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P-values: Interpretation and Methodology* 
JEAN D. GIBBONS** AND JOHN W. PRATT*** 

1. Introduction 

The most common traditional method of carrying 
out any hypothesis test is to select a region for re- 
jection and form a rejection rule such that the 
probability of committing a Type I error does not 
exceed some preselected number called the level of 
the test. Then the investigator reports whether or not 
the observations are "significant" at the chosen 
level. This procedure probably stems from the use of 
the Neyman-Pearson theory in classical statistics, 
where the decision function for the test is de- 
termined such that the probability of a Type II error 
is a minimum subject to the conditions imposed by 
the level selected. This method of test construction 
circumvents the problem of interrelationship 
between the probabilities of the Type I and Type II 
error. However, in many cases the choice of a sig- 
nificance level is completely arbitrary. In non- 
parametric statistics particularly, but also in 
parametric statistics when the null distribution is 
discrete, the chosen level may not even be at- 
tainable. Further, in nonparametric statistics, there 
is usually not sufficient information about al- 
ternative distributions so that the probability of a 
Type II error can even be discussed in general. 
Rather, the decision function is selected by logical 
reasoning, or according to the research hypothesis, or 
sometimes even by the data. 

Another approach to hypothesis testing is cur- 
rently attaining wide acceptance. This is the practice 
of reporting the smallest level at which the observa- 
tions are significant in a particular direction. This 

quantity, which is herein called the P-value, is some- 
times called the "critical level" or "significance 
level" (e.g., in Birnbaum, [3, p. 289]), the "observed 
level of significance" (e.g., in Kraft and Van Eeden, 
[8, p. 63]), the "prob-value" (e.g., in Wonnacott and 
Wonnacott, [12, p. 190]), or the "associated 
probability" (e.g. in Siegel, [11, p. 11]). Many ele- 
mentary textbooks are now introducing this 
procedure, in addition to or instead of the more 
traditional one, for one sided tests based on both 
parametric and nonparametric methods. However, 
little attention has been paid to the proper in- 
terpretation of a P-value, nor to the inherent 
problem of defining P-values for two sided tests, 
particularly when the null distribution is not sym- 
metric. These questions will be discussed in this 
paper, along with some comments about the need for 
making a clear distinction between statistical signifi- 
cance and practical significance in decision making. 

2. Methodology and Advantages of One Sided 
P-values 

Consider any hypothesis testing situation where 
the appropriate critical region for the test clearly lies 
in one particular tail of the sampling distribution of 
the test statistic. Then the observed value of the test 
criterion can be used to compute a tail probability 
which we call the P-value. The P-value is defined as 
the probability under null distributions of a sample 
outcome equal to or more extreme than that ob- 
served. In well-behaved problems, which include al- 
most all one sided tests commonly used, the possible 
outcomes can be ordered according to how 
"extreme" they are in one direction relative to the 
outcome expected under the null hypothesis, and the 
values of the test statistic are also ordered in a cor- 
responding manner. Then the P-value is a well de- 
fined quantity, because the meaning of extreme is 
clear. 

* This paper was written by Gibbons, but its content overlaps 
parts of Chapter 1 of a forthcoming book, Concepts of Non- 
parametric Theory, written by both authors. The first draft of 
Chapter 1 was prepared by Pratt. 
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Now suppose that the P-value is well defined, and 
that the goal of the experiment is to reach a statis- 
tical decision through a significance test. The P- 
value can then be interpreted as the smallest level of 
significance, that is, the "borderline level", since the 
outcome observed would be judged significant at all 
levels greater than or equal to the P-value but not 
significant at any smaller levels. Thus it is some- 
times called the "level attained" by the sample. A 
decision based on the P-value will always be the 
same as a decision based on a critical value for a 
conservative test. 

