appendix C: Method of Obtaining the Figures.) 

Figure 4 presents the true level of significance of the power approach 
for degrees of freedom u = 10, as a function of V. The true level of the 
power approach in this example rises to a peak of 0.060 at about V = 6.334, 
and then falls again, so that for large values of V, i.e., for very sensitive 
studies, the true level is virtually zero. At first it might seem that this is a 
desirable property, since there would be virtually no chance of saying the 
means are equivalent if in fact they are not, but this is in fact not desirable. 
This is because if one does not take as much of a chance as is tolerable of 

O. 100 
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0.025 

O. (300 
0 2 4 6 8 10 12 

Fig. 4. True level of  significance of  the power  approach,  as a funct ion of  V (see 
text), for  the example of  u = 10. The true level is the probabil i ty of  concluding that 
tz v and /z R are equivalent if in fact tx v -  ~R = • i.e., the max imu m probabil i ty 
of  incorrectly concluding equivalence. The dashed line corresponding to a true level 
of  0.05 is included for reference. 
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saying the means are equivalent when they are not, then there will be little 
or no chance of  concluding that the means are equivalent when they are. 

A study with 10 degrees o f  freedom for error would be fairly small. 
For example,  a two-treatment crossover study with 12 subjects. As an 
example of  a larger study, Fig. 5 presents results for the power approach 
for 40 degrees of  freedom. We see that the true level o f  significance, as a 
function of  V, rises to a higher peak o f  0.096 at V equal to about 6.214 and 
then falls sharply as V continues to increase. 

In the power approach, the test o f  the hypothesis of  no difference H~ 
is carried out at a level o f  0.05. Many people are s o m e h o w  convinced that 
for this reason, the level o f  the power approach as a test o f  the interval 
hypothesis Ho is also 0.05. However,  we have seen in Figs. 4 and 5 that this 
is not the case, unless V just happens to equal one of  the two values of  V 
for which the true level is 0.05. Other users o f  the power approach believe 
that the true level o f  the test is 0.20, which is just one minas the required 
power, 0.80. We have seen that this is also not the case (at least not for 
finite degrees of  freedom). The maximum level o f  significance of  the power 
approach does increase with increasing degrees of  freedom. Table I presents 
the maximum level o f  the power  approach for a range of  degrees of  freedom. 
As degrees of  freedom continue to increase, the maximum level will 
approach 0.20. 
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F i g .  5 .  True level of  significance of the power approach, as a function of V, for the 

example of u = 40. 
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Table I. Maximum Probability of Concluding That /x T and P~R Are 
Equivalent, If in Fact They Are Not Equivalent, Using the Power 

Approach, for Several Values of the Degrees of Freedom u 

Maximum Maximum 
probab i l i t y  p probability 

10 0.0605 30 0.0884 
16 0.0722 40 0.0958 
20 0.0779 50 0.1016 
26 0.0847 100 0.1188 

The results in Table I establish the maximum probability of saying the 
means are equivalent, if in fact they are not, that one must be willing to 
live with to use the power approach. Since the within-subject standard 
deviation o-, and thus V, is unknown, we cannot rule out the possiblity that 
these maximum levels will be achieved. On the other hand, if our study is 
more sensitive than we had planned, we will be in the range of large 7 
where the power approach is increasingly conservative, hardly a desirable 
property of a testing procedure. 

In Figs. 4 and 5 we examined the probability of  concluding that the 
means are equivalent when in fact they differ by enough (#XT--/~R = 02) to 
be considered inequivalent, for the case of the power approach. Figure 6 
presents the corresponding probabilities for the two one-sided tests pro- 

O. lOOi 
T 
R 
U 
E 

L 
E O. 075 
V 
E 
L 

O 
F 0.05O 

S 
I 
G 
N 
I 
F O. 025 
I 
C 
A 
N 
C 
E 

O. 000 
2 4 

, I , ~ , I L , , I L L ' ]  
6 8 lO 12 

V 
Fig. 6. True level of significance of the two one-sided tests procedure, with nominal 

level a =0 .05 ,  as a func t ion  of  V, for the ~x,~,-nlJJ~'- of  v =40 .  



