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I. INTRODUCTION 

The present paper is prompted by two stimuli. One is the gracious 
invitation of Professor Jaakko Hintikka to contribute to the issue of his 

journal especially given to foundations of probability and statistics. The 

other stimulus is multiple: letters from friends calling my attention to a 

dispute in journal articles, in letters to editors, and in books, about what is 

described as 'the Neyman-Pearson school' and particularly what is 

described as Neyman's 'radical' objectivism. While being grateful to my 
friends for their effort to keep me informed, I have to admit that, owing to 

a variety of present research preoccupations, I have not read the whole of 

the literature mentioned to me. However, I glanced at the published 

exchange of letters and at the book by de Finetti [1]. My reactions are 

somewhat mixed. First, I feel honored by the attention given to my 

writings, primarily those published more than a quarter of a century ago 

(see [2]). Next, I feel a degree of amusement when reading an exchange 
between an authority in 'subjectivistic statistics' and a practicing statisti 

cian, more or less to this effect: 

The Authority: 'You must not use confidence intervals; they are dis 

credited!' 

Practicing Statistician: T use confidence intervals because they corres 

pond exactly to certain needs of applied work.' 

My third present sensation is that of surprise at the intensity of feeling 

apparent in some publications. One illustration is the following statement 

by de Finetti and L. J. Savage, quoted from [1], page 192. Here, italics are 

mine: 

Every progress in scientific thought involves struggle against the distortion of outlook 

generated by the habits of ordinary language, the deficiencies and captiousness of which 
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98 J. NEYMAN 

must be denouced, combatted, and overcome, case by case. This has been done, and is being 

done, explicitly by all those scientists who find themselves in need of introducing and defending 
new concepts. And the struggle is rendered harder by the support that anyone averse to 

novelty finds in the opposing tendency of rhetoricians to identify thought and reasoning 
accidental with details 

- 
generally unfortunate or, at any rate, obsolete-of ways of 

speaking invented for the conditions of thousands of years ago. 

When I read this statement the scene of Giordano Bruno being led to 

the stake comes to my mind. 

The above passage is quoted from de Finetti's section, 'Critical Exami 

nation of Controversial Aspects' and is not necessarily addressed to my 
views or writings, to be 'denounced' or 'combatted'. My views are 

discussed in the two preceding sections, dealing with 'The Rise of 

Objectivistic Concepts' and with 'The Erosion of Objectivistic Positions'. 

It is here that I am quoted and, occasionally, misrepresented. Two quotes 
from page 175 must suffice. 

Other objectivistic works suggest rules for guiding the choice, but quite untenable ones, 

such as the minimax rule or else holding a to some fixed value (like 1 % or 5%) regardless of 

? 

Many weaknesses of the objectivistic theory that can be detected and analysed in such 

perfectly coherent formulations as Neyman's, like the one just alluded to, result from the 

artificiality with which the procedures have to be constructed and from the impossibility of 

utilizing all the information 

The purpose of the present paper is to outline, briefly and non 

technically, my views on what I like to call the frequentist theory of 

probability and the frequentist theory of statistics, and to illustrate their 

applications in a few domains of study of nature in which I have been 

involved. My term 'frequentist' seems to correspond to what de Finetti 

labels 'objectivistic', but there is a difference which I hope the following 

pages will clarify. 

II. THE PHENOMENON OF APPARENTLY STABLE RELATIVE 

FREQUENCIES AS THE SOURCE OF THE FREQUENTIST 

THEORIES OF PROBABILITY AND OF STATISTICS 

1. General Ideas 

As described in a recent paper [3], it is my opinion that, directly or 

indirectly, all mathematical disciplines stem from human efforts to study 
Nature. Particularly this applies to 'young' mathematical disciplines or, 
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FREQUENTIST STATISTICS 99 

more precisely, to the relatively early period of their development. Later, 
the discipline reaches a state of maturity and begins to live its own life. 

Contacts with substantive studies diminish and recede, and new theoreti 

cal developments are motivated by their own intrinsic interest. However, 
cases of 'feedback' do occur from time to time. This happens when a 

'practitioner' in a mathematical discipline happens to develop interest in 

some domain of study of Nature. As I see it, this is just the case of 

mathematical statistics in its present state of development. My own status 

is that of a practitioner in the theory of statistics with deep interest in 

'chance mechanisms' that operate in Nature. 

In a humorous vein we might say that the honor of discovering the 

category of natural phenomena that generated the frequentist theory of 

probability belongs to the first crook who loaded his dice. Before embark 

ing on this project the particular individual must have realized that the 

relative frequencies of a die falling this way or that way are 'persistent' 
and constitute this die's measurable properties, comparable to its size and 

weight. Having discovered this fact (and this was a 'scientific discovery'), 
the crook decided to use the discovery for his own benefit (and this might 
be described as the initiation of a special 'technology'). 

It so happens, see [3], that very substantial sections of modern science 

and of technology are working hard more or less to follow the steps of the 

above crook (no offense is intended!). 

2. Three Steps 

There are three distinct steps in this process: 

(i) Empirical establishment of apparently stable long-run relative 

frequencies (or 'frequencies' for short) of events judged interesting, as 

they develop in nature. 

(ii) Guessing and then verifying the 'chance mechanism', the repeated 

operation of which produces the observed frequencies. This is a problem 
of 'frequentist probability theory'. Occasionally, this step is labeled 

'model building'. Naturally, the guessed chance mechanism is 

hypothetical. 

(iii) Using the hypothetical chance mechanism of the phenomenon 
studied to deduce rules of adjusting our actions (or 'decisions') to the 

observations so as to ensure the highest 'measure' of 'success'. Naturally, 
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100 J. NEYMAN 

the definition of 'success' is a subjective matter, outside of mathematics. 

So is the 'measure' of success. On the other hand, the deduction of the 

'rules of adjusting our actions' is a problem of mathematics, specifically of 

mathematical statistics. 

Incidentally, the early term I introduced to designate the process of 

adjusting our actions to observations is 'inductive behavior'. It was meant 

to contrast with the term 'inductive reasoning' which R. A. Fisher used in 

connection with his 'new measure of confidence or diffidence' rep 
resented by the likelihood function and with 'fiducial argument'. Both 

these concepts or principles are foreign to me. 

I do deal with likelihood function and, occasionally, calculate the 

maximum likelihood estimators. However, I do so not as a matter of 

principle, but only in those cases when the frequency properties of the 

estimators fit my purposes. In other cases, illustrated in [4], other 

estimators appear preferable. 
As to 'fiducial argument', a detailed analysis of what was published in 

the 1930's showed (see pp. 375-393 in [2]) that it is a conglomeration of 

mutually inconsistent assertions, not a mathematical theory. 

III. ILLUSTRATIONS OF THE THREE STEPS 

3. The Crook and Insurance 

Presumably, after loading his die the crook must have tossed it quite a few 

times in order to acquire information about how frequently it falls on each 

of its sides. Without such information he could not hope to derive much 

profit from the loading. 

Similarly, in order to conduct their business properly, the insurance 

companies must use the actuarial tables of mortality, of sickness, of 

accidents, etc. 

4. Models of Chance Mechanisms Operating In Nature 

Several modern books on probability [5,6,7] include chapters or sections 

with telling titles, such as the following: 'Birth and Death Processes', 

'Queing Process', 'Branching Process', etc. Each such title refers to a 

hypothetical chance mechanism defined and developed with the idea that 
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its operation might mimic the natural phenomenon indicated in the title. 