Sometimes tables of critical values for test statis- 
tics which have discrete null distributions are 
constructed such that the exact probability of a 
Type I error is as near the preselected level as 
possible, whether above or below (e.g., Siegel, [11, 
Table G]). This is equivalent to judging an outcome 
as significant at all levels greater than, and not sig- 
nificant at any level smaller than, a quantity called 
the mid P-value. The mid P-value is defined as the 
arithmetic average of the ordinary P-value (as de- 
fined above) and the probability of an outcome more 
extreme than that observed. (See Lancaster [9] for 
discussion.) 

For the purpose of statistical decision making, it is 
clear that reporting a P-value conveys as much in- 
formation as reporting whether or not the observa- 
tions are statistically significant at some preselected 
level as long as the reader is also informed as to what 
maximum probability of a Type I error is considered 
tolerable. However, if we consider the ultimate goal 
of statistical analysis as the reduction of data to a 
brief condensation which contains the gist of some 
experimental results, reporting a P-value as, say, 
.039 is considerably more informative than a "bare 
bones" statement like "significant at level .05" or 
"reject at level .05," especially when .05 was chosen 
rather arbitrarily or by habit. 

Assuming that the problem is well-behaved and 
that tables of exact tail probabilities are available, 
the exact P-value is easily found. When the 
available tables give only critical values at selected 
levels, the P-value can be specified as within a 
certain interval. Reporting a P-value, whether exact 
or within an interval, in effect permits each indi- 
vidual to choose his own level of significance as the 
maximum tolerable probability of a Type I error. 
This is especially important when the investigator 
has no real justifiable reason for choosing a 
particular level of statistical significance, or does not 
have much feeling about the cost and consequences 
of statistical error for this particular experimental 
situation. Further, in many investigations the de- 
cision to be reached ultimately is not a statistical 
one but a practical one. Then the statistical result 
should be considered no more than an objective aid 
to the formation of a subjective decision. Statistical 
significance does not necessarily imply practical sig- 
nificance. Rather, the decision-making process is 

frequently influenced by many factors in addition to 
the P-value. Some of these factors, like reliability of 
sampling procedure, or validity of test procedure, 
are statistical, while others, like economic or 
practical implications of the decision, are purely 
non-statistical factors relevant for this particular de- 
cision. When the decision of importance relates to a 
target population which is different from the popu- 
lation sampled, either because it is impractical or 
impossible to sample the target population, the de- 
cision-making process becomes even less objective. 
Any or all of these factors may be even more im- 
portant than the P-value in reaching a practical de- 
cision. However, in all cases the P-value provides an 
objective measure which can be helpful to the ulti- 
mate decision maker, whether it is his sole basis for 
judgment or one of several input factors. 

3. Further Interpretations of One Sided P-values 

By definition, the P-value is properly interpreted 
as an aid to decision making since it measures the 
level attained by the sample outcome. Can a one 
sided P-value be given any other interpretations 
which are relevant to inference? In particular, can 
the P-value be interpreted as a measure of the 
degree to which the observations support the null 
hypothesis, or contradict it in a particular direction? 

It certainly is true that in any single experiment, 
the P-value measures the degree of agreement or 
disagreement in a specific direction between the 
particular observed value of the statistic and its ex- 
pected value under the null hypothesis. Suppose, for 
instance, that n is large or moderate, so that the test 
is reasonably powerful. Then if the P-value is large 
or moderate, the test has not merely failed to dis- 
prove the statement in the null hypothesis; it has 
also provided substantial evidence that the null 
hypothesis is true or almost true. In addition, the 
larger the P-value, the more affirmative is the evi- 
dence by this experiment. On the other hand, the 
smaller the P-value, the more "extreme" is the out- 
come by this experiment. Hence, as long as extreme 
is properly defined, the P-value does measure the 
degree of disagreement (or agreement) with the null 
hypothesis. However, any strictly increasing or 
decreasing function of the P-value, in particular the 
value of the test statistic itself (or its negative), also 
measures the degree of disagreement. 