The Two One=Sided Tests Procedure Vs. the Power Approach 669 

cedure for the example of  nominal level 0.05 and 40 degrees of  freedom. 
For very small values of  V (i.e., for very insensitive studies) the test is 
noticeably conservative, i.e., the true level of  the test is substantially less 
than the nominal level of  the one-sided tests. As V increases, the true level 
becomes indistinguishable from the nominal  level. The true level never 
exceeds the nominal level, so the nominal level of  the one-sided tests may 
be set to the maximum probabili ty of incorrectly concluding equivalence 
that can be tolerated. 

In Figs. 4 and 5 and Table I it was noted that the behavior of  the true 
level of  significance of the power approach as a function of V depended 
strongly on the degrees of  freedom, u. This is much less so for the two 
one-sided tests procedure. The rise of  the true level from virtually zero for 
very small values of  V to virtually equal to the nominal level a for larger 
values of  V tends to be more abrupt for larger degrees of  freedom. However, 
the basic shape is the same for all degrees of  freedom, and once V reaches 
around 5 or 6, the true level is practically indistinguishable from the nominal 
level, for nominal levels of  0.05 or more. 

From these results, we can see that the two one-sided tests procedure 
permits us to control the probabili ty of  declaring the average bioavaitabilities 
to be equivalent when they are, in fact, not equivalent. I f  a is the highest 
probabili ty of  this error we can tolerate, then by setting the nominal level 
of  the two one-sided tests at a we are assured that the true level will not 
exceed a. Furthermore, the true level will be virtually equal to a for V 
greater than 5 or so, i.e., if the study has a reasonable degree of precision. 
We still must be concerned that the study has sufficient sensitivity, but we 
need not be concerned, as was the case with the power approach,  that the 
study has too much  sensitivity. 

In Figs. 4-6 the probabili ty of  concluding equivalence was plotted as 
a function of V, for a specific value o f /xv- /XR,  namely, /XT--]-LR = 02. In 
order to examine the probabilities of  concluding that the means are 
equivalent when in fact they are equivalent, we plot the probabilities of  
concluding equivalence as a function of b~T--/XR, for particular values of  V. 

Figure 7 presents the probabilities of  rejecting the interval hypothesis 
Ho, and thus concluding equivalence, for V = 4, which would correspond 
to a relatively insensitive study (to try to express this in more familiar terms, 
in a crossover study with 12 subjects and an equivalence criterion with 02 
approximately equal to 20% of IxR, a V of 4 would roughly correspond to 
a wi th in - sub jec t  coefficient of  variation of  25%. With 24 subjects, it would 
roughly correspond to a within-subject C V  of 36%). Figures %10 are for 
the case of  u = 40. Results for other degrees of  freedom would be qualita- 
tively similar. Both the two one-sided tests procedure with a nominal level 
of  0.05 and the power approach are illustrated. 
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Fig. 7. Probability of concluding that tz- r and tzR are equivalent, as a 
function of tz T-/zR, for the power approach (dashed line), and for 
the two one-sided tests procedure with nominal level c~ = 0.05 (solid 
line), for the case of V = 4, v = 40. Note that in this case the prob- 
abilities associated with the power approach are so low that they do 
not show up on the graph. 

Looking first at the probabi l i t ies  for the two one-s ided tests procedure,  
ce = 0.05, we see that  the probabi l i t ies  at the edges of the equivalence interval  

(/Xx-/ZR = +02) are somewhat  less than  0.05, as we already observed in Fig. 
6. As tZT--/XR moves towards zero, the probabi l i t ies  increase to a peak of 

a little less than  0.25 at/XT-- tXR = 0. Having only  a 25% chance of conc lud ing  

that the means  are equiva lent  when  in fact they are equal  is a bit  d isappoint -  
ing. But now consider  the probabi l i t ies  associated with the power  approach.  

These probabi l i t ies  are not  zero, but  they are so low that they do not  show 
up on the graph. This is because  with a s tudy of this sensitivity (V = 4) there 

is vir tual ly no chance that  the est imated power  will be 0.80 or more. 
In  Fig. 8 we have the case of V = 8. Here, the probabi l i ty  characteristics 

of the power  approach  do not  look bad,  but  the probabi l i t ies  for the two 

one-s ided tests procedure ,  a = 0.05, are un i formly  better. 
Figure 9 presents the case of V = 16, an example  of a very precise, 

sensitive study. For the power  approach,  the probabi l i ty  at the midpo in t  
/ x x - t z R - - 0  is reasonably  high, 0.95 to be exact. But for /XT--/Xr~ equal  to 
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Fig. 8. Probability of concluding that/~a- and ~R are equivalent, as 
a function of/~T-/~R, for the power approach (dashed line), and 
for the two one-sided tests procedure with nominal level ~ = 0.05 
(solid line), for the case of V = 8, v = 40. 

about =t=0.602, the probabilities for the power approach have dropped almost 
to zero, even though we are still well within the equivalence interval. This 
is an illustration of the conservatism of the power approach for very large 
V, and results from the fact that for sensitive studies (large V) even very 
small true differences between ~v and /.s will be detected by the t test of 
the hypothesis of no difference H~. 

