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The problem of testing a point null hypothesis (or a "small interval" null 
hypothesis) is considered. Of interest is the relationship between the P 
value (or observed significance level) and conditional and Bayesian mea- 
sures of evidence against the null hypothesis. Although one might pre- 
sume that a small P value indicates the presence of strong evidence 
against the null, such is not necessarily the case. Expanding on earlier 
work [especiafly Edwards, Lindman, and Savage (1963) and Dickey (1977)], 
it is shown that actual evidence against a null (as measured, say, by 
posterior probability or comparative likelihood) can differ by an order 
of magnitude from the P value. For instance, data that yield a P value 
of .05, when testing a normal mean, result in a posterior probability of 
the null of at least .30 for any objective prior distribution. ("Objec- 
tive" here means that equal prior weight is given the two hypotheses and 
that the prior is symmetric and nonincreasing away from the null; other 
definitions of "objective" will be seen to yield qualitatively similar re- 
sults.) The overall conclusion is that P values can be highly misleading 
measures of the evidence provided by the data against the null hypothesis. 
KEY WORDS: P values; Point null hypothesis; Bayes factor; Posterior 
probability; Weighted likelihood ratio. 

1. INTRODUCTION 

We consider the simple situation of observing a random 
quantity X having density (for convenience) f(x I 0), 0 
being an unknown parameter assuming values in a param- 
eter space 0 C R1. It is desired to test the null hypothesis 
Ho: 0 = 00 versus the alternative hypothesis H1: 0 $0 00, 
where 00 is a specified value of 0 corresponding to a fairly 
sharply defined hypothesis being tested. (Although exact 
point null hypotheses rarely occur, many "small interval" 
hypotheses can be realistically approximated by point nulls; 
this issue is discussed in Sec. 4.) Suppose that a classical 
test would be based on consideration of some test statistic 
T(X), where large values of T(X) cast doubt on Ho. The 
P value (or observed significance level) of observed data, 
x, is then 

p = Pr=o0(T(X) ' T(x)). 

Example 1. Suppose that X = (X1, . . , Xn), where 
the Xi are iid 9L(0, a2), a 2 known. Then the usual test 
statistic is 

T(X) = W X- ollo, 
where X is the sample mean, and 

p = 2(1 - 4)(t)) 
where 1 is the standard normal cdf and 

t = T(x) = N/ -I -ol/. 
We will presume that the classical approach is the report 

of p, rather than the report of a (pre-experimental) Ney- 
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man-Pearson error probability. This is because (a) most 
statisticians prefer use of P values, feeling it to be impor- 
tant to indicate how strong the evidence against Ho is (see 
Kiefer 1977), and (b) the alternative measures of evidence 
we consider are based on knowledge of x [or t = T(x)]. 
[For a comparison of Neyman-Pearson error probabilities 
and Bayesian answers, see Dickey (1977).] 

There are several well-known criticisms of testing a point 
null hypothesis. One is the issue of "statistical" versus 
"practical" significance, that one can get a very small p 
even when 10 - 0So is so small as to make 0 equivalent to 
0 for practical purposes. [This issue dates back at least to 
Berkson (1938, 1942); see also Good (1983), Hodges and 
Lehmann (1954), and Solo (1984) for discussion and his- 
tory.] Also well known is "Jeffreys's paradox" or "Lind- 
ley's paradox," whereby for a Bayesian analysis with a 
fixed prior and for values of t chosen to yield a given fixed 
p, the posterior probability of Ho goes to 1 as the sample 
size increases. [A few references are Good (1983), Jeffreys 
(1961), Lindley (1957), and Shafer (1982).] Both of these 
criticisms are dependent on large sample sizes and (to 
some extent) on the assumption that it is plausible for 0 
to equal 00 exactly (more on this later). 

The issue we wish to discuss has nothing to do (neces- 
sarily) with large sample sizes for even exact point nulls 
(although large sample sizes do tend to exacerbate the 
conflict, the Jeffreys-Lindley paradox being the extreme 
illustration thereof). The issue is simply that p gives a very 
misleading impression as to the validity of Ho, from almost 
any evidentiary viewpoint. 

Example 1 (Jeffreys's Bayesian Analysis). Consider a 
Bayesian who chooses the prior distribution on 0, which 
gives probability a each to Ho and H1 and spreads the mass 
out on H1 according to an S(00, U2) density. [This prior 
is close to that recommended by Jeffreys (1961) for testing 
a point null, though he actually recommended a Cauchy 
form for the prior on H1. We do not attempt to defend 
this choice of prior here. Particularly troubling is the choice 
of the scale factor .2 for the prior on H1, though it can be 
argued to at least provide the right "scale." See Berger 
(1985) for discussion and references.] It will be seen in 
Section 2 that the posterior probability, Pr(Ho I x), of Ho 
is given by 

Pr(Ho I x) = (1 + (1 + n)-112 exp{t2/[2(1 + 1/n)]})-1, 

(1.1) 

some values of which are given in Table 1 for various n 
and t (the t being chosen to correspond to the indicated 
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Table 1. Pr(Ho I x) for Jeffreys-Type Prior 

n 

p t 1 5 10 20 50 100 1,000 

.10 1.645 .42 .44 .47 .56 .65 .72 .89 

.05 1.960 .35 .33 .37 .42 .52 .60 .82 

.01 2.576 .21 .13 .14 .16 .22 .27 .53 

.001 3.291 .086 .026 .024 .026 .034 .045 .124 

values of p). The conflict between p and Pr(Ho I x) is 
apparent. If n = 50 and t = 1.960, one can classically 
4reject Ho at significance level p = .05," although Pr(HO 
| x) = .52 (which would actually indicate that the evidence 
favors Ho). For practical examples of this conflict see Jef- 
freys (1961) or Diamond and Forrester (1983) (although 
one can demonstrate the conflict with virtually any clas- 
sical example). 

Example 1 (An Extreme Bayesian Analysis). Again 
consider a Bayesian who gives each hypothesis prior prob- 
ability A, but now suppose that he decides to spread out 
the mass on H1 in the symmetric fashion that is as favorable 
to H1 as possible. The corresponding values of Pr(H0 I x) 
are determined in Section 3 and are given in Table 2 for 
certain values of t. Again the numbers are astonishing. 
Although p = .05 when t = 1.96 is observed, even a 
Bayesian analysis strongly biased toward H1 states that the 
null has a .227 probability of being true, evidence against 
the null that would not strike many people as being very 
strong. It is of interest to ask just how biased against Ho 
must a Bayesian analysis in this situation (i.e., when t = 
1.96) be, to produce a posterior probability of Pr(HO I x) 
= .05? The astonishing answer is that one must give Ho 
an initial prior probability of .15 and then spread out the 
mass of .85 (given to H1) in the symmetric fashion that 
most supports H1. Such blatant bias toward H1 would hardly 
be tolerated in a Bayesian analysis; but the experimenter 
who wants to reject need not appear so biased-he can 
just observe that p = .05 and reject by "standard prac- 
tice." 

If the symmetry assumption on the aforementioned prior 
is dropped, that is, if one now chooses the unrestricted 
prior most favorable to H1, the posterior probability is still 
not as low as p. For instance, Edwards, Lindman, and 
Savage (1963) showed that, if each hypothesis is given 
initial probability A, the unrestricted "most favorable to 
H1" prior yields 

Pr(Ho I x) = [1 + exp{t2/2}J-1, (1.2) 

the values of which are still substantially higher than p 
[e.g., when t = 1.96, p = .05 and Pr(Ho I x) = .128]. 