The real question is, can one compare P-values 
across sample sizes, or across experiments, as can be 
done with power functions? Unfortunately, such 
comparisons of P-values have little meaning. Argu- 
ments both within and outside the frequency theory 
of probability are convincing that the extent of 
contradiction of the null hypothesis in general is not 
a function of the P-value, but rather of the likeli- 
hood function (see Birnbaum [3]). Finding an event 
which is rare under a null hypothesis Ho can be 
taken as some evidence in favor of an alternative 
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hypothesis H1 as long as it is contradictory in the 
proper direction. However, the important point to 
remember is that the P-value is calculated under the 
assumption that Ho is true, while the power is calcu- 
lated under H1, and it does not necessarily follow 
that an event which is rare under Ho is relatively 
frequent under H1 (and vice versa). Furthermore, 
the extent of contradiction implied by a given P- 
value depends on the power. If a test is very 
powerful, then it is very likely to reject Ho and hence 
the P-value is likely to be small even when the de- 
parture from the null situation is small. Similarly, if 
a test is not very powerful, it is not very likely to re- 
ject H0, and hence the P-value is not likely to be 
small even when Ho is moderately far from true. 
Thus, the relationship between the extent of 
contradiction of Ho and the magnitude of the P- 
value depends on the power of the test. 

In the Bayesian framework, where probabilities 
are used not only with an "objective" meaning, but 
also to represent "degrees of belief', the probability 
that the null hypothesis is true, given the observa- 
tions (that is, the "posterior" probability of the null 
hypothesis), may vary widely, depending on the 
sample size and the problem, for a fixed P-value and 
a fixed probability of the null hypothesis before 
observation (that is, a fixed prior probability of the 
null hypothesis). Even in practical problems, if the 
null hypothesis is a priori as likely true as false, its 
posterior probability after observation may well be 
as small as six times or as large as twelve times the 
P-value for P-values between .001 and .05, although 
it is seldom less than three times or more than thirty 
times the P-value (Good, [5]). (These figures are 
rough, and are based on less than one might desire. 
See also Jeffreys [7] and Lindley [10]. For an 
interesting example with discussion, see Good [6] 
and Efron [4].) In this framework then, if the value 
of a test statistic is just significant at the .05 level, 
there is still a substantial chance (at least .15) that 
the null hypothesis is true. This suggests that bare 
significance at the .05 level is at best not a very 
strong justification for assuming that the null 
hypothesis is false. Of course, significance sub- 
stantially beyond the .05 level is another matter. 

Often a null hypothesis is almost certainly not 
exactly true but is perhaps nearly true; then it is 
frequently convenient to treat the null hypothesis as 
true even though it is only nearly true. The foregoing 
discussion should be read in this light. For instance, 
the next-to-last sentence of the previous paragraph 
would then mean that if something is just significant 
at the .05 level, then there is still a substantial 
chance (at least .15) that the null hypothesis is 
nearly true, where "nearly" is defined so that, before 
observation, one would have considered the null 
hypothesis "perhaps nearly true". 

In summary, even though it is not appropriate to 
interpret a P-value as more than a measure of the 
extent to which the observations contradict or sup- 

port the null hypothesis in a single experiment, the 
method is well justified and advised on the grounds 
that it contains information about the experimental 
results which is not reflected in a simple statement 
of significance at a preselected level. 

4. P-values for Two Sided Tests 

If P-values are to be widely adopted, some 
convention is needed to define them for two sided 
tests. Some people claim that P-values are not ap- 
propriate in the two sided situation, but that seems 
an inappropriate dismissal of a problem which is not 
trivial and should be examined. Several different 
procedures will be described here. 

One approach is to report the one tailed P-value 
even in a two sided test and remark that the two 
tailed P-value, while depending on what kind of two 
sided critical region would have been formed, is pre- 
sumably nearly twice as large as the one tailed P- 
value reported. 