The term frequently used to designate the hypothetical chance mechan 

ism is 'stochastic model'. Another word frequently used in connection 

with chance mechanisms is 'random', e.g. 'random events', 'random 

variable', etc. 

As things stand now, probability theory is a fully mature mathematical 

discipline 'living its own life', and this includes the three books quoted. 
The origins of this theory appear to be in the famous monograph of 

Kolmogorov [8]. Later developments may be symbolised by the books of 

Doob [9], of Dynkin [10], and of Lo?ve [11]. The ties with empirical 

frequencies are indicated by Kolmogorov. These ties are more pro 
nounced in the writings of von Mises, who built a probability theory of his 

own. While I prefer the theory of Kolmogorov, I am appreciative of von 

Mises' efforts to separate a frequentist probability theory from the 

intuitive feelings of what is likely or is unlikely to happen. The following 
somewhat emphatic quotation is from his book [12]. 

Mit der Frage, ob und wie wahrscheinlich es ist, dass Deutschland noch einmal Krieg mit 

der Republik Liberia f?hren wird, hat unsere Wahrscheinlichkeitstheorie nicht das min 

deste zu tun. 

Ordinarily, the 'verification', or 'validation' of a guessed model consists 

in deducing some of its frequentist consequences in situations not previ 

ously studied empirically, and then in performing appropriate experi 
ments to see whether their results are consistent with predictions. Very 

generally, the first attempt at verification is negative: the observed 

frequencies of the various outcomes of the experiment disagree with the 

model. However, on some lucky occasions there is a reasonable agree 
ment and one feels the satisfaction of having 'understood' the phenome 

non, at least in some general way. Later on, invariably, new empirical 

findings appear, indicating the inadequacy of the original model and 

demanding its abandonment or modification. And this is the history of 

science! 

An outstanding example is the history of genetics, beginning with 

Mendel's laws of inheritance. They are 'frequentist'. Discovered in the 

mid-nineteenth century, overlooked or ignored for a long time, these 
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102 J. NEYMAN 

laws were rediscovered at the turn of the century, and were seemingly 
'confirmed'. Then some further studies revealed a number of unantici 

pated details, such as 'linkages' between genes, 'mutations', etc., all 

reflected in a variety of 'frequentist' findings. In consequence, the original 
chance mechanism invented by Mendel, fundamental as it continues to 

be, is now far away removed from the attention of scientists concerned. 

The idea of frequentist models of natural phenomena seems to be due 

to ?mile Borel. In fact, in his book [13], first published in 1909, Borel 
identified the construction of stochastic models with the general problem 

of mathematical statistics: 

Le probl?me g?n?ral de la statistique math?matique est le suivant. D?terminer un syst?me 
de tirages effectu?s dans urnes de composition fixe de telle mani?re que les r?sultats d'une 

s?rie de tirages, interpr?t?s ? l'aide de coefficients fixes convenablement choisis, puissent 
avec une tr?s grande vraisemblance conduire ? un tableau identique au tableau des 

observations. 

Here, the 'properly selected coefficients' appear to designate estimates 

of the parameters involved in the model, the values of which were left 

unspecified. 

5. Inductive Behavior 

Problems of category (iii) may be exemplified by efforts to 'validate' or to 

'verify' the Mendelian laws. Briefly and roughly, the situation may be 

summed up by the following question: shall we conduct our studies of 

heredity on the assumption that Mendelian laws may be realistic, or shall 

we ignore them? Early in this century many experiments were performed 
intended to answer this question. Let us consider the essence of such an 

experiment. Certain organisms such as plants or animals, are cross 

fertilized producing n progeny. The Mendelian laws predict that this 

progeny would fall into a number, say s, of distinct categories and that the 

ith category has the specified probability ph for i - 1, 2,... s. The 

performed experiment results in n? individuals of the ith category. The 

'expected value' of nt is the product np?. But the Mendel law specifies only 
a chance mechanism of inheritance and it is not contended that each n, 

must be equal to its expectation. The question is about an intelligible 
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methodology for deciding whether the observed numbers n? differing 
from nph contradict the stochastic model of Mendel. 

Early in this century this question was the subject of a lively discussion 

by Borel [14] and others. Borel was optimistic but insisted that: (a) the 

criterion to test a hypothesis (a 'statistical hypothesis') using some 

observations must be selected not after the examination of the results of 

observation, but before, and (b) this criterion should be a function of the 

observations 'en quelque sorte remarquable'. It is these remarks of Borel 

that served as an inspiration to Egon S. Pearson and myself in our effort to 

build a frequentist theory of testing hypotheses. 

IV. SKETCH OF THE THEORY OF TESTING STATISTICAL 

HYPOTHESES 

6. Basic Concepts 

Regretfully, I must admit that E.S.P. and I were rather slow. Our first, 
rather long but inadequate attempt [15] was published in 1928, and the 

paper with some really new ideas [16] appeared in 1933, five years later. 

This illustrates the observation that the most difficult parts of mathemati 

cal research in any field consist (a) in noticing the existence of an 

important problem (in the present case this was done by Borel in 1909, 
but we learned about it in the 1920's), and (b) in formulating the problem 
so it makes mathematical sense, and to initiate its solution. 

The basic ideas of the theory initiated in [16] are (i) the existence of two 

kinds of errors possible to commit while testing a hypothesis, (ii) the 

notion that these two kinds of error may be of unequal practical impor 

tance, (iii) that a desirable method of testing hypotheses must ensure an 

acceptably low probability, say a, of the more important error, and (iv) 

that, point (iii) being satisfied with an acceptable a, the probability of the 

less important error should be minimized. 

Remark. The reader will realise that the above brief description of the 

basic problem of testing statistical hypotheses is necessarily somewhat 

rough. In particular, the concepts of 'acceptable low probability level a 

and of 'minimizing the probability of the less important error' are 

described with an effort to avoid a number of technicalities, some of them 

quite difficult. Here an interested reader is referred to [18]. The modern 
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104 J. NEYMAN 

version of the theory is available in a number of books, frequently with 

many editions and translations. See [19, 20, 21]. 
Now it is necessary to introduce some terminology. We must begin with 

general considerations. Whatever hypothesis, say H, may come under 

consideration (for example the hypothesis of validity of Mendel laws), an 

attempt to test it using some experimental data implies the admission that 

the hypothesis H may be false. In turn, this implies that, in addition to H 

there must exist some other hypotheses, one of which may conceivably be 

true. Here, then, we come to the concept of the 'set of all admissible 

hypotheses' which is frequently denoted by the letter il. Naturally, il 

must contain H. Let H denote the complement, say il-H = H. It will be 

noticed that when speaking of a test of the hypothesis H, we really speak 
of its test 'against the alternative H\ This is quite important. The fact is 

that, unless the alternative H is specified, the problem of an optimal test 

of H is indeterminate [18]. In the 1930's this was one of the subjects of 

dispute with R. A. Fisher. 

As mentioned at the outset, a test of the hypothesis H can lead to an 

error which may be of two kinds. One kind of error consists in the 

rejection of H when it is true. The other kind of error is committed when 

H is false (and, therefore, H is true) and we fail to reject H. According to 

circumstances and according to the subjective attitudes of the research 

worker, one of these two kinds of error may appear more important to 

avoid than the other. 