Table 2. Pr(H0 I x) for a Prior Biased Toward H, 

P Value (p) t Pr(HO I x) 

.10 1 .645 .340 

.05 1.960 .227 

.01 2.576 .068 

.001 3.291 .0088 

Example 1 (A Likelihood Analysis). It is common to 
perceive the comparative evidence provided by x for two 
possible parameter values, 01 and 02, as being measured 
by the likelihood ratio 

4x(01: 02) = f(x I 01)/f (x 1 02) 

(see Edwards 1972). Thus the evidence provided by x for 
00 against some 0 $ 00 could be measured by lx(0 0). 
Of course, we do not know which 0 = 00 to consider, but 
a lower bound on the comparative evidence would be (see 
Sec. 3) 

l = inflx(0o 0) f f(x I 00) =exp_ -t /21. o SUP f (x I 0) x{t1} 
6 

Values of lx for various t are given in Table 3. Again, the 
lower bound on the comparative likelihood when t = 1.96 
would hardly seem to indicate strong evidence against the 
null, especially when it is realized that maximizing the 
denominator over all 0 = 00 is almost certain to bias strongly 
the "evidence" in favor of H1. 

The evidentiary clashes so far discussed involve either 
Bayesian or likelihood analyses, analyses of which a fre- 
quentist might be skeptical. Let us thus phrase, say, a 
Bayesian analysis in frequentist terms. 

Example 1 (continued). Jeffreys (1980) stated, con- 
cerning the answers obtained by using his type of prior for 
testing a point null, 
These are not far from the rough rule long known to astronomers, i.e. 
that differences up to twice the standard error usually disappear when 
more or better observations become available, and that those of three 
or more times usually persist. (p. 452) 

Suppose that such an astronomer learned, to his sur- 
prise, that many statistical users rejected null hypotheses 
at the 5% level when t = 1.96 was observed. Being of an 
open mind, the astronomer decides to conduct an "ex- 
periment" to verify the validity of rejecting Ho when t = 
1.96. He looks back through his records and finds a large 
number of normal tests of approximate point nulls, in 
situations for which the truth eventually became known. 
Suppose that he first noticed that, overall, about half of 
the point nulls were false and half were true. He then 
concentrates attention on the subset in which he is inter- 
ested, namely those tests that resulted in t being between, 
say, 1.96 and 2. In this subset of tests, the astronomer 
finds that Ho had turned out to be true 30% of the time, 
so he feels vindicated in his "rule of thumb" that t- 2 
does not imply that Ho should be confidently rejected. 

In probability language, the "experiment" of the as- 

Table 3. Bounds on the Comparative Likelihood 

Ukelihood ratio 
P Value (p) t lower bound (fl) 

.10 1.645 .258 

.05 1.960 .146 

.01 2.576 .036 

.001 3.291 .0044 
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tronomer can be described as taking a random series of 
true and false null hypotheses (half true and half false), 
looking at those for which t ends up between 1.96 and 2, 
and finding the limiting proportion of these cases in which 
the null hypothesis was true. It will be shown in Section 
4 that this limiting proportion will be at least .22. 

Note the important distinction between the "experi- 
ment" here and the typical frequentist "experiment" used 
to evaluate the performance of, say, the classical .05 level 
test. The typical frequentist argument is that, if one con- 
fines attention to the sequence of true Ho in the "experi- 
ment," then only 5% will have t - 1.96. This is, of course, 
true, but is not the answer in which the astronomer was 
interested. He wanted to know what he should think about 
the truth of Ho upon observing t 2, and the frequentist 
interpretation of .05 says nothing about this. 

At this point, there might be cries of outrage to the 
effect that p = .05 was never meant to provide an absolute 
measure of evidence against Ho and any such interpreta- 
tion is erroneous. The trouble with this view is that, like 
it or not, people do hypothesis testing to obtain evidence 
as to whether or not the hypotheses are true, and it is hard 
to fault the vast majority of nonspecialists for assuming 
that, if p = .05, then Ho is very likely wrong. This is 
especially so since we know of no elementary textbooks 
that teach that p = .05 (for a point null) really means that 
there is at best very weak evidence against Ho. Indeed, 
most nonspecialists interpret p precisely as Pr(Ho I x) (see 
Diamond and Forrester 1983), which only compounds the 
problem. 

Before getting into technical details, it is worthwhile to 
discuss the main reason for the substantial difference be- 
tween the magnitude of p and the magnitude of the evi- 
dence against Ho. The problem is essentially one of con- 
ditioning. The actual vector of observations is x, and Pr(HO 
I x) and lx. depend only on the evidence from the actual 
data observed. To calculate a P value, however, one ef- 
fectively replaces x by the "knowledge" that X is in A = 
{y: T(y) ? T(x)} and then calculates p = Pr0=00(A). Al- 
though the use of frequentist measures can cause prob- 
lems, the main culprit here is the replacing of x itself by 
A. To see this, suppose that a Bayesian in Example 1 
were told only that the observed x is in a set A. If 
he were initially "50-50" concerning the truth of Ho, if 
he were very uncertain about 0 should Ho be false, and 
if p were moderately small, then his posterior probability 
of Ho would essentially equal p (see Sec. 4). Thus a Bayes- 
ian sees a drastic difference between knowing x (or t) and 
knowing only that x is in A. 

Common sense supports the distinction between x and 
A, as a simple illustration shows. Suppose that X is mea- 
sured by a weighing scale that occasionally "sticks" (to 
the accompaniment of a flashing light). When the scale 
sticks at 100 (recognizable from the flashing light) one 
knows only that the true x was, say, larger than 100. If 
large X casts doubt on H0, occurrence of a "stick" at 100 
should certainly be greater evidence that Ho is false than 
should a true reading of x = 100. Thus there should be 
no surprise that using A in the frequentist calculation might 

cause a substantial overevaluation of the evidence against 
Ho. Thus Jeffreys (1980) wrote 
I have always considered the arguments for the use of P absurd. They 
amount to saying that a hypothesis that may or may not be true is rejected 
because a greater departure from the trial value was improbable; that 
is, that it has not predicted something that has not happened. (p. 453) 

What is, perhaps, surprising is the magnitude of the over- 
evaluation that is encountered. 

An objection often raised concerning the conflict is that 
point null hypotheses are not realistic, so the conflict can 
be ignored. It is true that exact point null hypotheses are 
rarely realistic (the occasional test for something like ex- 
trasensory perception perhaps being an exception), but 
for a large number of problems testing a point null hy- 
pothesis is a good approximation to the actual problem. 
Typically, the actual problem may involve a test of some- 
thing like Ho: 10- 0So < b, but b will be small enough 
that Ho can be accurately approximated by Ho: 0 = 00. 
Jeffreys (1961) and Zellner (1984) argued forcefully for 
the usefulness of point null testing, along these lines. And, 
even if testing of a point null hypothesis were disreputable, 
the reality is that people do it all the time [see the economic 
literature survey in Zellner (1984)], and we should do our 
best to see that it is done well. Further discussion is delayed 
until Section 4 where, to remove any lingering doubts, 
small interval null hypotheses will be dealt with. 

For the most part, we will consider the Bayesian for- 
mulation of evidence in this article, concentrating on de- 
termination of lower bounds for Pr(Ho I x) under various 
types of prior assumptions. The single prior Jeffreys anal- 
ysis is one extreme; the Edwards et al. (1963) lower bounds 
[in (1.2)] over essentially all priors with fixed probability 
of Ho is another extreme. We will be particularly interested 
in analysis for classes of symmetric priors, feeling that any 
"objective" analysis will involve some such symmetry as- 
sumption; a nonsymmetric prior implies that there are 
specifically favored alternative values of 0. 

Section 2 reviews basic features of the calculation of 
Pr(H0 I x) and discusses the Bayesian literature on testing 
a point null hypothesis. Section 3 presents the various 
lower bounds on Pr(Ho I x). Section 4 discusses more gen- 
eral null hypotheses and conditional calculations, and Sec- 
tion 5 considers generalizations and conclusions. 