If this practice is not followed, the logical 
definition of a P-value is the sum of the probability 
of a value equal to or more extreme than that ob- 
served in the same tail and some probability from 
the opposite tail. However, then a single observed 
result could give various P-values depending on 
what probability is added to represent the other tail. 
The most common procedure is to report a two 
tailed P-value as twice the one tailed P-value. This 
seems a very reasonable practice when the null dis- 
tribution is symmetric, in that it corresponds in 
principle to the standard two sided test which at 
level a is a combination of two one sided tests, each 
at level a!/2. For asymmetric null distributions, the 
practice of attributing an equal maximum 
probability to each tail seems less reasonable for P- 
values than for selecting critical regions, since in the 
latter case it is possible to resort to randomized tests 
to achieve equality of probabilities. (Randomization 
could theoretically be used for P-values.) In general, 
there seems to be no serious objection to doubling 
the one tailed P-value except that for discrete dis- 
tributions the P-value reported may exceed one, or 
otherwise may not correspond to any probability 
which is attainable under that distribution. The in- 
terpretation of such a P-value is then clouded even 
in a single experiment. A logical modification of 
procedure which avoids this problem is to define the 
P-value as the sum of the one tailed P-value and an 
attainable probability in the other tail which is as 
close as possible to the one tailed P-value obtained. 
"As close" could be defined as meaning in either di- 
rection, only in the conservative direction, or only in 
the liberal direction. 

Another possibility is to make the two tails com- 
plementary in terms of the distance from some spe- 
cified location parameter in the null distribution, 
e.g., the mean, median, midrange or mode. Then if 
the test criterion is X and m is the chosen 
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parameter, the P-value for an observed x is P (X ? 
x) + P[X < m - (x - m)] if x is in the upper tail 
and P(X < x) + P[X ?m + (m - x)] if x is in the 
lower tail. This procedure is especially logical when 
one interprets the P-value as a measure of the degree 
of agreement or disagreement between the particular 
observed value and its average or central value 
under the null hypothesis. It could be modified with 
some sort of skewness correction for severely asym- 
metric distributions. 

Table 1 

Binomial Probabilities for p = .6, n = 10 

s 0 1 2 3 4 5 6 7 8 9 10 

Pp=.6(S = S) .000.002.010.043.111.201.251.215.121.040.006 

We illustrate these procedures in the binomial 
case with n = 10 and Ho: p = .6. The point 
probabilities for S, the observed number of suc- 
cesses, are given in Table 1. Suppose that S = 3 is 
observed. The appropriate one tailed P-value is 
lower tailed, and Pp..6(S < 3) = .055. This could be 
reported, with the comment that the two tailed P- 
value is presumably around .110. Since .110 is not 
an attainable probability under this null dis- 
tribution, we could use the modification suggested 
above for asymmetric distributions. Then we add 
Pp=.6(S > 9) = .046, the closest attainable level in 
the upper tail, and report a P-value of .055 + .046 
= .101. Since the distribution in Table 1 has mean, 
median and mode each equal to 6, the method of 
complementary distances from any of these location 
parameters also gives a two tailed P-value of .101 
when S = 3. If the distance is measured from the 
midrange however, the complementary value of S = 
3 is 5 + (5 - 3) = 7 and the P-value is Pp=.6(S? 3) 
+ Pp=.6(S 2 7) = .055 + .382 = .437. 

Now suppose that S = 6 is observed. In essence, 6 
does not lie in either tail since Pp=.6(S ? 6) = .633 
and Pp =.6(S < 6) = .618. If either of these P-values is 
doubled, or if they are added according to the 
method of values equally distant from the mean, 
median or mode, the result exceeds one. While it is 
clear that Ho is strongly supported by the outcome 
S = 6, these two methods, when applied strictly, both 
lead to an absurd result even though the distribution 
is only moderately skewed. 