In this connection, modifying somewhat the notions explained in [16], 
we introduce two important terms: (a) the error which is the more 

important to avoid will be called 'error of the first kind', and (b) of the two 

alternatives H and H, the one the unjust rejection of which constitutes 

the error of the first kind, will be called 'the hypothesis tested'. With this 

convention, the error of rejecting the hypothesis tested when true will 

mean the 'error of the first kind', the one we judge to be the more 

important error to avoid. As mentioned, the aim of the theory of testing is 

to reduce the probability of this error to some acceptable low level a. This 

level is called 'significance level'. 

Now we introduce the term 'power of a test'. This term means the 

probability of avoiding the error of the second kind. Customarily, it is 

denoted by ?. The word 'power' connotes 'power of detecting.the 
falsehood of the hypothesis tested'. 
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E.S.P.'s and my effort at a theory of testing statistical hypotheses [16] 
had a double aim: first reduce the probability of the first kind of error to a 

preassigned level a and, when a class of tests all satisfying this condition is 

found, determine the one with greatest possible power. This would be the 

'optimal' test. 

Remark. The above description of the aim of the theory of testing 

hypotheses is intentionally oversimplified. Otherwise, the present article 

would have to be both too long and too technical. One kind of technical 

difficulty occurs when it is found that the originally defined 'optimal test' 

fails to exist in some interesting category of cases [22]. Then one looks for 

a 'compromise optimal test'. One example of this kind is the concept of a 

'minimax' test introduced by E.S.P. and myself [23], which de Finetti 

finds 'quite untenable' (see one of the quotes above). The word 'untena 

ble' suggests the situation in which either E.S.P. or I made efforts to 

enforce the minimax procedures as a matter of principle or dogma, or at 

least to 'sell' them to some 'consumers', such as 'practicing statisticians'. 

We do not. Our object was, and continues to be, to investigate test 

procedures within the frequentist theory possible to be applied in a 

variety of situations. The 'minimax' procedure was invented for a particu 
lar case in which (a) the unavoidable errors are to be 'paid for' causing 
'losses' to the practitioner, and (b) in which it may be desired to 'minimize 

the maximum' possible loss. Incidentally, the term 'minimax' is not ours. 

This term was introduced by Abraham Wald [24], a great talent who 

perished in an airplane accident in 1950. He unified and generalized all 

the earlier efforts at developing the mathematical theory of statistics. In 

fact, the appearance of Wald's works may be considered as marking the 

'maturity' of mathematical statistics as an independent mathematical 

discipline. Wald's work is discussed by de Finetti in his section, 'The 

Erosion of Objectivistic Positions'. This title illustrates a difference in the 

attitudes of de Finetti and myself. 
A more recent and a very interesting compromise concept of optimality 

of a test is due to Robert Davies [25]. 

Now, we need two more technical terms: 'simple' and 'composite' 

hypotheses. A hypothesis H is called 'simple' if it specifies completely the 

probability distribution of the observable variables. Otherwise it is called 

'composite'. 

Here are a few examples illustrating the concepts introduced. 
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7. Simple and Composite Hypotheses 

The hypothesis Hx that a given coin is 'fair' is simple. When tossed, this 

coin can fall in one of two ways: 'heads' or 'tails'. The hypothesis Hx 
means that both outcomes of a toss have the same probability, namely 
one-half. 

This is contrasted with the alternative, say H2, which asserts only that 

the coin is 'biased' and nothing else. Thus, according to H2, the probabil 

ity of the coin falling 'heads' is not equal to one-half and may be any other 

number between zero and unity. It follows that H2 is a 'composite 

hypothesis'. Obviously, this composite hypothesis H2 represents a combi 

nation (or is 'composed') of an infinity of simple hypotheses, such as that 

the probability of 'heads' is ^, or f, etc. etc. 

8. Hypothesis Tested 

Activities of the U.S. Food and Drug Administration include the testing 
of chemicals to be sold to customers as food additives or cosmetics. One 

of the questions asked is whether these chemicals are carcinogenic. 
Consider an experiment with mice (hoping that its results will also apply 
to man) intended to determine whether a chemical A is carcinogenic or 

not. This experiment, with m mice exposed to A and n control mice, will 

show some numbers X and Y of mice which died from cancer. 

Our question is: What is our 'hypothesis tested'? To answer this 

question we must first answer another question: which error in testing is 

the more important to avoid? 

As usual, there are two possible errors. The verdicts about A may be: 

(i) 'A is carcinogenic', and (ii) 'A is not carcinogenic'. Each of these 

verdicts may be wrong. Which of these errors is our 'error of the first 

kind'? Here we come to the subjectivity of judging importance. From the 

point of view of the manufacturer the error in asserting the carcinogenic 

ity of A is (or may be) more important to avoid than the error in asserting 
that A is harmless. Thus, for the manufacturers of A, the 'hypothesis 
tested' may well be: 'A is not carcinogenic'. On the other hand, for the 

prospective user of the chemical A the hypothesis tested will be unam 

biguously: 'A is carcinogenic'. In fact, this user is likely to hope that the 

probability of error in rejecting this hypothesis be reduced to a very small 

value! 
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9. Importance of the Power of the Test Used 

The mathematical results developed in [16], followed by those of many 
other workers, provide the possibility of reducing the probability of the 

first kind of error, at least approximately, to a preassigned level of 

significance a, applicable in a great variety of situations. See for example 

[26]. The problem of computing the power of a test is much more 

complicated. One reason is that the hypothesis alternative to the one 

tested is usually composite (see subsection 7). In such a case, while the 

adopted level of significance is just one number a, the power of the test is 

not. If the composite alternative hypothesis splits itself into simple 

hypotheses, say Hx, H2,..., Hn,..., then for each of them the power of a 

given test is likely to have a different value, say ?(Hx\a), 

?(H2\a),... ,?(Hn\a),_In fact, in this case it is appropriate to speak 
of a 'power function' of a test, rather than simply of its power. Further 

more, of course, the power function must depend upon the chosen level of 

significance, and there is a conflict: if one decreases a, then the power of 

the adopted test decreases also. 

This particular circumstance is important in designing experiments. 
Not infrequently it happens that, with the contemplated number of 

observations and with the originally chosen rather low level of signifi 

cance, i.e. a = 
0.01, one finds that the chance ? of detecting 'errors' in the 

hypothesis tested judged large is rather small, say ? 
= 0.02. Obviously, an 

experiment designed in this way is not worth performing. Unfortunately, 
this particular point escaped the attention of a large number of authors of 

statistical texts. Yes, the concept of power is occasionally mentioned, but 

its treatment is somewhat 'platonic'. As a result, important experiments 
are often performed with the possibility of very frequent most regrettable 
errors. An interesting paper on this subject has been recently published 

by Traxler [27]. 
In order to meet the situation in which the original design of an 

experiment yields a =0.01 and ?=0.02, there are several possible 

remedies, applicable singly or in combinations: (i) to alter the design of 

the experiment, (ii) to try to find a more powerful test, (iii) to increase the 

level of significance a and (iv) to increase the number of observations. 

Incidentally, the customary parlance with reference to testing hypoth 
eses involves two phrases which it is convenient to know. One phrase is 

that (some effect) is 'highly significant'; the other phrase is that the effect 
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in question is 'significant' or (perhaps) that it is 'significant at 5%'. The 

first phrase means that the hypothesis of no effect under discussion is 

rejected with the level of significance a =0.01. The meaning of the 

second is rejection with a = 
0.05, but not with a = 0.01. 

10. Practical Applications of Theory of Testing Statistical Hypotheses 

With reference to the old dictum, 'the proof of the pudding is in the 

eating', the purpose of the present subsection is to visualise the working 
of the frequentist theory of testing hypotheses in a variety of studies of 

nature. 