Figure 10 presents the probabilities for V = 6.214 (this was the value 
of V at which the true level of  the power approach reached its peak in Fig. 
5). Comparing first the two one-sided tests procedure, ~ = 0.05, to the power 
approach, we see that the height of the curve at the boundaries +02 is 
virtually equal to 0.05 for the two one-sided tests procedure, a = 0.05 (solid 
line), but is equal to about 0.096 for the power approach (dashed line). For 
values of /~'r--/XR toward the outsides of the equivalence interval, the 
probability of concluding equivalence is higher for the power approach, 
but for ~T--/ZR in about the middle one-third of  the interval, the probability 
is higher for the two one-sided tests procedure, a = 0.05. This is the only 
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Fig. 9. Probability of concluding that /xT and ~R are equivalent, as a 
function of/Zx-/XR, for the power approach (dashed line), and for 
the two one-sided tests procedure with nominal level a = 0.05 (solid 
line), for the case of V = 16, v =40. 

case we have cons idered  where the two one-s ided tests procedure  with 
nomina l  a = 0.05 is not  un i fo rmly  superior  to the power  approach.  However,  

since the true level of significance of the power  approach  in this case is 

abou t  0.096, it is not  acceptable  if we are only  will ing to take a 0.05 chance 

of saying the means  are equivalent  if in fact they are not  equivalent .  On 

the other  hand ,  if we can tolerate a true level of  a round  0.096, then  we 
should carry out  the two one-s ided tests at a n o m i n a l  level of 0.096. With 
this in mind ,  the third curve in Fig. 10 presents  the probabil i t ies  for the 
two one-s ided tests p rocedure  with a nomina l  a of 0.095 (a " r o u n d e r "  
n u m b e r  than  0.096). We see now that the two one-s ided tests procedure,  
cz = 0.095, is as good or bet ter  than  the power  approach  over the entire 
equivalence interval.  Thus  with appropr ia te  choice of the nomi na l  level a, 
the two one-s ided tests procedure  always has superior  probabi l i ty  charac- 

teristics to the power  approach.  
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Fig. 10. Probability of concluding that/*T and YR are equivalent, as 
a function of #T-~R, for the power approach (dashed line), the 
two one-sided tests procedure with nominal level a = 0.05 (solid 
line), and the two one-sided tests procedure with nominal level 

=0.095 ( l ine-- . - -) ,  for the case ofV=6.214, u=40. 

C O M P A R I S O N  OF T H E  T W O  O N E - S I D E D  
TESTS P R O C E D U R E  TO THE P R O C E D U R E  
P R O P O S E D  BY H A U C K  A N D  A N D E R S O N  

Figures 11 and 12 present  values o f  )~T--XR and s 2 , / ~  leading to 
rejection o f  the interval hypothesis  Ho, and thus to a conclusion of  
equivalence of /*T and /~R, using the procedure  p roposed  by Hauck  and 
Anderson  (1), for the example o f  a =0.05,  02=20  units, and u = 10. The 
cor responding  rejection region for  the two one-sided tests procedure ,  a = 
0.05, is included for reference. Hauck  and Anderson ' s  procedure  (1) is the 
"central  t approx ima t ion"  examined in their earlier paper  (3) in the statis- 
tical literature. 