2. POSTERIOR PROBABILITIES AND ODDS 
It is convenient to specify a prior distribution for the 

testing problem as follows: let 0 < r0 < 1 denote the prior 
probability of Ho (i.e., that 0 = 00), and let 71 = 1 - 70 
denote the prior probability of H1; furthermore, suppose 
that the mass on H1 (i.e., on 0 $A 00) is spread out according 
to the density g(O). One might question the assignment 
of a positive probability to Ho, because it will rarely be 
the case that it is thought possible for 0 = Oo to hold 
exactly. As mentioned in Section 1, however, Ho is to be 
understood as simply an approximation to the realistic 
hypothesis Ho: 10 - Sol ' b, and so 1 is to be interpreted 
as the prior probability that would be assigned to {O0:| 
- Sol ' b}. A useful way to picture the actual prior in this 
case is as a smooth density with a sharp spike near 00. (To 
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a Bayesian, a point null test is typically reasonable only 
when the prior distribution is of this form.) 

Noting that the marginal density of X is 
m(x) = f(x | 6o)7to + (1 - 7ro)mg(x), (2.1) 

where 

mg(x) = f (x I B)g(O) dO, 

it is clear that the posterior probability of Ho is given by 
(assuming that f(x I 00) > 0) 

Pr(Ho I x) f (x 0o) x 7ro/m(x) 

[1 + :0 zrx i )] (2.2) 

Also of interest is the posterior odds ratio of Ho to HI, 
which is 

Pr(Ho I x) _ ___ f (X 0O) 
1- Pr(Ho I x) (1 - no) mg(x) (23 

Tlhe factor no1(1 - no) is the prior odds ratio, and 
Bg(x) =f (x I Oo)lmg(x) (2.4) 

is the Bayes factor for Ho versus H1. Interest in the Bayes 
factor centers around the fact that it does not involve the 
prior probabilities of the hypotheses and hence is some- 
times interpreted as the actual odds of the hypotheses 
implied by the data alone. This feeling is reinforced by 
noting that Bg can be interpreted as the likelihood ratio 
of Ho to H1, where the likelihood of H1 is calculated with 
respect to the "weighting" g(Q). Of course, the presence 
of g (which is a part of the prior) prevents any such inter- 
pretation from having a non-Bayesian reality, but the lower 
bounds we consider for Pr(Ho I x) translate into lower 
bounds for Bg, and these lower bounds can be considered 
to be "objective" bounds on the likelihood ratio of Ho to 
H1. Even if such an interpretation is not sought, it is helpful 
to separate the effects of 7o and g. 

Example 1 (continued). Suppose that 7ro is arbitrary 
and g is again (00, a2). Since a sufficient statistic for 0 
is X q(0' 2/n), we have that mg(x) is an 9(0, -2( 
+ n-1)) distribution. Thus 
Bg(x) 

f (x I Oo)/mg(y) 

[2fa2/n]1112 exp{ -2 (x- 0)2/a2} 

[27rc2(1 + n-1)-112 exp{ - - -o)21 [a2(1 + n1)I} 

- (1 + n) 12 exp{-t2/1(1 + nD} 
and 

Pr(Ho I x) = [1 + (1 - 7ro)/(7toBg)]- 

= + (1 7(o) (1 + n)-12 

X( exp{Wt2I(1 + nt} 

which yields (1.1) for no = 2. [The Jeifreys-Lindley par- 
adox is also apparent from this expression: if t is fixed, 
corresponding to a fixed P value, but n -* oo, then Pr(Ho 
x) -- 1 no matter how small the P value.] 
When giving numerical results, we will tend to present 

Pr(Ho I x) for no = 2. The choice of it = X has obvious 
intuitive appeal in scientific investigations as being "ob- 
jective." (Some might argue that n0 should even be chosen 
larger than since Ho is often the "established theory.") 
Except for personal decisions (or enlightened true sub- 
jective Bayesian hypothesis testing) it will rarely be jus- 
tifiable to choose 0 < -; who, after all, would be convinced 
by the statement "I conducted a Bayesian test of Ho, as- 
signing prior probability .1 to Ho, and my conclusion is 
that Ho has posterior probability .05 and should be re- 
jected"? We emphasize this obvious point because some 
react to the Bayesian-classical conflict by attempting to 
argue that iro should be made small in the Bayesian analysis 
so as to force agreement. 

There is a substantial amount of literature on the subject 
of Bayesian testing of a point null. Among the many ref- 
erences to analyses with particular priors, as in Example 
1, are Jeffreys (1957, 1961), Good (1950, 1958, 1965, 1967, 
1983), Lindley (1957, 1961, 1965, 1977), Raiffa and Schlai- 
fer (1961), Edwards et al. (1963), Smith (1965), Dickey 
and Lientz (1970), Zellner (1971, 1984), Dickey (1971, 
1973, 1974, 1980), Lempers (1971), Leamer (1978), Smith 
and Spiegelhalter (1980), Zellner and Siow (1980), and 
Diamond and Forrester (1983). Many of these works spe- 
cifically discuss the relationship of Pr(Ho I x) to significance 
levels; other papers in which such comparisons are made 
include Pratt (1965), DeGroot (1973), Dempster (1973), 
Dickey (1977), Hill (1982), Shafer (1982), and Good (1984). 
Finally, the articles that find lower bounds on Bg and Pr(H0 
I x) that are similar to those we consider include Edwards 
et al. (1963), Hildreth (1963), Good (1967, 1983, 1984), 
and Dickey (1973, 1977). 

3. LOWER BOUNDS ON POSTERIOR PROBABILITIES 

3.1 Introduction 

This section will examine some lower bounds on Pr(Ho 
x) when g(G), the distribution of 0 given that H1 is true, 

is allowed to vary within some class of distributions G. If 
the class G is sufficiently large so as to contain all "rea- 
sonable" priors, or at least a good approximation to any 
"reasonable" prior distribution on the H1 parameter set, 
then a lower bound on Pr(Ho I x) that is not small would 
seem to imply that the data x do not constitute strong 
evidence against the null hypothesis Ho : 0 = 00. We will 
assume in this section that the parameter space is the entire 
real line (although most of the results hold with only minor 
modification to parameter spaces that are subsets of the 
real line) and will concentrate on the following four classes 
of g: GA = {all distributions}, Gs = {all distributions sym- 
metric about 00}, GU = {all unimodal distributions sym- 
metric about Oo}' GNOR = {all XYuO0 T2) distributions, 0 c 
T2 c oo}. Even though these G's are supposed to consist 
only of distributions on {0 I 0 $& 00}, it will be convenient 
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to allow them to include distributions with mass at 00, so 
the lower bounds we compute are always attained; the 
answers are unchanged by this simplification, and cum- 
bersome limiting notation is avoided. Letting 

Pr(Ho I x, G) = inf Pr(Ho I x) 
gEG 

and 

B(x, G) = inf Bg(X), 
gEG 

we see immediately from formulas (2.2) and (2.4) that 

B(x, G) = f(x I 6o)/sup mg(x) 
_ ~~~~~geG 

and 

Pr(Ho I x, G) 1 + (1 - 7ro) x G)] 

Note that SUpgeG mg(x) can be considered to be an upper 
bound on the "likelihood" of H1 over all "weights" g E 
G, so B(x, G) has an interpretation as a lower bound on 
the comparative likelihood of Ho and H1. 

3.2 Lower Bounds for GA = {AII Distributions} 

The simplest results obtainable are for GA and were 
given in Edwards et al. (1963). The proof is elementary 
and will be omitted. 

Theorem 1. Suppose that a maximum likelihood esti- 
mate of 0 [call it O(x)], exists for the observed x. Then 

B(x, GA) = f(x I 0o)/f(x I 0(x)) 
and 

Pr(Ho I x, GA) = + (1 f( I 0)] 

[Note that Bf(x' GA) is equal to the comparative likelihood 
bound, Ix, that was discussed in Section 1 and hence has 
a motivation outside of Bayesian analysis.] 