As emphasized above, the theory was born and constructed with the 

view of diminishing the relative frequency of errors, particularly of'impor 
tant' errors. Thus, leaving aside the question of an error in testing some 

particular hypothesis, we have to contemplate a long sequence of situa 

tions, say {5,} 
= 

(Si, S2,..., Sn,... ) in which tests of some hypotheses 
will be performed. This sequence, which we may label 'human experi 
ence', will be very heterogeneous. Some situations will refer to problems 
of astronomy [48], others to highway traffic, still others to radiation 

biology [49], some to problems of big cities and slums or to weather 

modification, etc. etc. However, there will be some elements common to 

all the situations of the sequence. 
The elements common to all the situations typified by situation 5, will 

be: (1) a hypothesis Ht to be tested against an alternative Hh and (2) a 

subjective appraisal of the relative importance of the two kinds of error, 

leading to the adoption of an acceptably low level of significance at 

combined with an acceptable (hopefully 'optimal') power function. Let 

?(Hi\oLi) denote the value of this function corresponding to some 

specified simple alternative to H? that may be judged important. 

Eventually, then, with each situation 5, there will be connected a pair of 

numbers, a, and ?(Hi\ai). The question is: what can one expect from the 

use of the theory of testing statistical hypotheses in the above heterogene 
ous sequence of situations summarizing human experimence in 'pluralis 
tic' studies of Nature? The answer is: 

The relative frequency of first kind errors will be close to the arithmetic mean of numbers 

?i, ?2? ???,... adopted by particular research workers as 'acceptably low' probabilities 
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of the more important errors to avoid. Also, the relative frequency of detecting the 

falsehood of the hypotheses tested, when false, and the contemplated simple alternatives 

happen to be true, will differ but little from the average of ?{Hi\ax), 

?(H2\a2),...,?(Hn\an),.... 

This answer is a simple consequence of a theorem known as the central 

limit theorem of probability theory. An incredulous reader having access 

to a digital computer may wish to verify it empirically. The suggestion is to 

dream up a few hundred situations Sh each with some statistical 

hypothesis Ht to be tested against an alternative H?. In order to mimic the 

'human experience', the consecutive pairs (Hx, H?), (H2, H2),..., are 

likely to be all different but, for illustrative purposes, this is not necessary. 
In fact, all these pairs are not subject to any restriction. 

The next step would be to decide on the hypothetical sequence of 'true 

states of nature', namely on cases where the hypothesis tested H? will be 

true and where it will be false and how importantly false. There should be 

substantial numbers of cases of each kind, say at least 100. Consultations 

with a competent statistician will then determine the statistical test to be 

used in each case, the acceptably low significance level a, and the value of 

the power ? (Ht |a?). Then help of a programmer will be needed to prepare 
the input for the high speed computer, etc. 

All the above is emphasized at some length for a particular reason. This 

is that, at a variety of conferences with 'substantive scholars' (biologists, 

meteorologists, etc.), accompanied by their cooperating 'applied statisti 

cians', I frequently hear a particular regrettable remark. This is to the 

effect that the frequency interpretation of either the level of significance a 

or of power ? is only possible when one deals many times with the same 

HYPOTHESIS H, TESTED AGAINST THE SAME ALTERNATIVE. Assertions 

of this kind, frequently made in terms of 'repeated sampling from the 

same population', reflect the lack of familiarity with the central limit 

theorem. 

Is the above answer to the question of what to expect from the theory of 

testing hypotheses satisfactory? This is a subjective matter. On my own 

part, when faced by a hypothesis to be tested against an interesting 
alternative, I enjoy struggling for a criterion having just as high a power as 

possible. Also, I am uncertain about the possibilities of alternative ways 
of treating the many 'pluralistic' studies of Nature. 
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V. RANDOMIZATION OF EXPERIMENTS 

11. Basic Ideas 

Theory of frequentist statistics is so closely connected with that of 

experimentation with variable material that an article on the former must 

include at least some remarks on the latter. Here, a very important 

concept is 'randomization', introduced, emphasized and popularized by 
R. A. Fisher and his school, beginning with the mid 1920's [28,29,30]. It 

is concerned with an important pitfall in designing and conducting 

experiments. 
As nicely described by Cochran [31], the experimentalists have a rather 

general trait: an emotional attachment to one or more subjects of their 

study. In an experiment with 'variable material' there are entities 

described as 'units of experimentation'. For example, in testing chemicals 

for carcinogenicity, mentioned earlier, the 'units of experimentation' are 

mice. In order to test a chemical A there must be some units of 

experimentation having no contact with A (these will be 'control' mice) 
and some others ('experimental' mice) exposed to A. Ordinarily, a 

statistically unsophisticated experimentalist will arbitrarily select several 

mice to be controls and some others to be experiment?is. Depending 

upon his personal attitude (e.g., perhaps being attracted by the flavor of 

the food additive A, etc.) in selecting a sample of mice to serve as 

'experiment?is', the experimentalist will have a subconscious tendency to 

arrange that A is not unjustly diagnosed as 'carcinogenic'. To make sure, 
the experimentalist is likely to select his experimental mice out of those 

that look healthy and strong. Clearly, the experimentalist performing in 

this way is in danger of self-deception and in danger of deceiving others. 

The danger of such deception will be increased if the experimentalist 

happens to have some financial interest in marketing the additive A. 

Fisher's important idea was that, in order to avoid errors in judging 
what is generally called the experimental 'treatments', the subdivision of 

the available 'units' to serve as experiment?is and the controls must be 

made at random, not through an arbitrary choice of the experimentalist. 
This is what is called 'randomization' of an experiment. 

The further idea is that the personnel involved in a randomized 

experiment should not be informed of which units are 'experimental' and 

which are 'controls'. Experiments so conducted are occasionally called 
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'double blind' experiments. Unfortunately, in many practical situations, 
the 'double blindness' of an experiment is difficult to achieve. 

As of now, Fisher's idea that an experiment with variable material 

cannot be reliable unless it is randomized, has been accepted in many 
domains of science and technology. Generally, the acceptance came 

against strong opposition and after a substantial struggle (e.g., 'Oh, get 
this Fisher out of my hair! I know about my material and about my 

experiments all I need to know!') 
One of the domains in which the struggle for randomization continues 

is weather modification through so-called cloud seeding. As might be 

expected, the principal opponents are the commercial enterprises 

specializing in cloud seeding [32]. 
The statistical hypotheses that come under test in connection with 

randomized experiments are of a special type. This type can be exemp 
lified by the question: are the distributions of the observable variables 

corresponding to experimental and to control units identical or not? 

Alternatively, the same question is often worded as follows: how fre 

quently can the known scheme of randomization produce differences 

between the experimental and the control units as great or greater than 

those observed? (Naturally, the term 'differences' requires specification, 
and it is here the problem of most powerful tests comes to the fore.) 

12. An Embarrassing Incident 

In order to emphasize the importance of Fisher's idea of randomization, it 
seems appropriate to mention a somewhat anecdotal case in our studies 

of cloud seeding experiments intended to verify the claims that the 

seeding (by a particular method and in specified conditions) tends to 

increase the average rainfall. In this particular case, with the experiment 
called the Whitetop, the experimental unit was a day satisfying certain 

weather conditions and cloud seeding was performed from three aircraft, 

supposed to fly back and forth over indicated points on the ground. The 

hope was to increase the rainfall over a specified circular 'target', at least 
over some points of this target. 