Based on that part  o f  the picture that is shown in Fig~ 11, Hauck  and 
Anderson ' s  procedure  appears  to have possible advantages over the two 
one-sided tests procedure ,  since inclusion of  the extra part  of  the rejection 
region for the larger values o f  s, /2/n removes some of  the conservatism 
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Fig. 11. Part of the rejection region for the procedure proposed by Hauck and Anderson 
(1), for the example of 02 = -01 = 20 units, u = 10, and nominal a = 0.05, illustrated 
for s 2x/~ ranging from 0 to 20 units (solid line). The rejection region for the two 
one-sided tests procedure with nominal level a = 0.05, u = 10, is included for reference 
(dashed line). 

seen in the two one-s ided tests p rocedure  for moderate ly  small values o f  
V. When  the whole  picture is examined,  however,  there are some concerns.  
For  sx/2/n greater than about  20, the boundar ies  o f  the Hauck  and Anderson  
region start to spread apart ,  so the region has the nonconvex  shape that 
was worr isome in the case o f  the power  approach .  Indeed,  even Fig. 12 
does not  show the whole  picture, since the rejection region for Hauck  and 
Anderson ' s  p rocedure  goes on forever, getting wider  and wider  with increas- 
ing s~/2-/n. Eventually,  the region is such that  we would  conclude that  /ZT 
and /zR are equivalent  for values o f  XT--~ 'R that  lie outside of  the 
equivalence interval [ - 2 0 ,  20], as has been noted by Rocke (4). 

Recall that  the two one-sided tests p rocedure  (which as noted before 
is identical to the procedure ,  p roposed  by Westlake (2), o f  concluding 
equivalence if and only if the usual (shortest) 1 - 2 a  confidence interval 
for/ZT--/ZR is conta ined within the equivalence interval) consisted o f  testing 
the two one-sided hypotheses  Hol and Ho2. I f  we let Pl be the p value 
associated with the test o f  Hol and P2 be the p value associated with the 
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Fig. 12. Part of the rejection region for the procedure proposed by Hauck and Anderson 
(1), for the example of 02 =-01  = 20 units, ~, = 10, and nominal a = 0.05, illustrated 
for s 2 V ~  ranging from 0 to 300 units. 

test of  Ho2, then Anderson and Hauck (3) have pointed out that the p value 
for the test of  the interval hypothesis H0 associated with the two one-sided 
tests procedure is the larger of  p~ and P2, i.e., max(pl ,p2) ,  while for the 
procedure proposed by Hauck and Anderson the p value is ]pl-P21. Thus, 
to take a hypothetical example, it would be possible to have a study for 
which p~ was 0.44 and P2 was 0.40, in which case the p value associated 
with the two one-sided tests procedure would be 0.44 while the p value 
associated with Hauck and Anderson's procedure would be 0.04. So a study 
that was completely inadequate to establish that 01 < #T--/ZR (Pl = 0.44), 
and completely inadequate to establish that /ZT--/ZR<02 (p2=0.40),  
somehow is adequate to establish that 01</zT--tzR<02, based on the 
outcome of  Hauck and Anderson's procedure. 

Hauck and Anderson's procedure is always more powerful than the 
corresponding two one-sided tests procedure, i.e., there is always higher 
probability of concluding equivalence with Hauck and Anderson's pro- 
cedure (the difference in power between the two procedures becomes 
negligible as V becomes large). However, this is true when/z  T and ~R are 
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not equivalent as well as when they are equivalent, and indeed another 
drawback of Hauck and Anderson's procedure is that the true level of 
significance may exceed the nominal level a, particularly for small u. 

In the opinion of the author, the procedure proposed by Hauck and 
Anderson cannot be acceptable as it stands, with its open-ended rejection 
region that permits rejection of  Ho, for some values of XTT-- ~TR, no matter 
how large s v / - ~  is. There is such a thing as an inadequate study, and when 
a study is inadequate there should be no chance of concluding that/ZT and 
iz R are equivalent. On the other hand, Hauck and Anderson's procedure 
does offer genuine advantages over the two one-sided tests procedure for 
values of • that are moderately small, say V approximately in the range of 
2 or 3 up to 5. The best procedure to use may therefore turn out to be a 
compromise between the two procedures. This is a topic for further research. 
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APPENDIX A: PROPORTIONAL EQUIVALENCE CRITERIA 

Until now, for purposes of this discussion, it has been assumed that 
01 and 02 are known numbers, expressed in the same units as the bioavailabil- 
ity variable (AUC, Cmax, etc.) of interest. However, a more common situ- 
ation in practice is for 01 and 02 to be expressed as proportions of the 
unknown reference average tzR. Using the example of 01 =--0.20tZR and 
02 = 0.20kCR (the common " + 2 0 % "  criteria), the interval hypotheses would 
be stated as 

Ho: ~T--/ .~R~ --0.20/z R or /Lt.T--/.ZR~0.20/t~ R 

Hi: --0.20/~R ~/ZT --/ZR ~ 0.20/3.R 

which, if tZR> 0, may be restated as 

Ho: /ZT//ZR -<0.80 or tZT//ZR----- 1.20 

Hi: 0.80 < k~T//ZR < 1-20 

The problem, therefore, is no longer stated in terms of the difference of tZT 
and /ZR, but rather in terms of the ratio of/ZT and /ZR. 