There are several other procedures which are 
sometimes used to define two tailed P-values based 
on discrete null distributions. Two will be described 
here. The first one might be called the method of 
placing an equal number of extreme values in each 
tail. In the binomial case, suppose that the observed 
number of successes is s, and s falls in the upper tail 
of the null distribution. Since there are n - s + 1 
different values of S which are at least as large as s 
and occur with positive probability, the two tailed 
P-value could be defined* as the sum of the 

probabilities of these values of S and the n - s + 1 
smallest values of S, that is, P(S ? s) + P(S < n - 

s). Of course, when the possible values of the test cri- 
terion are evenly spaced (as in the binomial case), 
this method is equivalent to making the tails com- 
plementary in terms of distance from the midrange. 
In general this procedure makes the two tails com- 
plementary in terms of the number of possible 
values of the test criterion, rather than the distance 
from m or the amount of probability in each tail. 

Another approach to computing a two tailed P- 
value might be called the "principle of minimum 
likelihood". If the value S = s is observed, the P- 
value at s is found by summing the probabilities of 
all values of S in either tail which do not exceed the 
probability P(S = s). In other words, the possible 
sample points contribute to the P-value in order of 
their null probability, going from the least favorable 
case up to the observed value, or vice versa. 

These two procedures are also illustrated in the 
binomial case with n = 10 and Ho: p = .6 when S = 
3 is observed. For the first method, since S = 3 is 
the fourth most extreme value in the left tail, the 
corresponding extreme value in the right tail is S = 
7. Then the two tailed P-value is Pp=.6(S < 3) + 
Pp=.6(S ? 7) = .055 + .382 = .437. (As mentioned 
above, this method is equivalent to taking the two 
tails as equally distant from the midrange.) With the 
minimum likelihood method, the points which 
contribute a probability not exceeding Pp=.6(S = 3) 
= .043 are S ? 3 and S ? 9, giving a two tailed P- 
value of Pp=.6(S < 3) + Pp=.6(S 2 9) = .055 + .046 
= .101. Notice that if the observed value of S had 
been in the upper tail, the method of placing an 
equal number of extreme values in each tail would 
have given a two tailed P-value smaller than twice 
the one tailed P-value since the null distribution is 
skewed to the left in this example. 

Neither of these latter two procedures is well 
known. The first one is applicable only to discrete 
null distributions which have a finite domain of 
positive probability. It is meaningless for distribu- 
tions which permit even a countably infinite number 
of values, as e.g., the Poisson distribution. Further, 
this procedure can lead to absurdities if the null dis- 
tribution is heavily skewed. For example, in the 
binomial case with Ho: p = .1 suppose that S = 7 is 
observed when n = 10. The one tailed P-value is 
then Pp=.1(S > 7) = .000. When an equal number of 
extreme values are placed in the lower tail, the P- 
value is Pp= .(S < 3) + Pp=.1(S > 7) = .987. Even 
though S = 7 strongly contradicts H0, a P-value of 
.987 would lead to the conclusion that the data sup- 
port the null hypothesis. Another disadvantage of 
this method is that it can lead to two tailed P-values 
which are greater than one. 

The minimum likelihood method can also lead to 
absurdities, especially when the distribution is U- 
shaped, J-shaped, or simply not unimodal. For 
example, suppose a test criterion X has the null dis- 
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tribution in Table 2. If X = 3 is observed, the P- 
value by minimum likelihood is P(X = 0, 1, 3 or 10) 
= .028. It is difficult to justify the exclusion of X = 
2 simply on the basis that X = 2 is more likely to oc- 
cur than X = 3. Why should X = 2 not be considered 
"more extreme" than X = 3? 