Example 1 (continued). An easy calculation shows that, 
in this situation, 

B(x, GA) = e-12 

and 

Pr(Ho I x, GA) = [1 + ( O et2/J 

For several choices of t, Table 4 gives the corresponding 
two-sided P values, p, and the values of Pr(HO j x, GA), 
with no0 -. Note that the lower bounds on Pr(Ho I x) are 

Table 4. Comparison of P Values and Pr(H, I x, GA) When 7r0 - 

P Value (p) t Pr(HO I x, GA) Pr(HO I x, GA)/(Pt) 

.10 1 .645 .205 1 .25 

.05 1.960 .128 1.30 

.01 2.576 .035 1.36 

.001 3.291 .0044 1.35 

considerably larger than the corresponding P values, in 
spite of the fact that minimization of Pr(HO I x) over g E 
GA iS "maximally unfair" to the null hypothesis. The last 
column shows that the ratio of Pr(HO I x, GA) to pt is rather 
stable. The behavior of this ratio is described in more detail 
by Theorem 2. 

Theorem 2. For t > 1.68 and n0 - in Example 1, 

Pr(Ho I x, GA)Ipt > \/72 1.253. 

Furthermore, 

lim Pr(Ho I x, GA)Ipt = 
t-400o 

Proof. The limit result and the inequality for t > 1.84 
follow from the Mills ratio-type inequality 

1 y{l - ID(y)} 1 1 T < y{- (Y)} < 1 -3 l 
y2 

y > ?- 

The left inequality here is from Feller (1968, p. 175), and 
the right inequality can be proved by using a variant of 
Feller's argument. For 1.68 < t < 1.84, the inequality of 
the theorem was verified numerically. 

The interest in this theorem is that, for 7ro = , we can 
conclude that Pr(HO I x) is at least (1.25) pt, for any prior; 
for large t the use of p as evidence against Ho is thus 
particularly bad, in a proportional sense. [The actual dif- 
ference between Pr(HO I x) and the P value, however, 
appears to be decreasing in t.] 

3.3 Lower Bounds for Gs = 
{Symmetric Distributions} 

There is a large gap between Pr(Ho I x, GA) (for r0 = 
2) and Pr(Ho I x) for the Jeffreys-type single prior analysis 
(compare Tables 1 and 4). This reinforces the suspicion 
that using GA unduly biases the conclusion against Ho and 
suggests use of more reasonable classes of priors. Sym- 
metry of g (for the normal problem anyway) is one natural 
objective assumption to make. Theorem 3 begins the study 
of the class of symmetric g by showing that minimizing 
Pr(HO I x) over all g E Gs is equivalent to minimizing over 
the class G2PS = {all symmetric two-point distributions}. 

Theorem 3. 

sup mg(x) = sup mg(x), 
gEG2Ps gEGs 

so 

B(x, G2PS) = B(x, Gs) 
and 

Pr(HO I x, G2PS) = Pr(HO I x, Gs). 
Proof. All elements of Gs are mixtures of elements of 

G2ps, and mg(x) is linear when viewed as a function of g. 
Example I (continued). If t c 1, a calculus argument 

shows that the symmetric two-point distribution that strictly 
maximizes mg(x) is the degenerate "two-point" distribu- 
tion putting all mass at 00. Thus B(x, G5) = 1 and Pr(Ho 
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Table 5. Comparison of P Values and Pr(H- I x, Gs) When 70 = I 

P Value (p) t Pr(Ho I x, Gs) Pr(HO I X, Gs)l(pt) 

.10 1.645 .340 2.07 

.05 1.960 .227 2.31 

.01 2.576 .068 2.62 

.001 3.291 .0088 2.68 

I x, Gs) = m0 for t c 1. (Since the point mass at 00 is not 
really a legitimate prior on {0 I 0 $A So}, this means that 
observing t c 1 actually constitutes evidence in favor of 
Ho for any real symmetric prior on {0 I 0 # 00}.) 

If t > 1, then mg(x) is maximized by a nondegenerate 
element of G2PS. For moderately large t, the maximum 
value of mg(x) for g E G2PS is very well approximated by 
taking g to be the two-point distribution putting equal mass 
at 0(x) and at 200 - 0(x), so 

B(x, Gs) - 2 exp {- t2}. 
2~(p0) + hp(2t) 

For t ? 1.645, the first approximation is accurate to within 
1 in the fourth significant digit, and the second approxi- 
mation to within 2 in the third significant digit. Table 5 
gives the value of Pr(H0 I x, GS) for several choices of t, 
again with r0 = . 

The ratio Pr(HO I x, Gs)/Pr(Ho I x, GA) converges to 2 
as t grows. Thus the discrepancy between P values and 
posterior probabilities becomes even worse when one re- 
stricts attention to symmetric priors. Theorem 4 describes 
the asymptotic behavior of Pr(H0 I x, Gs)l(pt). The method 
of proof is the same as for Theorem 2. 

Theorem 4. For t > 2.28 and 7r0 = 2 in Example 1, 

Pr(H0 I x, Gs)lpt > - 2.507. 

Furthermore, 

lim Pr(Ho I x, Gs)lpt = V'7. 
t-?oo 

3.4 Lower Bounds for Gus = {Unimodal, 
Symmetric Distributions} 

Minimizing Pr(HO I x) over all symmetric priors still 
involves considerable bias against Ho. A further "objec- 
tive" restriction, which would seem reasonable to many, 
is to require the prior to be unimodal, or (equivalently in 
the presence of the symmetry assumption) nonincreasing 
in 10 - 0ol. If this did not hold, there would again appear 
to be "favored" alternative values of 0. The class of such 
priors on 0 $ 00 has been denoted by GUS. Use of this 
class would prevent excessive bias toward specific 0 =$ 00. 

Theorem 5 shows that minimizing Pr(Ho I x) over g E 
GUS is equivalent to minimizing over the more restrictive 
class GU5 = {all symmetric uniform distributions}. The point 
mass at 00 is included in GUs as a degenerate case. (Ob- 
viously, each element of GUS is a mixture of elements of 
GUs. The proof of Theorem 5 is thus similar to that of 
Theorem 3 and will be omitted.) 

Theorem 5. 

sup mg(x) = sup mg(x), 
geGus gE'U 

so B(x, GUS) = B(x, 6Ut) and Pr(Ho I x, GUS) = Pr(Ho 
x, Ots). 

Example 1 (continued). Since GUS C Gs, it follows 
from our previous remarks that B(x, GUS) = 1 and Pr(Ho 
I x, GUs) = fro when t c 1. If t > 1, then a calculus argument 
shows that the g E GUS that maximizes mg(x) will be non- 
degenerate. By Theorem 5, this maximizing distribution 
will be uniform on the interval (00 - KaI/n/, cr + Kal 
/- ) for some K > 0. Let mK(x) denote mg(x) when g is 

uniform on (00 - KaIVl-, 00 + KaIV- ). Since - D(0, 
a2ln), 

mK(x) = (\/ 12aK) f f (x I 0) d6 
do- Kal Vn 

= (\/ 1/f)(112K)[D(K - t) - 1D(-(K + t))]. 
If t > 1, then the maximizing value of K satisfies a/ 
aK)mK(y) = 0, so 

K[(p(K + t) + (p(K - t)] 

- D(K - t) - D(-(K + t)). (3.1) 

Note that 

fi (Io) = (Vi)cq v>) (p)(t) 

Thus if t > 1 and K maximizes mK(y), we have 

B(x, G ) - f l0) _ 2o(t)( 

We summarize our results in Theorem 6. 

Theorem 6. If t < 1 in Example 1, then B(x, GUS) = 
1 and Pr(Ho I x, GUS) = ir0. If t > 1, then 

B (x, Gus) =2(p(t) 
B u (K + t) + o(K - t) 

and 

Pr(Ho I x, GUS) - [1 + ( o) 

x (q(K + t) + q(K - t))] 1 

2q(t) J 
where K > 0 satisfies (3.1). 

For t 2 1.645, a very accurate approximation to K can 
be obtained from the following iterative formula (starting 
with Ko = t): 

Kj+j = t + [2 log(KjI/D(K, - t)) - 1.838]112. 