Unfortunately, contrary to these hopes, the average rainfall on days 
with seeding was 'significantly' lower than that on control days [33]. 
Furthermore, it was found that this decrease in rain, ascribable to 
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seeding, occurred not only in the intended target, but over a huge area 

surrounding it, an area greater than the whole area of the United 

Kingdom. The estimated average decrease was about 20% of non-seeded 

days rainfall. 

The descriptions of the widely publicized experiment included the 

statement that it was 'properly randomized in the statistical sense'. 

Therefore, initially, I had no doubts about the findings, but there was an 

intriguing question about the mechanisms in the atmosphere that could 

have produced the unexpected effect. A personal communication from 

James Hughes, a cloud physicist in the U.S. Office of Naval Research, 

suggested a possibility. This was connected with the change in cloudiness 

and temperature between the periods before the beginning of seeding 

(10-11 o'clock before noon) and after. When trying to verify this 

hypothesis we ran into most unexpected facts relating to precipitation 

during the ten hours before the commencement of seeding. 
It appeared [34] that in three vast areas the average seed-no seed 

rainfall difference was 'approximately significant', 'significant' or 'highly 

significant', respectively. Furthermore, all these differences were nega 
tive: less rain on seeded than on not seeded days. Still more surprising, 
these differences occurred in areas 90 to 180 miles away from the target, 
either directly or partly upwind. The seeded day average precipitation in 

these three areas was about f, \ and \, respectively, of that without 

seeding! Since these differences could not have been caused by seeding 
and could hardly be ascribed to chance in the process of faultless 

randomization, the inescapable conclusion is that there must have been 

some flaw in the strict randomization. 

Some reading of climatological literature brought to light the fact that, 

depending upon winds, not infrequently the three areas in question must 

have included the Ozark Plateau, which some authors described as the 

'breeding ground' of severe storms. Could it be that the early morning 
weather reports indicating particularly stormy weather in upwind areas 

caused the abandonment of seeding, even though the randomized deci 

sion was to seed? Who knows? In any case, no reliable conclusions about 

the effects of seeding in this experiment appear possible. 
When thinking of designs of experiments, Fisher visualized many 

difficulties and invented ways of circumventing them. The experience 
with the Whitetop trial, which lasted five years and must have cost the 
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U.S. Government some millions of dollars, suggests an idea which Fisher 

overlooked. This is that an important experiment should be so designed 
that the personnel involved in it do not find it too uncomfortable to 

adhere to strict randomization. Flying a small plane in stormy weather, 

particularly flying through a thunderstorm cloud, must be unpleasant and 

may well be dangerous. Thus, the method of cloud seeding used in the 

Soviet Union, by firing rockets or artillery shells into selected points 
within the clouds, is likely to be preferable to the use of aircraft, unless 

they can fly high above the cloud top where the turbulence is less 

pronounced. Regretfully, in spite of an excellent school of probability in 

the Soviet Union, their cloud seeding experiments known to me are not 

randomized. 

In this connection, it is appropriate to mention a recent article [35] on 

the subject of 'Who Needs Randomization?' The answer is: the randomi 

zation is necessary to the 'consumer' of the results of an experiment. In 

particular, if a costly experiment is financed by a governmental institu 

tion, then, along with the customary auditing of the expenditures, the 

institution concerned should insist on randomization, and should 'audit' 

the process of randomization. Better still, it should 'monitor' the ran 

domization. Mere assertions to the effect that 'the experiment was 

properly randomized in the statistical sense' are not enough. 

VI. SKETCH OF THE PROBLEM OF STATISTICAL 

ESTIMATION 

The following examples are intended to illustrate two different kinds of 

statistical problem of estimation, as they occur in a variety of studies of 

nature. 

13. Example of an Isolated Problem 

For some reason, the government of a country needs data on all the farms 

in its territory, a very large number N of them. The data needed relates to 

some date in the not very distant past, say 1 January 1976. Among other 

things, the government needs a number 0, perphaps some average. The 

errorless value of 6 can be obtained through a complete survey of all the 

N farms and a detailed study of each of them. Because of the time needed, 
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a complete survey of all the N farms is impractical. Instead, a sample 

survey of a much smaller number n of farms is contemplated, using one or 

another of the developed methods of random sampling [36, 37]. Let Xx, 

X2,..., Xn denote the relevant data for the n farms of the sample, and let 

a single letter X denote their totality. Before the sample is taken the 

values of X are not determined and the chance mechanism of random 

sampling, jointly with the characteristics of the population of farms, 
determine the variability of X or, as we call it, 'the distribution of X\ For 

this reason, the variables X are called 'observable random variables'. 

The mathematical-statistical problem of estimation of 0 consists in 

devising methods whereby the observable random variables X could be 

used to obtain reliable information on the value of 0. 

Note that, while the problem involves a known chance mechanism 

governing the variability of X, no such chance mechanism affects 0. 0 is 

just a fixed, but an unknown, number. 

14. Example of Connected Problems Treated Routinely 

The daily routine of a clinic with many customers includes the analysis of 

the blood sugar content. Denote by 0? the true blood sugar content of the 

/th patient. All analyses are subject to error and the clinic performs a 

number n of parallel analyses for each patient. Let X(i) 
= 

[XiX, Xi2,..., Xin] denote the results of such analyses performed for the 

/th patient. We shall proceed on the assumption that the chance mechan 

ism of variability of the X(i) is sufficiently established by the so-called 

'theory of errors'. 

The theoretical-statistical problem of estimation relating to the ith 

patient in the clinic consists in developing a method of using the observa 

ble random variables X(i) in order to obtain reliable information regard 

ing his true blood sugar content 0?. 

At first sight, the problem of estimation in the two examples is 

identical. In both cases one has to do with some unknown number 6 or 0, 
and several observable random variables X or X(i ), the chance mechan 

ism governing their variability assumed known. However, there is a 

difference. In Example 1 we deal with just one (as we call it) 'parameter' 0 

to be estimated. Contrary to this, Example 2 involves routine analyses of 

blood sugar content for patients, the number of which, over a year, may 
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well run into thousands. Depending upon circumstances, among these 

patients certain categories can be established, each with a rather fixed 

condition of life, perhaps coal miners or office workers, which influence 

the frequencies of the blood sugar content ft having small or large values. 

In other words, Example 2 differs from Example 1 by the fact that the 

consecutive values of the blood sugar content ft can be considered as 

particular values of a certain random variable which we shall denote by 0. 

Naturally, if the distribution of 0 were known, this information could be 

used in order to improve the precision of estimating each ft. It is here that 

the famous formula of Bayes comes to the fore with the distribution of 0 

playing the role of the so-called 'prior'. Unfortunately, however, while it 

is' appropriate to consider the successive values of the ft as particular 
values of a random variable 0, the distribution of this variable is not 

known and there are obvious difficulties to establish it (see point (i) in 

Section 2). The difficulty is that the analyses performed for the consecu 

tive patients in the clinic do not give us the values of their true blood sugar 
content ft, but only the determinations X(i), and the transition from the 

distribution of the latter to that of the former constitutes quite a problem. 

15. Empirical Bayes Theory 

Naturally, if the problem of Example 1 is solved, then this solution can be 

applied to problems illustrated in Example 2. But it is also natural to try to 

do better. A brilliant idea as to how it can be done, initiating a novel 

chapter of frequentist mathematical statistics, is due to Herbert Robbins 

[38]. The new theory of Robbins is known under the title Empirical Bayes 

Theory. See also [39]. 