Hauck and Anderson (1) noted that it is often deemed appropriate to 
assume that the statistical assumptions of normality, homogeneous variance, 
etc. are satisfied for the logarithmically transformed variables. This is based 
on theoretical arguments involving pharmacokinetic compartmental models 
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(5) and also on the empirical observation that observed distributions of 
bioavailabilty variables are often skewed, with a long "tail" of higher values. 
If  the statistical assumptions that have been made are in fact true on the 
logarithmic scale, then the interval hypotheses, for the example of the • 
criteria, may be restated as 

H0: r/X--*iR~log (0.8) or *IX--~TR ->log (1.2) 

Hi: log (0.8) < *i-r- *IR < log (1.2) 

where *i'r and r/R are the true test and reference means, respectively, of  the 
logarithmically transformed variables. Logarithms to the base 10 or natural 
logarithms may be used. 

Under this circumstance, the two one-sided tests procedure or Hauck 
and Anderson's procedure would be carried out as before, with log (0.8) 
taking the role of 01 and log (1.2) taking the role of 02. All of  the results 
cited earlier concerning the probability characteristics of the two one-sided 
tests procedure still apply. 

In the case of the power approach, there is an additional difficulty, if 
the approach is to be based on the test of  the hypothesis of  no difference 

H~: *IT-- *ir~ = 0 

H~: *IT-- *IR~ 0 

The difficulty is that since log ( 0 . 8 ) ~ - l o g  (1.2), the estimated power at 
*IT-- *irr log (0.8) will not be the same as the estimated power at *IT-- nR = 
log (1.2). If one was determined to use the power approach in the case of 
logarithmically transformed variables, one way to do it would be to base 
the approach on the test of 

H~: •T--*IR = (log (0.8)+log (1.2))/2 

H~': ~ta---rtRr (log (0.8)+1og (1.2))/2 

That is, the hypothesis H~ that the difference of means on the log scale is 
equal to the midpoint of the equivalence interval [log (0.8), log ( 1.2)] (where, 
once again, we are considering the example of  ~:20% equivalence criteria). 
However, persons who use the power approach seem loath to abandon the 
hypothesis of  no difference. Once again, the concept of equality is confused 
with the concept of equivalence. In any event, even if the power approach 
in this context is based on H~ instead of H~, it still has the unfavorable 
properties presented before. 

Under the assumption that the variances of  the test and reference 
formulations are the same on the log scale (which corresponds to the 
assumption that the two formulations have comparable coefficients of vari- 
ation on the original scale), the mean difference *iv- *IR is in fact equal to 
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the logarithm of/,,~T//]./~R, the ratio of means on the original scale (6). If  the 
variances are not equal, then r/T-r/R is not equal to log/~T//XR. On the 
other hand, r/T-- r/R is equal to the logarithm of the ratio of medians of T 
and R whether the variances are equal or not. Thus, in the case of logarithmi- 
cally transformed variables, more care than usual should be given to the 
question of  what is meant by "average" bioavailability (i.e., mean or 
median), and if interest lies in the means, some attention should be paid 
to the assumption of  equal variances on the log scale. 

The question of what to do if the equivalence criteria are stated in 
proportional terms, but the assumptions of  normality and additivity of the 
statistical model are thought to be satisfied on the original scale, is outside 
the scope of this discussion. However, we note that Locke (7) has described 
an exact method for obtaining a confidence interval (or confidence set) for 
/XT//XR under these circumstances. 

APPENDIX B. UNBALANCED CROSSOVER STUDIES 

The assumption was made that the bioavailability/bioequivalence study 
under consideration was a balanced crossover study, that is 

1. There is an equal number of subjects in each treatment-administra- 
tion sequence. 

2. There are no missing observations from any subject. 
All of the results cited above concerning the properties of  the two one-sided 
tests procedure and the power approach are equally true for unbalanced 
crossover studies. If  we let Est. be the estimator of /~x- /~R,  and SE be the 
standard error of the estimator, then the two one-sided tests procedure 
utilizes the two test statistics 

Est. - 01 02-  Est. 
tl - - -  and t2 

SE SE 

In the case of balanced studies, the estimator Est. is in the fact the difference 
of the observed means, XT-3~R, and therefore the standard error SE is 
equal to s~/2/n. In the case of unbalanced studies, the best unbiased (least 
squares) estimator of ~ - -  ~R is not, in general, the difference of  observed 
means. 