Convergence is usually achieved after only 2 or 3 itera- 
tions. In addition, Figures 1 and 2 give values of K and B 
for various values of t in this problem. For easier com- 
parisons, Table 6 gives Pr(H0 I x, GUS) for some specific 
important values of t, and iro = 4. 

Comparison of Table 6 with Table 5 shows that 
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Figure 1. Minimizing Value of K When G Gus. 

Pr(Ho I x, GUS) is only moderately larger than Pr(HO x, 
Gs) for P values of .10 or .05. The asymptotic behavior 
(as t -* oo) of the two lower bounds, however, is very 
different, as the following theorem shows. 

Theorem 7. For t > 0 and 7r0 = 2 in Example 1, 

Pr(HO I x, Gus) /(pt2) > 1. 

Furthermore, 

lim Pr(HO I x, GUS) I(pt2) = 1. 
t-?oo 

Proof. For t > 2.26, the previously mentioned Mills ratio 
inequalities were used together with the easily verified (for 
t > 2.26) inequality B(x, GUS) > 2tp(t). The inequality 
was verified numerically for 0 < t c 2.26. 

3.5 Lower Bounds for GNOR = {Normal 
Distributions} 

We have seen that minimizing Pr(HO I x) over g E Gus 
is the same as minimizing over g E G4s. Although using 6ts 
is much more reasonable than using GA, there is still some 
residual bias against Ho involved in using qls. Prior opinion 
densities typically look more -like a normal density or a 
Cauchy density than a uniform density. What happens 
when Pr(Ho x) is minimized over g 8 GNOR, that is, over 
scale transformations of a symmetric normal distribution, 
rather than over scale transformations of a symmetric uni- 
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Cs') 
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Figure 2. Values of B(x, GUS) in the Normal Example. 

form distribution? This question was investigated by Ed- 
wards et al. (1963, pp. 229-231). 

Theorem 8. (See Edwards et al. 1963). If t c 1 in 
Example 1, then B(x, GNOR) = 1 and Pr(HO I x, GNOR) = 

7ro. If t > 1, then 

B(x, GNOR) = t e_t2 2 

and 

Pr(HoIxS GNOR)= 1+ 7 :0) gex t} 

Table 7 gives Pr(HO I x, GNOR) for several values of t. 
Except for larger t, the results for GNOR are similar to those 
for GUS, and the comparative simplicity of the formulas 
in Theorem 8 might make them the most attractive lower 
bounds. 

A graphical comparison of the lower bounds B(x, G), 
for the four G's considered, is given in Figure 3. Although 
the vertical differences are larger than the visual discrep- 
ancies, the closeness of the bounds for GUS and GNOR is 
apparent. 

Table 6. Comparison of P Values and Pr(H0 I x, GUS) When 7ro = Y' 

P Value (p) t Pr(H0 I x, Gus) Pr(H0 I x, Gus)l(pt2) 

.10 1 .645 .390 1 .44 

.05 1.960 .290 1.51 

.01 2.576 .109 1 .64 

.001 3.291 .018 1.66 
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Table 7. Comparison of P Values and Pr(H0 I x, GNOR) When 7ro = 1 

P Value (p) t Pr(H0 I x, GNOR) Pr(H0 I x, GNo)I(pt2) 

.10 1.645 .412 1.52 

.05 1.960 .321 1.67 

.01 2.576 .133 2.01 

.001 3.291 .0235 2.18 

4. MORE GENERAL HYPOTHESES AND 
CONDITIONAL CALCULATIONS 

4.1 General Formulation 

To verify some of the statements made in the Introduc- 
tion, consider the Bayesian calculation of Pr(H0 I A), where 
Ho is of the form Ho: 0 E 00 [say, 00 = (00 - b, 00 + 
b)] and A is the set in which x is known to reside (A may 
be {x}, or a set such as {x: N/'2 - ol/I ' 1.96}). Then, 
letting i0 and 7r1 again denote the prior probabilities of Ho 
and H1 and introducing g0 and g, as the densities on 00 
and 01 = Oc (the complement of O0), respectively, which 
describe the spread of the prior mass on these sets, it is 
straightforward to check that 

Pr(Ho IA) = + ( o) X mg4(A) .1 7 mg0(A)_I (41 
where 

mg,(A) = f Pro(A)gj(0) dO. (4.2) 

One claim made in the Introduction was that, if 00 = 
(06 - b, So + b) with b suitably small, then approximating 

1.0 

0.9 _.\ GALL 
G 

0.8 - S 
Gus 

0.7 -\ \ 

m 0.5 

Z0.4 -\ 
O 

0.2\\0 
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O 1A2 3 4 

Figure 3. Values of B(x, G) in the Normal Example for Different Choices 
of G. 

Ho by Ho: 0 = 00 is a satisfactory approximation. From 
(4.1) and (4.2), it is clear that this will hold from the 
Bayesian perspective when f(x I 0) is approximately con- 
stant on 00 [so mg0(x) = fo~ f(x I 0)go(0) dO f(x I 00); 
here we are assuming that A = {x}]. Note, however, that 
g, is defined to give zero mass to 00, which might be 
important in the ensuing calculations. 

For the general formulation, one can determine lower 
bounds on Pr(HO I A) by choosing sets Go and G1 of go 
and gl, respectively, calculating 

B(A, Go, Gl) = inf mgo(A)/sup mg1(A), (4.3) 
goc:Go g,EG, 

and defining 

Pr(Ho I A, Go, G1) 

[ zo B(A, Go, G J) 4 

4.2 More General Hypotheses 

Assume in this section that A = {x} (i.e., we are in the 
usual inference model of observing the data). The lower 
bounds in (4.3) and (4.4) can be applied to a variety of 
generalizations of point null hypotheses and still exhibit 
the same type of conflict between posterior probabilities 
and P values that we observed in Section 3. Indeed, if 00 
is a small set about 00, the general lower bounds turn out 
to be essentially equivalent to the point null lower bounds. 
The following is an example. 

Theorem 9. In Example 1, suppose that the hypotheses 
were Ho: 0 E (00 - b, 0 + b) and H1 : 0 0 (00 - b, 
00 + b). If It - \/- b/al - 1 (which must happen for a 
classical test to reject Ho) and Go = G1 = Gs (the class 
of all symmetric distributions about 0), then B(x, Go0 G1) 
and Pr(HO I x, Go, G1) are exactly the same as B and P for 
testing the point null. 

Proof. Under the assumption on b, it can be checked 
that the minimizing go is the unit point mass at 00 [the 
interval (00 - b, 00 + b) being in the convex part of the 
tail of the likelihood function], whereas the maximization 
over G1 is the same as before. 

Another type of testing situation that yields qualitatively 
similar lower bounds is that of testing, say, Ho: 0 = 00 
versus H1 : 0 > 00. It is assumed, here, that 0 = 00 still 
corresponds to a well-defined theory to which one would 
ascribe probability 7r of being true, but it is now presumed 
that negative values of 0 are known to be impossible. 
Analogs of the results in Section 3 can be obtained for 
this situation; note, for instance, that G = GA = {all 
distributions} will yield the same lower bounds as in Theo- 
rem 1 in Section 3.2. 

4.3 Posterior Probabilities Conditional on Sets 

We revert here to considering H0: 0 = 00 and use the 
general lower bounds in (4.3) and (4.4) to establish the 
two results mentioned in Section 1 concerning conditioning 
on sets of data. First, in the example of the "astronomer" 
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in Section 1, a lower bound on the long-run proportion of 
true null hypotheses is 

sup mgl(A) 
Pr(HoI A) L1 +x 2 ( A J 

where A = {x: 1.96 < t s 2.0}. Note that Proo(A) = 
2[D(2.0) - D(1.96)] = .0044, whereas 

sup mg1(A) = sup Pro(A) -(.02) - D(-.02) = .016. 
91 0 

Hence Pr(Ho I A) [1 + (.016)/(.0044)]-1 = .22, as 
stated. 