16. Point Estimation 

Problems of Example 1 within the frequentist theory of statistics fall 

under two headings: 'point estimation' and 'confidence intervals'. The 

first of these has a long history, going back to Laplace and particularly to 

Gauss, and is at the base of the theory of least squares. Briefly and 

roughly, it consists in determining a function, say d*(X), of the observa 

ble variables (now termed 'estimator') the values of which are frequently 
'close' to the estimated 6. In many cases, the theory also provides 
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information on the frequency distribution of the 'error' d*(X) 
? 

6. In 

frequent cases (but not always) an excellent 'point' estimator d*{X) is 

found by maximizing the so-called 'likelihood function', a concept due to 

R. A. Fisher. 

The theory of confidence intervals is sketched in the next section. 

VII. SKETCH OF THE THEORY OF CONFIDENCE INTERVALS 

17. Basic Concepts 

With reference to the preceding section we denote by 6 a fixed but 

unknown number, to be estimated using certain observable random 

variables X = 
(Xx, X2,..., Xn), the distribution of which depends on 6. 

The datum of the problem includes the set of values that 6 can possibly 
have. Usually, but not always, it is given that 6 can be any number 

between some given limits a and b, such as a = 0 and b = 1 or a = 1 and 

b = +00 etc. 

The other datum of the problem is the distribution of the observables X 

depending upon the value of the parameter 6. 

The problem of confidence intervals consists in determining two func 

tions of the observables, say YX(X) and Y2(X), satisfying the inequalities 
a ^ YX(X)< Y2(X)^b to be used in the following manner: Whenever 

the observable variables X assume some values x = 
(xx, x2,..., xn), we 

shall calculate the corresponding values of Yx and Y2, say Yx(x) < Y2(x), 
and then assert (or act on the assumption) that 

(1) Yx(x)^e^Y2(x). 

The two functions YX(X) and Y2(X) are called the lower and the upper 
confidence limits (or 'bounds') for 6 and the interval between them, say 

I(X) 
= 

[YX(X), Y2(X)] the confidence interval. 

Being functions of the random variable X, the two confidence bounds 

and the confidence interval I(X) will be random variables also. (Here 

certain conditions of 'measurability' must be imposed, but they are 

customarily satisfied and are too technical for the present article.) In 

order to be useful as tools of inductive behavior, the confidence bounds, 

and the interval I(X) between them, must possess certain well defined 

frequency properties. 

This content downloaded from 128.173.127.127 on Mon, 18 Aug 2014 20:51:22 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


FREQUENTIST STATISTICS 117 

One important property is that the assertions about the unknown 

number 6 typified by the double inequality (1) be frequently correct, 
and this irrespective of the value that 0 may possess. Accordingly, we 

select a positive number a < 1, acceptably close to unity, and require that 

the probability of the two confidence bounds 'bracketing' the true vale of 

6 be identically equal to a whatever the value of 6 may be. This 

requirement is expressed by the formula: 

(2) P{Yx(X)^d^Y2(X)\6} 
= a. 

The number a used is called the 'confidence coefficient'. The frequently 
used values of a are 0.90,0.95 and 0.99, for which convenient numerical 

tables are available. 

The theory published since late 1930's [40, 41, 42] indicates the 

possibility of satisfying the identity (2) in many different ways. This 

circumstance poses the question of which of the many (usually, an 

infinity) of different pairs of bounds [YX(X), Y2(X)] to use. In other 

words, just as in the problem of statistical tests, there is the question of 

optimality of the confidence intervals, all corresponding to the same 

chosen confidence coefficient a. As might be expected, there have been 

conceived quite a few concepts of optimality, depending upon the nature 

of the applied problem and, frequently, on the difficulty of the relevant 

mathematical problem of reaching the desired 'optimum'. 
One intuitively easy definition of optimality is that the length of the 

confidence interval, say 

(3) L(X\a)=Y2(X)-Yx(X) 

be, in a sense, just as small as possible without the infringement of the 

basic requirement (2). However, even with this apparently simplest 
condition of optimality there are delicate conceptual points. They are 

connected with the fact that the difference in the right side of the formula 

(3) is a random variable of which it is only known that all its possible 
values are positive. This being the case, what does it really mean to 

require that this difference be 'as small as possible'? One possibility is to 

require that the average value of L(X\0) be a minimum. In mathemati 

cal terms this would mean the requirement that the 'expectation' of 

L(X\a) be a minimum. However, the requirement that the expectation of 

L(X\a) be a minimum is not the only way of defining the optimum. 
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The reader will realize that the above descriptions of the problem of 

confidence intervals involves oversimplifications, necessary to make the 

presentation 'uncluttered' by technicalities and yet emphasizing the basic 

concepts. Further below a simple example is likely to be helpful. Here, it 

is appropriate to mention that, in some cases, an exact satisfaction of the 

basic identity (2) is impossible (i.e. without introducing certain 

artificialities). This occurs when the observable variables X are so-called 

'discrete'. In cases of this kind, rather than require the exact equality to a 

in formula (2) one can require 'at least equal' or 'approximately equal', 
etc. Another important technical difficulty arrives when the distribution 

of the observables X depends on not just one parameter 0 that one wants 

to estimate, but on several of them, the values of which are of no 

particular interest. On the initiative of the late Harold Hotelling, such 

additional, not immediately interesting, parameters are called 'nuisance 

parameters': they interfere with the problem of estimating 0 which is of 

prime interest. 

18. Anticipated Misunderstandings 

Before proceeding to the construction of confidence intervals, we must 

discuss the meaning of formulas (1) and (2) and anticipate certain 

misunderstandings. 
The important point is the distinction between the symbols X and x. 

The first denotes a set of the observable random variables X = 

(Xx, X2,..., Xn) the variation of which is governed by a chance mechan 

ism which, in some specified way, depends upon the unknown number 0. 

The second symbol x = 
(xx,x2,... ,xn) denotes some n numbers which, 

in some particular case, may have been assumed by the random variables, 

so that Xx 
= 

xx, X2 
= 

x2,..., Xn 
= 

xn. When this occurs, our inductive 

behavior would require us to assert (1). However, the basic formula (2) is 

written not in terms of the observed x but in terms of the observable X. 

Barring some blunders in calculations, etc. this formula is true whatever 

may be the value of the unknown 0. However, if one substitutes in (2) the 

observed x in the place of the observable X, the result would be absurd. In 

fact, the numerical results of the substitution may well be 

(4) P{Y1(jc)^0^Y2(jc)|0} 
= 

P{1^5^3|5} 
= O.95, 
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or alternatively, 

(5) P{1^2^3|2} 
= 0.95. 

It is essential to be clear that both (4) and (5) are wrong. The probability 
in the left hand side of (4) has the value zero (and thus not 0.95), and that 

in the left hand side of (5) is unity, neither of any interest. 

The meaning of the identity (2) is that a systematic use of confidence 

bounds YX(X) and Y2(X), whether in estimating one particular unknown 

0, or all different, without any restriction, the relative frequency of 

correct assertions will be close to the selected a = 0.95. 

Here is another kind of misunderstanding against which the reader 

must be warned. Consider two practicing statisticians who happen to treat 

the same problem of estimating an unknown 0 at the same confidence 

coefficient a, and are faced with some already observed x = 

(xx,x2,... ,xn). However, the two statisticians differ in their concepts of 

optimality and the confidence bounds they use are different, say [Y*(X), 

YtW\ and [Y*X*(X), Yf*(X)], respectively. 
Having the data x provided by the observations, the assertions about 0 

of the two statisticians may well be: 

(6) 1^0^3 and 4^0=^5, 

respectively. Another possibility is 

(7) 1^0^3 and 2^0^4. 