Table 2 

x 0 1 2 3 4 5 6 7 8 9 10 

P(X = x) .000.010.0330.012.111.201.251 .2153.121.040.006 

Because of these difficulties, we cannot recom- 
mend either of these last two procedures for general 
use. The other methods described give reasonable 
results in most cases; the notable exception is when 
a central value is observed. The practice of doubling 
the one tailed P-value is perhaps the most popular, 
but that may be more the result of habit than a 
thoughtful consideration of the merits. It provides 
an arbitrary but quite satisfactory result in sym- 
metric distributions. However, if a single procedure 
were to be recommended as appropriate for two 
sided tests based on any distribution and any out- 
come, we prefer reporting the one tailed P-value and 
the direction of the observed departure from the null 
hypothesis. The primary basis for this recom- 
mendation is that the P-value then retains its clear 
interpretation, which seems an essential property 
when it is to be used as input for a practical de- 
cision. Further, when the one tailed P-value is small, 
the sample outcome is extreme in a particular di- 
rection and a one sided conclusion may be desirable 
in view of this observed result. On the other hand, if 
the P-value is moderate to large, any conclusion 
about the null hypothesis will probably be un- 
changed even if the P-value is increased. 

The recommendation for reporting the one tailed 
P-value even with a two sided test can be further 
reinforced if we consider test procedures which allow 
a greater variety of conclusions to be reached when a 
decision is actually to be made. The usual procedure 
in the two sided situation with a simple null 
hypothesis permits one to decide only between two 
possible conclusions, e.g., 0 = 06 and 0 6X 0# for some 
parameter 0. Consider the following four sets of deci- 
sions, each involving three possible conclusions 
about 6. 

(1) (2) (3) 
S1: Decide 0 = 6o, 0 < 6o, or 0 > 6o 

S2: Decide 6= 60, 6?6o0, or 6 >6o 

S3: Decide 0 = 6o, 0< 6o, or 0 > 6 o 

S4: Decide 6 o-a , 6 ? 6o, or 6 I> A 

Suppose that the test criterion is X and that the 
values of X are ordered according to how extreme 
they are in each direction relative to the outcome ex- 

pected under the null hypothesis Ho: 0 = 06. Assume 
without loss of generality that this ordering is direct 
rather than inverse in the sense that F(x;00) > 
F(x;01) for 06 < 01. Then a logical decision function 
would be to draw one of the conclusions in column 
(2) when X < si, column (3) when X ? su, and 
column (1) for s, < X < su, for some s, < su. Further, 
the following inequalities hold: 

P(X < SI 0 = Oo) > P(X < 81 0 > 00), 

P(X > s 0 = 00) > P(X > s 0 < 00). 

Suppose that si and su are chosen such that the 
lower and upper tail probabilities under Ho are 
exactly a1 and a2, respectively. Then for the usual 
two conclusion procedure, the probability of an erro- 
neous rejection of Ho is a1 + a2, the two tailed level. 
The probabilities of erroneously rejecting Ho are 
summarized in Table 3 for the decision sets Si, S2, S3 
and S4. 

Table 3 

Probabilities of Erroneous Conclusions* 

Decision Function True Situation 

Decision 
Set Observed Conclusion 6 < 6o 0 = 6o 0 > 6o 

X < Si 8 < co ai < Ci 

S1 X >? s > 6o < a2 a2 

Total Probability < C2 ca + Ca2 < a1 

X < SI 0 < 00 < a, 
S2 X >? S 0 > 60 < a2 a2 

Total Probability < C2 CY2 < cal 

X < SI 1 < do al < a 

S3 X > SI 0 > 00 < 2 

Total Probability < C2 Cal < cal 

X < s 0 < ?o < al 
S4 X >_ S 0 > 00 < 62 

Total Probability < Ca2 < ca 

* The table entries left blank are those situations where the 
conclusion does not reject Ho erroneously. If "accept Ho" is 
interpreted as no conclusion, an error can be made only by 
rejecting Ho and then this table summarizes probabilities for all 
possible types of erroneous conclusions. 