Finally, we must establish the correspondence between 
the P value and the posterior probability of Ho when the 
data, x, are replaced by the cruder knowledge that x E A 
= {y: T(y) ? T(x)}. [Note that Pro0(A) = p, the P value.] 
A similar analysis was given in Dickey (1977). Clearly, 

B(A, G) = Proo(A)/sup mg(A) 
geG 

= p/sup mg(A), 
geG 

so, when 7C0 = 1 

Pr(H0 I A, G) = [1 + sup mg(A)Ip]-1. 
gEG 

Now, for any of the classes G considered in Section 3, it 
can be checked in Example 1 that 

sup mg(A) = 1; 
geG 

it follows that Pr(H0 I A, G) = (1 + p 1), which for 
small p is approximately equal to p. 

5. CONCLUSIONS AND GENERALIZATIONS 

Comment 1. A rather fascinating "empirical" obser- 
vation follows from graphing (in Example 1) B(x, Gus) 
and the P value calculated at (t - 1) + [the positive part 
of (t - 1)] instead of t; this last will be called the "P value 
of (t - 1)+" for brevity. Again, B(x, GUS) can be consid- 
ered to be a reasonable lower bound on the comparative 
likelihood measure of the evidence against Ho (under sym- 
metry and unimodality restrictions on the "weighted like- 
lihood" under H1). Figure 4 shows that this comparative 
likelihood (or Bayes factor) is close to the P value that 
would be obtained if we replaced t by (t - 1) +. The im- 
plication is that the "commonly perceived" rule of thumb, 
that t = 1 means only mild evidence against Ho, t = 2 
means significant evidence against Ho, t = 3 means highly 
significant evidence against Ho, and t = 4 means over- 
whelming evidence against Ho, should, at the very least, 
be replaced by the rule of thumb t = 1 means no evidence 
against Ho, t = 2 means only mild evidence against Ho, t 
= 3 means significant evidence against Ho, and t = 4 
means highly significant evidence against Ho, and even this 
may be overstating the evidence against Ho (see Comments 
3 and 4). 

Comment 2. We restricted analysis to the case of uni- 
variate 0, so as not to lose sight of the main ideas. We are 
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Figure 4. Comparison of B(x, GUS) and P Values. 

currently looking at a number of generalizations to higher- 
dimensional problems. It is rather easy to see that the GA 
bound is not very useful in higher dimensions, becoming 
very small as the dimension increases. (This is not unex- 
pected, since concentrating all mass on the MLE under 
the alternative becomes less and less reasonable as the 
dimension increases.) The bounds for spherically sym- 
metric (about 00) classes of priors (or, more generally, 
invariant priors) seem to be quite reasonable, however, 
comparable with or larger than the one-dimensional bounds. 

An alternative (but closely related) idea being consid- 
ered for dealing with high dimensions is to consider the 
classical test statistic, T(X), that would be used and re- 
place f(x I 0) by fT(t I 0), the corresponding density of T. 
In goodness-of-fit problems, for instance, T(X) is often 
the chi-squared statistic, having a central chi-squared dis- 
tribution under Ho and a noncentral chi-squared distri- 
bution under contiguous alternatives (see Cressie and Read 
1984). Writing the noncentrality parameter as i, we could 
reformulate the test as one of Ho: q= 0 versus H1: q > 
0 [assuming, of course, that contiguous alternatives are 
felt to be satisfactory; it seems likely, in any case, that the 
lower bound on Pr(Ho I x) will be achieved by g concen- 
trating on such alternatives]. Thus the problem has been 
reduced to a one-dimensional problem and our techniques 
can apply. Note the usefulness of much of classical testing 
theory to this enterprise; determining a suitable T and 
its distribution forms the bulk of a classical analysis and 
would also form the basis for calculating the bounds on 
Pr(HO | x). 

Comment 3. What should a statistician desiring to test 
a point null hypothesis do? Although it seems clearly 
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unacceptable to use a P value of .05 as evidence to re- 
ject, the lower bounds on Pr(H0 I x) that we have consid- 
ered can be argued to be of limited usefulness; if the 
lower bound is large we know not to reject Ho, but if the 
lower bound is small we still do not know if Ho can be re- 
jected [a small lower bound not necessarily meaning that 
Pr(H0 I x) is itself small]. One possible solution is to seek 
upper bounds for Pr(H0 I x), an approach taken with some 
success in Edwards et al. (1963) and Dickey (1973). The 
trouble is that these upper bounds do require "nonobjec- 
tive" subjective input about g. It seems reasonable, there- 
fore, to conclude that we must embrace subjective Bayes- 
ian analysis, in some form, to reach sensible conclusions 
about testing a point null. Perhaps the most attractive 
possibility, following Dickey (1973), is to communicate 
Bg(x) or Pr(H0 I x) for a wide range of prior inputs, al- 
lowing the user to choose, easily, his own prior and also 
to see the effect of the choice of prior. In Example 1, for 
instance, it would be a simple matter in a given problem 
to consider all D(,u, z2) priors for g and present a contour 
graph of Bg(x) with respect to the variables,u and z2. The 
reader of the study can then choose,u (often to equal 00) 
and z2 and immediately determine B or Pr(H0 I x) (the 
latter necessitating a choice of n0 also, of course). And by 
varying,u and z2 over reasonable ranges, the reader could 
also determine robustness or sensitivity to prior inputs. 
Note that the functional form of g will not usually have a 
great effect on Pr(H0 I x) [replacing the D(,u, z2) priors by 
Cauchy priors would cause a substantial change only for 
very extreme x], so one can usually get away with choosing 
a convenient form with parameters that are easily acces- 
sible to subjective intuition. [If there was concern about 
the choice of a functional form for g, the more sophisti- 
cated robustness analysis of Berger and Berliner (1986) 
could be performed, an analysis that yields an interval of 
values for Pr(H0 I x) as the prior ranges over all distri- 
butions "close" to an elicited prior.] General discussions 
of presentation of Pr(H0 I x), as a function of subjective 
inputs, can be found ih Dickey (1973) and Berger (1985). 

Comment 4. If one insisted on creating a "standard- 
ized" significance test for common use (as opposed to the 
flexible Bayesian reporting discussed previously) it would 
seem that the tests proposed by Jeffreys (1961) are quite 
suitable. For small and moderate n in Table 1, Pr(H0 I x) 
is not too far from the objective lower bounds in Table 6, 
say, indicating that the choice of a Jeffreys-type prior does 
not excessively bias the results in favor of Ho. As n in- 
creases, the exact Pr(-Ho I x) and the lower bound diverge, 

but this is due to the inadequacy of the lower bound (which 
does not depend on n). 

Comment 5. Although for most statistical problems it 
is the case that, say, Pr(HO I x, GUS) is substantially larger 
than the P value for x, this need not always be so, as the 
following example demonstrates. 

Example 2. Suppose that a single Cauchy (0, 1) ob- 
servation, X, is obtained and it is desired to test Ho: 0 = 
0 versus H1: 0 $ 0. It can then be shown that (for 7C0 = 
2) 

B(x, GUS) = Pr(HO I x, Gus) 
lim = lim = 1, 
lxl-o P value IXI-* P value 

so the P value does correspond to the evidentiary lower 
bounds for large lxl (see Table 8 for comparative values 
when lxl is small). Also of interest in this case is analysis 
with the priors Gc = {all Cauchy distributions}, since one 
can prove that, for lxi 2 1 and 7C0 = 2, 

B(x, Gc) - 21xl and Pr(HO I x, Gc) - 21x1 
(+ x2) -C (1+ IXI)2 

[whereas B(x, Gc) = 1 and Pr(HO I x, Gc) = 2 for lxl c 
1]. Table 8 presents values of all of these quantities for 
7C0 = 

I and varying |xl. 
Although it is tempting to take comfort in the closer 

correspondence between the P value and Pr(HO I x, Gus) 
here, a different kind of Bayesian conflict occurs. This 
conflict arises from the easily verifiable fact that, for any 
fixed g, 

lim Bg(x) = 1 and lim Pr(HO I x) = 70, (5.1) 
1XI-l 1Xh*o 

so large x provides no information to a Bayesian. Thus, 
rather than this being a case in which the P value might 
have a reasonable evidentiary interpretation because 
it agrees with Pr(HO I x, GUS), this is a case in which 
Pr(HO I x, GUS) is itself highly suspect as an evidentiary 
conclusion. 