The pair of assertions (6) is contradictory and, if the two statisticians 

are employed as consultants, perhaps in the same government agency, the 

practical problem of whom to believe may be quite acute. The proper 
solution is for the 'consumer' to understand a little the long run frequency 

properties of the two pairs of confidence bounds used and then to make 

an informed choice. 

As to the difference between two assertions exemplified in (7) I have 

seen occasions in which such differences did occur and where the practical 
conclusion was reached that the unknown 0 must be included in the 

common part of the two intervals, namely 2 ̂  0 ̂  3. At the time when this 

conclusion was reached, there was no theoretical basis supporting it and I 

am not sure whether it exists now. However, it may be interesting to 

investigate the frequency properties of the procedure involving the 
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calculation of two different specified confidence intervals and, in cases 

when they overlap, to use their common part as some kind of 'summary' 
confidence interval. 

19. Construction of Confidence Intervals : Regions of Acceptance 

The purpose of this subsection is to provide the reader with an intuitive 

feeling about the general problem of constructing confidence intervals. In 

order to avoid inessential technicalities connected with the consideration 

of multidimensional spaces, we shall assume that the number n of 

observable variables is n = 1. Alternatively, we may consider the case 

where it is decided to base the estimation of 0 on some selected function 

of n > 1 observables, such, for example, as their arithmetic mean. 

The horizontal axis in Figure 1 is used to measure the possible values x 

of X, the single observable random variable. For the sake of simplicity, we 

shall assume that all possible values of X are those in the interval from 0 

to some number M. Thus, the segment from zero to M of the horizontal 

axis represents what is called the 'sample space' of X. The vertical axis is 

reserved for all possible values of the parameter0, all of them between the 

indicated limits a < b. 

The three points marked <px, <p2, <p3 on the vertical axis symbolize three 

particular values that 0 may possess. The horizontal lines through these 

points are replicas of the sample space of X. The fancy curve above the 

lowest of these lines is meant to represent or symbolize the probability 

density of X as determined by 0 = 
cpx. A somewhat different curve is 

drawn above the line corresponding to <p3. A glance at the two curves 

indicates that, if 0 = 
<p3, then X will assume larger values somewhat more 

frequently than with 0 = 
cpx. Whatever the case may be and whatever be 

the true value of 0, on each of the horizontal lines like those correspond 

ing to <px, <p2 and <p3 there will be an infinity of intervals, say A(<p) such 

that the probability of X falling within A (<p), as determined by 0 = 
<p, will 

be exactly equal to the chosen a. Intervals having this property are called 

'regions of acceptance'. A(cpx) and A(<p3) are indicated in Figure 1. 

Now visualize that for every possible value <p of 0 we selected arbitrar 

ily a region of acceptance A(cp). Next, visualize a line, say <p 
= 

Yx(x), 

connecting the right ends of all these regions and another line <p 
= 

Y2(x) 

connecting their left ends. Depending on how the particular A (<p)'s are 
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Fig. 1. Illustration of the concept of 'regions of acceptance' A(<p). Quantity measured on 

the horizontal axis is x = 
possible value of the observable r.v. X. Quantity measured on the 

vertical axis is <p 
= 

possible value of the estimated parameter 0. 

Fig. 2. Illustration of the 'confidence belt': the curve on the left passes through the left 

boundaries of acceptance regions A(<p) corresponding to all the possible values ? of the 

estimated parameter 6. Similarly, the curve on the right passes through the right boundaries 

of the same A (<p). Equations of the two curves can be solved either with respect to x or with 

respect to <p. The latter solutions Y\{x) and Y2(x) give the confidence interval correspond 

ing to X = x. 
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selected, the two lines determined by Yx(x) and Y2(x) may be very fancy 
and discontinuous. However, since the particular A (<p) are subjected to a 

single condition that the probability determined by ? of X falling into 

A ((p) is equal to preassigned a, it is obvious that, through a little pushing 
of the A(<p) one can achieve a degree of regularity of the two curves. 

Now, assume that this is done and have a glance at Figure 2 exhibiting 
the two fairly regular curves selected by us. Remembering that the 

vertical axis in Figure 1 is allocated to possible values <p of the estimated 0, 
the equations of the two lines may be written as 

(8) cp 
= 

Yx(x) and <p 
= 

Y2(x) 

The construction of a confidence interval for estimating 0 at the chosen 

confidence coefficient is now complete. In fact, substitute in (8) the 

random variable X for its value x and examine the probability that YX(X) 
and Y2(X) as defined through (8) will bracket the unknown true value of 

0. Obviously, for this to happen it is both necessary and sufficient that the 

observable random variable X falls within the region of acceptance A (0). 
But these regions were purposefully selected to ensure that the probabil 

ity in question be equal to a ! Thus, the probability that the two bounds 

YX(X) and Y2(X) will bracket the unknown 0 is also equal to a. 

20. An Example 

A book of instructions about how to drive an automobile is a very useful 

source of information. However, those who learned to drive are sure to 

agree that the real feel of what is involved is acquired only after a few 

exercises on the road. The following example is offered in this spirit. In 

order to be non-technical, the problem considered is 'bookish', without 

contact with any real study of nature. 

It is given that the n observable random variables Xt are mutually 

independent and are uniformly distributed within an interval (0, 0) of 

unknown length 0. It is this length 0 that is the parameter to be estimated 

by confidence intervals corresponding to a preassigned confidence coeffi 

cient a, say a = 0.90. It is also given that 0 may have any value, say 
50^0 ^600. (These numerical limits are included in order to ensure an 

appropriate degree of approximation, suggested below, and for conveni 

ence in certain graphs.) 
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Leaving aside the dealing with all the n variables, let us visualize two 

possibilities of summarizing them by just one function. One suggestion is 

that the arithmetic mean, say X, of the n observable variables might be a 

good 'summary' variable to estimate 0. The other suggestion is to use for 

the same purpose the greatest of the n observations, say X*. 

With a moderate value of n, say n = 
10, the distribution of X will be 

approximately 'normal', centered at 0/2, with a variance equal to 

02/12n 
= 

02/12O. This circumstance suggests the possibility of adopting 
as the region of acceptance, say AX(X), the symmetric interval about 0/2, 
of an appropriate length so chosen that the probability of X falling in it be 

equal to a = 0.90. In other words, our intuitively selected region of 

acceptance Ax will extend from 0/2 
? 

k to 0/2 + fc, where k is to be 

adjusted to the chosen value of the confidence coefficient a. Using the 

normal approximation to the distribution of X the value of k is easily 
found to be k = 

(0.15)0. Thus, whatever 0 may be, the probability that X 

will fall within the interval 

(9) 0/2-(O.15)0^X^0/2 + (O.15)0 

is approximately equal to a = 0.90. 

The symbols YX(X) and Y2(X) introduced in the preceding subsection 

denote, respectively, the smallest and the largest values of 0 for which X 

falls within the region of acceptance corresponding to that 0. The right 

part of the double inequality (9) indicates that the least value of 0 for 

which a given X does not exceed the right boundary of the acceptance 

region is equal to (1.548)X This is, then, our YX(X) or, as we shall denote 

it now, YX(X). Similarly, the greatest value of 0 for which an observed X 

will be at least equal to the left boundary of the corresponding acceptance 

region is, say, Y2(X) 
= 

(2.857)X It follows that, in the present case, the 

two curves sketched in Figure 2 as connecting the boundaries of accep 
tance regions, are simply two straight lines passing through the origin with 

slopes approximately equal to 1.54 and to 2.86, respectively. They are 

exhibited in Figure 3. 