The table shows that no matter what the true 
situation, the probability that the decision function 
leads to an erroneous rejection using Si is at most a1 
+ a2, the two tailed level, while the same 
probability is at most the larger of a1 and a2, the 
larger one tailed level, using either S2, S3 or S4. S 
permits a more refined conclusion than 82 when X < 
Sl iS observed, but at the expense of increasing the 
bound on the probability of erroneous rejection to ae1 
+ a2. If we are really just as happy to conclude that 6 

< 0as 6 < 60, 82 would perhaps be more reasonable 
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than S,. Similar comments apply to S, versus S3 and 
S4- 

Thus, unless it is clear that rejecting Ho: 0 = 00 
can lead only to the conclusion 0 # 00, or to one of 
the conclusions 0 < 00 and 0 > 00, reporting the con- 
clusion at the appropriate one tailed level is more 
descriptive of the true probability of erroneous re- 
jection, even in a two tailed situation. From this 
point of view, a one tailed P-value is also more 
descriptive even in a two sided test. This further 
suggests the desirability of reporting a one tailed P- 
value so that when a definite conclusion rather than 
a P-value is required, the choice of the two tailed 
procedure which best fits the purposes and problem 
at hand is left to the ultimate decision-maker. 
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A Supplementary List of Publications of S. S. Wilks 
CHURCHILL EISENHART* 

T. W. Anderson's memoir, "Samuel Stanley 
Wilks, 1906-1964" in the February 1965 issue of The 
Annals of Mathematical Statistics (Vol. 36, No. 1, 
pp. 1-23) is followed immediately (pp. 24-27) by a 
list of "The Publications of S. S. Wilks", also pre- 
pared by Anderson, and arranged in three cate- 
gories: BOOKS, numbered <1> to <5>; ARTI- 
CLES, numbered [1] to [48]; and SOME OTHER 
WRITINGS, numbered {1} to {12}, consisting of 
seven book reviews, a book chapter, a 
mimeographed lecture, a summary of a paper Wilks 
presented at a Cowles Commission conference, 
Wilks' contribution to the discussion of a paper on 
the meaning of probability, and an Educational 
Testing Service pamphlet. Anderson tells me that he 
did not attempt to achieve completeness of the last 
category. 

A literature search carried out by the present 
writer in connection with preparation of an article 
on Wilks for publication in a forthcoming volume of 
the Dictionary of Scientific Biography (Charles 
Scribner's Sons, Publishers, 1970- ) brought to 
light thirty-one additional "other writings" but no 
additional books or articles. It should be noted, 
however, that Wilks's book with Irvin Guttman that 

was "to appear" has not only appeared but reached 
a 2nd edition: 

Guttman, Irwin, and Wilks, S. S., Introdiuctory 
Engineering Statistics, New York: John Wiley 
and Sons, Inc., 1965; 2nd edition, with J. S. 
Hunter as co-author, 1971. 
The additional "other writings" that the search 

uncovered are listed below, and numbered (1) to 
(28) for convenient identification. It will be noticed 
that the list contains abstracts of Wilks's presenta- 
tions at meetings of the American Mathematical So- 
ciety and the Institute of Mathematical Statistics, 
many corresponding to subsequently published 
papers, identified in each case by Anderson's 
"article" number in [ ]. At first I was inclined to 
omit abstracts that corresponded to published 
papers, but comparison of the abstracts and the 
papers revealed that the abstract often contained a 
clearer statement of the practical usefulness and 
uses of the results presented than did the paper it- 
self. I decided, therefore, to include them all. 

A note of warning to those who may wish to follow 
the influence of the works of Samuel Stanley Wilks 
through the various volumes of the Science Citation 
Index: His younger brother, Syrrel Singleton Wilks, 
a professor of physiology and an expert on aviation 
medicine, has the very same initials, and their 
publications are often lumped together under "S. S. 
Wilks." 

* Applied Mathematics Div., Inst. of Basic Standards, Nat. Bu- 
reau of Standards, Washington, DC 20234. (Contribution of the 
National Bureau of Standards, not subject to copyright.) 
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