Note also that the situation of a single Cauchy obser- 
vation is not even irrelevant to normal theory analysis; the 
standard Bayesian method of analyzing the normal prob- 
lem with unknown variance, v2, is to integrate out the 
nuisance parameter 2, using a noninformative prior. The 
resulting "marginal likelihood" for 0 is essentially a t dis- 
tribution with (n - 1) degrees of freedom (centered at 
x); thus if n = 2, we are in the case of a Cauchy distri- 
bution. As noted in Dickey (1977), it is actually the case 
that, for any n in this problem, the marginal likelihood is 

Table 8. B and Pr for a Cauchy Distribution When 70 = 2 

P Value (p) lxi B(x, Gus) Pr(Ho I x, Gus) B(x, Gc) Pr(HO I x, Gj) 

.50 1.000 .894 .472 1.000 .500 

.20 3.080 .351 .260 .588 .370 

.10 6.314 .154 .133 .309 .236 

.05 12.706 .069 .064 .156 .135 

.01 63.657 .0115 .0114 .031 .030 

.0032 200 .0034 .0034 .010 .010 
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such that (5.1) holds. (Of course, the initial use of a non- 
informative prior for o2 is not immune to criticism.) 

Comment 6. Since any unimodal symmetric distribu- 
tion is a mixture of symmetric uniforms and a Cauchy 
distribution is a mixture of normals, it is easy to establish 
the interesting fact that (for any situation and any x) 

B(x, GUS) = B(x, q1s) ' B(x, GNOR) c B(x, Gc). 

The same argument and inequalities also hold with Gc 
replaced by the class of all t distributions of a given degree 
of freedom. 

[Received January 1985. Revised October 1985.1 

REFERENCES 

Berger, J. (1985), Statistical Decision Theory and Bayesian Analysis, New 
York: Springer-Verlag. 

Berger, J., and Berliner, L. M. (1986), "Robust Bayes and Empirical 
Bayes Analysis with c-Contaminated Priors," The Annals of Statistics, 
14, 461-486. 

Berkson, J. (1938), "Some Difficulties of Interpretation Encountered in 
the Application of the Chi-Square Test," Journal of the American 
Statistical Association, 33, 526-542. 

(1942), "Tests of Significance Considered as Evidence," Journal 
of the American Statistical Association, 37, 325-335. 

Cressie, N., and Read, T. R. C. (1984), "Multinomial Goodness-Of-Fit 
Tests," Journal of the Royal Statistical Society, Ser. B, 46, 440-464. 

DeGroot, M. H. (1973), "Doing What Comes Naturally: Interpreting a 
Tail Area as a Posterior Probability or as a Likelihood Ratio," Journal 
of the American Statistical Association, 68, 966-969. 

Dempster, A. P. (1973), "The Direct Use of Likelihood for Significance 
Testing," in Proceedings of the Conference on Foundational Questions 
in Statistical Inference, ed. 0. Barndorff-Nielsen, University of Aar- 
hus, Dept. of Theoretical Statistics, 335-352. 

Diamond, G. A., and Forrester, J. S. (1983), "Clinical Trials and Sta- 
tistical Verdicts: Probable Grounds for Appeal," Annals of Internal 
Medicine, 98, 385-394. 

Dickey, J. M. (1971), "The Weighted Likelihood Ratio, Linear Hy- 
potheses on Normal Location Parameters," Annals of Mathematical 
Statistics, 42, 204-223. 

(1973), "Scientific Reporting," Journal of the Royal Statistical 
Society, Ser. B, 35, 285-305. 

(1974), "Bayesian Alternatives to the F-Test and Least Squares 
Estimate in the Normal Linear Model," in Studies in Bayesian Econ- 
ometrics and Statistics, eds. S. E. Fienberg and A. Zellner, Amster- 
dam: North-Holland, pp. 515-554. 

(1977), "Is the Tail Area Useful as an Approximate Bayes Factor?," 
Journal of the American Statistical Association, 72, 138-142. 

(1980), "Approximate Coherence for Regression Models With a 
New Analysis of Fisher's Broadback Wheatfield Example," in Bayes- 
ian Analysis in Econometrics and Statistics: Essays in Honor of Harold 
Jeffreys, ed. A. Zellner, Amsterdam: North-Holland, pp. 333-354. 

Dickey, J. M., and Lientz, B. P. (1970), "The Weighted Likelihood 
Ratio, Sharp Hypotheses About Chances, the Order of a Markov 
Chain," Annals of Mathematical Statistics, 41, 214-226. 

Edwards, A. W. F. (1972), Likelihood, Cambridge, U.K.: Cambridge 
University Press. 

Edwards, W., Lindman, H., and Savage, L. J. (1963), "Bayesian Sta- 
tistical Inference for Psychological Research," Psychological Review, 
70, 193-242. [Reprinted in Robustness of Bayesian Analyses, 1984, ed. 
J. Kadane, Amsterdam: North-Holland.] 

Feller, W. (1968), An Introduction to Probability Theory and Its Appli- 
cations (Vol. 1, 3rd ed.), New York: John Wiley. 

Good, I. J. (1950), Probability and the Weighing of Evidence, London: 
Charles W. Griffin. 

(1958), "Significance Tests in Parallel and in Series," Journal of 
the American Statistical Association, 53, 799-813. 

(1965), The Estimation of Probabilities: An Essay on Modern 
Bayesian Methods, Cambridge, MA: MIT Press. 

(1967), "A Bayesian Significance Test for Multinomial Distri- 
butions," Journal of the Royal Statistical Society, Ser. B, 29, 399-431. 

(1983), "Good Thinking: The Foundations of Probability and Its 
Applications," Minneapolis: University of Minnesota Press. 

(1984), Notes C140, C144, C199, C200, and C201, Journal of 
Statistical Computation and Simulation, 19. 

Hill, B. (1982), Comment on "Lindley's Paradox," by Glenn Shafer, 
Journal of the American Statistical Association, 77, 344-347. 

Hildreth, C. (1963), "Bayesian Statisticians and Remote Clients," Econ- 
ometrika, 31, 422-438. 

Hodges, J. L., Jr., and Lehmann, E. L. (1954), "Testing the Approxi- 
mate Validity of Statistical Hypotheses," Journal of the Royal Statistical 
Society, Ser. B, 16, 261-268. 

Jeffreys, H. (1957), Scientific Inference, Cambridge, U.K.: Cambridge 
University Press. 

(1961), Theory of Probability (3rd ed.), Oxford, U.K.: Oxford 
University Press. 

(1980), "Some General Points in Probability Theory," in Bayesian 
Analysis in Econometrics and Statistics, ed. A. Zellner, Amsterdam: 
North-Holland, pp. 451-454. 

Kiefer, J. (1977), "Conditional Confidence Statements and Confidence 
Estimators" (with discussion), Journal of the American Statistical As- 
sociation, 72, 789-827. 

Leamer, E. E. (1978), Specification Searches: Ad Hoc Inference With 
Nonexperimental Data, New York: John Wiley. 

Lempers, F B. (1971), Posterior Probabilities of Alternative Linear Models, 
Rotterdam: University of Rotterdam Press. 

Lindley, D. V. (1957), "A Statistical Paradox," Biometrika, 44, 187-192. 
(1961), "The Use of Prior Probability Distributions in Statistical 

Inference and Decision," in Proceedings of the Fourth Berkeley Sym- 
posium on Mathematical Statistics and Probability, Berkeley: Univer- 
sity of California Press, pp. 453-468. 