For the special case of  a two-treatment, two-period crossover study in 
which n I subjects receive the test formulation in period one and the reference 
formulation in period two, while n2 subjects receive the reference formula- 
tion in period one and the test formulation in period two, the unbiased 
estimator is given by 

Est.= 
2 2 
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where 

~'TI = the observed mean of 
formulation in period 

32T2 = the observed mean of 
formulation in period 

J~m = the observed mean of 
reference formulation 

J~m = the observed mean of 
reference formulation 

the nl observations on the test 
one. 

the n2 observations on the test 
two. 

the n2 observations on the 
in period one. 

the n~ observations on the 
in period two. 

The standard error of  this estimator is 

\nl n2/ 

where as before s is the square root of  the "error"  mean square from the 
crossover design analysis of  variance, based on u degrees of  freedom. 

Note that if nl=nz, these formulas reduce to Est.=XT--XR and 
SE = sv~/n (where n = total number  of  subjects = nl + nz) as before. 

In the case of  a study with more than two treatments (formulations) 
and /o r  periods, the formulas for Est. and SE will depend on the particular 
pattern of  unbalance, and can be very complicated. Usually a computer  
routine will be needed to obtain them. 

APPENDIX C. M E T H O D  OF OBTAINING THE FIGURES 

The probabilities illustrated in Figs. 4-10 were obtained by numerical 
integration on the joint probabili ty distribution of 32T-32 R and s 2~/~/n. 
Under  the assumptions made, ) ( T -  3~R has a normal distribution with mean 
/xT-/zR and variance ~rz(2/n). The distribution of s~2/n is related to the 
X 2 distribution by the fact that v(s2~/n)2/o-2(2/n) has a X 2 distribution 
with v degrees of  freedom. Furthermore, -~T-32g and s x / ~  are statistically 
independent.  From these facts, the joint probabili ty distribution of 32T- -~R 
and s~/2/n may be obtained. 

The probabili ty of  rejection, for either procedure,  depends on ~zT-/xR, 
V, and v, and in the case of  the two one-sided tests procedure, on the 
nominal level of  significance a. It actually depends on /zT- /xR only through 
the quantity g, defined by the relationship 

01 + 02 02 -- 01 
t Z T - - / Z R - - - -  ~-g 

2 2 

=gO: for the case 0 1 = - 0 2  
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The true level of  s ignif icance o f  the p r o c e d u r e  is o b t a i n e d  by  let t ing /.LX-- 

t~R = 02, i.e., g = 1. 
F o r  each  given set o f  values  o f  g, V, v, and  a ,  the jo in t  p robab i l i t y  

d i s t r ibu t io  n was in tegra ted  over  the  a p p r o p r i a t e  re jec t ion  region,  i.e., regions  
l ike Fig. 2 for  the two one - s ided  tests p rocedure ,  regions  like Fig. 1 for  the 
p o w e r  app roach .  

The b o u n d a r i e s  o f  the  re jec t ion  reg ion  for  H a u c k  and  A n d e r s o n ' s  
p rocedure ,  p i c tu red  in Figs.  11 and  12, were  o b t a i n e d  by  solving the equa t ion  

numer ica l ly  for  c ( c > 0 )  for  a series o f  va lues  o f  w, where  F ~ ( . )  is the  
cumula t ive  d i s t r ibu t ion  func t ion  of  the S tuden t ' s  t d i s t r ibu t ion  with v 
degrees  o f  f r eedom.  F o r  each  pa i r  o f  c and  w so ob ta ined ,  ( - c ,  w) and  
(c, w) are  po in t s  on the b o u n d a r y  of  the  re jec t ion  region  for  the  case o f  
02 = -0~  = 1 unit.  ( - 2 0 c ,  20w) and  (20c, 20w) are  the  c o r r e spond ing  b o u n d -  
ary po in t s  for  the  e x a m p l e  o f  02 = - 01 = 20 units.  
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