(1965), Introduction to Probability and Statistics From A Bayesian 
Viewpoint (Parts 1 and 2), Cambridge, U.K.: Cambridge University 
Press. 

(1977), "A Problem in Forensic Science," Biometrika, 64, 207- 
213. 

Pratt, J. W. (1965), "Bayesian Interpretation of Standard Inference 
Statements" (with discussion), Journal of the Royal Statistical Society, 
Ser. B, 27, 169-203. 

Raiffa, H., and Schlaifer, R. (1961), Applied Statistical Decision Theory, 
Harvard University, Division of Research, Graduate School of Busi- 
ness Administration. 

Shafer, G. (1982), "Lindley's Paradox," Journal of the American Statis- 
tical Association, 77, 325-351. 

Smith, A. F. M., and Spiegelhalter, D. J. (1980), "Bayes Factors and 
Choice Criteria for Linear Models," Journal of the Royal Statistical 
Society, Ser. B, 42, 213-220. 

Smith, C. A. B. (1965), "Personal Probability and Statistical Analysis," 
Journal of the Royal Statistical Society, Ser. A, 128, 469-499. 

Solo, V. (1984), "An Alternative to Significance Tests," Technical Re- 
port 84-14, Purdue University, Dept. of Statistics. 

Zellner, A. (1971), An Introduction to Bayesian Inference in Econo- 
metrics, New York: John Wiley. 

(1984), "Posterior Odds Ratios for Regression Hypotheses: Gen- 
eral Considerations and Some Specific Results," in Basic Issues in 
Econometrics, Chicago: University of Chicago Press, pp. 275-305. 

Zellner, A., and Siow, A. (1980), "Posterior Odds Ratios for Selected 
Regression Hypotheses," in Bayesian Statistics, eds. J. M. Bernardo, 
M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, Valencia: Uni- 
versity Press, pp. 586-603. 

This content downloaded from 128.173.127.127 on Sat, 2 Aug 2014 12:54:20 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 112
	p. 113
	p. 114
	p. 115
	p. 116
	p. 117
	p. 118
	p. 119
	p. 120
	p. 121
	p. 122

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 82, No. 397 (Mar., 1987), pp. 1-367
	Front Matter [pp. ]
	The Importance of Statisticians [pp. 1-7]
	Applications
	Stochastic Blockmodels for Directed Graphs [pp. 8-19]
	Impact of Chlorofluoromethanes on Stratospheric Ozone: A Statistical Analysis of Ozone Data for Trends [pp. 20-30]
	Markovian Forecast Processes [pp. 31-37]
	Estimating a Common Relative Risk: Application in Equal Employment [pp. 38-45]
	A Model for Multinomial Response Error Applied to Labor Flows [pp. 46-51]
	Comparison of Purposive and Random Sampling Schemes for Estimating Capital Expenditure [pp. 52-57]
	Editing and Imputation for Quantitative Survey Data [pp. 58-68]
	Market Transactions and Hypothetical Demand Data: A Comparative Study [pp. 69-75]

	Theory and Methods
	Probabilistic Solution of Ill-Posed Problems in Computational Vision [pp. 76-89]
	Inference for Discrete Markov Fields: The Simplest Nontrivial Case [pp. 90-96]
	Maximum Likelihood Computations with Repeated Measures: Application of the EM Algorithm [pp. 97-105]
	Reconciling Bayesian and Frequentist Evidence in the One-Sided Testing Problem [pp. 106-111]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence [pp. 112-122]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Comment [pp. 123-125]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Comment [pp. 125-128]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Comment [pp. 128-129]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Comment [pp. 129-130]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Comment [pp. 130-131]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Comment [pp. 131-133]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Rejoinder [pp. 133-135]
	Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence: Rejoinder [pp. 135-139]
	Bayesian Models for Directed Graphs [pp. 140-148]
	Assessing the Accuracy of Normal Approximations [pp. 149-154]
	Calibrating Confidence Coefficients [pp. 155-162]
	Bootstrap Confidence Intervals and Bootstrap Approximations [pp. 163-170]
	Better Bootstrap Confidence Intervals [pp. 171-185]
	Better Bootstrap Confidence Intervals: Comment [pp. 186-187]
	Better Bootstrap Confidence Intervals: Comment [pp. 187-188]
	Better Bootstrap Confidence Intervals: Comment [pp. 188-190]
	Better Bootstrap Confidence Intervals: Comment [pp. 190]
	Better Boostrap Confidence Intervals: Comment [pp. 191]
	Better Bootstrap Confidence Intervals: Comment [pp. 192-194]
	Better Bootstrap Confidence Intervals: Comment [pp. 195-196]
	Better Bootstrap Confidence Intervals: Comment [pp. 196-197]
	Better Bootstrap Confidence Intervals: Rejoinder [pp. 198-200]
	Outer and Inner Confidence Intervals for Finite Population Quantile Intervals [pp. 201-204]
	A Fast Model Selection Procedure for Large Families of Models [pp. 205-213]
	Simultaneous Confidence Bounds in Multiple Regression Using Predictor Variable Constraints [pp. 214-219]
	A Minimax Property of Linear Regression [pp. 220]
	Approximate Confidence Limits for a Parameter Function in Nonlinear Regression [pp. 221-230]
	Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting [pp. 231-238]
	Inequality-Constrained Multivariate Smoothing Splines with Application to the Estimation of Posterior Probabilities [pp. 239-248]
	Exploratory Projection Pursuit [pp. 249-266]
	Estimation of a Convex Density Contour in Two Dimensions [pp. 267-270]
	Simultaneous Confidence Regions for the Frequency Analysis of Multiple Time Series [pp. 271-275]
	Estimating Trend and Growth Rates in Seasonal Time Series [pp. 276-282]
	Chi-Squared-Type Tests for Ordered Alternatives in Contingency Tables [pp. 283-291]
	Tests for Patterned Alternatives in k-Sample Problems [pp. 292-299]
	Minimax Estimation of the Mixing Proportion of Two Known Distributions [pp. 300-304]
	Nonparametric Estimation of the Probability of Discovering a New Species [pp. 305-311]
	Supremum Versions of the Log-Rank and Generalized Wilcoxon Statistics [pp. 312-320]

	Introductory Textbooks: A Framework for Evaluation [pp. 321-339]
	Book Reviews
	[List of Book Reviews] [pp. 340]
	Review: untitled [pp. 341-342]
	Review: untitled [pp. 342-343]
	Review: untitled [pp. 343]
	Review: untitled [pp. 343-344]
	Review: untitled [pp. 344]
	Review: untitled [pp. 344-345]
	Review: untitled [pp. 345]
	Review: untitled [pp. 345-346]
	Review: untitled [pp. 346]
	Review: untitled [pp. 346-347]
	Review: untitled [pp. 347-348]
	Review: untitled [pp. 348]
	Review: untitled [pp. 348-349]
	Review: untitled [pp. 349-350]
	Review: untitled [pp. 350-351]
	Review: untitled [pp. 351-352]
	Review: untitled [pp. 352]
	Review: untitled [pp. 352]
	Review: untitled [pp. 352-353]
	Review: untitled [pp. 353]
	Review: untitled [pp. 354-355]
	Review: untitled [pp. 355]
	Review: untitled [pp. 355-356]
	Review: untitled [pp. 356-357]
	Review: untitled [pp. 357]
	Review: untitled [pp. 358]
	Review: untitled [pp. 358-359]
	Review: untitled [pp. 359-360]
	Review: untitled [pp. 360-361]
	Review: untitled [pp. 361]
	Review: untitled [pp. 361]
	Review: untitled [pp. 361]
	Review: untitled [pp. 362]
	Review: untitled [pp. 362]
	Review: untitled [pp. 362-363]
	Review: untitled [pp. 363]
	Review: untitled [pp. 363-364]
	Review: untitled [pp. 364-365]
	Review: untitled [pp. 365]

	Publications Received [pp. 366-367]
	Back Matter [pp. ]