The use of this Figure is as follows. One observes the n = 10 variables 

as defined at the outset, one calculates their arithmetic mean, say x, and 

one draws a vertical line through the point x on the horizontal axis. The 

intersections of this vertical with the two sloping lines determine the 

confidence interval [Yx(x), Y2(x)]. This is illustrated in Figure 3. 
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Fig. 3. Diagram facilitating the determination of the confidence intervals based on X. 
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Fig. 4. Diagram facilitating the determination of the confidence interval based on X*. 
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Now, consider the second suggestion, namely that the ten observations 

on X be 'summarized' by the greatest of them, denoted by X*. Here, 

then, the probability that X* will not exceed a preassigned number t < 0 

coincides with the probability that each and every one of the n observa 

tions will not exceed t. Obviously this probability is exactly equal to (t/6)n. 
This is, then, the exact distribution function of the random variable X*. 

As to a plausibly good region of acceptance, say A2(0), based on X*, 
one might take into consideration the fact that X* cannot possibly exceed 

0. Thus, what about defining A2(0) as an interval ending at 0 and 

beginning with a value t such that (t/d)n 
= 1-a? Simple calculations 

show that with n = 10 and a = 
0.90, the requisite value of / equals 0 

divided by the tenth root of 10. Calculations similar to those leading to 

the confidence interval based on X yield, say 

(10) YX(X*) = X* and Y2(X*) = (1.26)X*. 

Confidence intervals determined by (10) can be read directly from 

Figure 4. 

Now we come to the important question as to what might be the long 
run results of using the two confidence intervals [YX(X), Y2(X)] and 

[YX(X*), Y2(X*)] corresponding to the same a =0.90. The anticipated 
answer is that both intervals will bracket the true value of 0 with about the 

same relative frequency of 90%. But will they? The other interesting 

question is which of the two intervals will offer the better 'precision' of 

estimation? 

In order to answer these questions empirically a total of 100 experi 
ments were simulated by the Monte Carlo technique and Figures 5 and 6 

exhibit the results. 

Each of the 100 experiments consisted in adopting some value, of 

0 = 
50, 100, 150 etc. Next, for each of these values the high speed 

computer simulated 20 experiments, each of n = 10 observations, on a 

random variable uniformly distributed between zero and 0. Then the 

arithmetic mean of these observations was used to calculate the confi 

dence interval from formula (9). The vertical lines in Figure 5 exhibit 

these intervals which makes it possible to count how many times they 
cross the horizontal line that marks the assumed true value of 0. Similarly, 

Figure 6 exhibits the confidence intervals based on the greatest of the ten 

observations in each sample. 
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Fig. 5. High speed computer output simulating 100 experiments, each yielding a confidence 

interval for 6 based on X. Solid vertical lines give the confidence intervals obtained for each 

of the 100 samples. 
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Fig. 6. High speed computer output simulating 100 experiments (same as in Figure 5), each 

yielding a confidence interval for 6 based on X*. Solid vertical lines give the confidence 

intervals obtained for each of the 100 samples. 
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A glance at the two Figures indicates an affirmative answer to the 

question about the frequency of each confidence interval bracketing the 

true value of 0: the actual frequency is pretty close to 90%. But what 

about the 'precision' of estimating 0? Another glance at the two Figures 
should give an emphatic answer that the precision in the two cases is not 

the same. Specifically, the precision of estimating 0 by using X* is much 

better than that using the mean X. This is the justification of the 

theoretical efforts (a) to define appropriately the 'optimality' of the 

confidence intervals, and (b) to develop the methodology of reaching or, 

at least, approaching the optimum. Depending upon the nature of the 

experiment and/or the distributions of the observable variables, these 

mathematical problems can be very difficult. 

21. Concluding Remark 

The reader will notice that the properties of the confidence intervals 

illustrated in Figures 5 and 6 are entirely independent of whether the true 

values of 0 are just constants as in subsection 13, or are particular values 

of some random variable 0 as in subsection 14. 

VIII. A GLANCE AT THE HISTORY OF ESTIMATION BY 

CONFIDENCE INTERVALS OR REGIONS 

The first authorship of a scholarly idea of some delicacy is extremely 
difficult to establish. The first publications involving the basic ideas of 

confidence intervals known to me [43, 44] appeared in 1929 and 1931, 
both concerned with particular problems, as reflected in their titles: 

'Applications of the Theory of Errors to the Interpretation of Trends', 
and 'The Generalization of Student's Ratio', respectively. However, the 

basic idea that randomness and the calculation of the probabilities refer 

to the estimators rather than to the estimated parameters is contained in 

these papers. The more important of these papers appears to be that of 

1931 due to Hotelling. This paper is concerned with simultaneous 

estimation of not just one unknown parameter but several of them, 

namely of means of several possibly correlated normal variables. 

For quite some time the results of Hotelling remained unnoticed, but 

later their importance became increasingly appreciated, particularly due 
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to the idea of Henry Scheff? [45] concerned with the 'multiple compari 
son problem'. A more recent book on the subject [46] is due to Rupert 

Miller. Predominantly, this literature is concerned with random variables 

assumed normally distributed. Another outstanding characteristic of 

these papers is that, from the very start, the ideas involved were entirely 
free of Bayesianism: the estimated quantities were unknown constants, 
not subject to prior distribution. 

My own involvement in the field was also due to the necessity of solving 
an applied problem, in which a student of mine, Waclaw Pytkowski was 

involved. However, contrary to Hotelling, I began as a quasi-Bayesian. 

My assumption was that the estimated parameter (just one!) is a particu 
lar value of a random variable having an unknown prior distribution. My 
efforts were directed towards an estimator interval with its probability of 

covering the true value of the estimated parameter being independent of 

the prior distribution [36]. 
The elements of the theory I developed were the subject of my lectures 

first in Warsaw and, in 1934, also at the University College, London. 

Pytkowski's work [47] acknowledging my lectures on confidence inter 

vals, was published in 1932. My first publication [36] mentioning and 

briefly discussing confidence intervals appeared in 1934. The first basic 

results appeared in 1937-38 [40,41]. From one point of view my first 

results were less general than those of Hotelling: I was concerned with 

estimating just one parameter while Hotelling estimated several of them 

jointly. However, one particular aspect of my results is more general than 

that of Hotelling: my results were not tied to normal, or to any other 

distribution of the observable variables. 

Here it is a pleasure to acknowledge help of another of my former 

students, namely Churchill Eisenhart. He attended my lectures at the 

University College, London, and witnessed my introducing a prior dis 

tribution of the estimated 0 and then making efforts to produce an 

interval estimator, the properties of which would be independent of the 

prior. Once, Eisenhart's comment was that the whole theory would look 

nicer if it were built from the start without any reference to Bayesianism 
and priors. This remark proved inspiring. 

Statistical Laboratory, University of California, Berkeley 
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NOTE 

* 
The present paper was prepared using the facilities provided by three grants: the U.S. 

Energy Research and Development Agency; the National Institutes of Health, research 

grant No. ES01299-13; the Office of Naval Research, contract No. N00014-75-C 

0159/NRO82-230. I am indebted to Mr. Keith Sharp for performing the Monte Carlo 

simulation experiment which produced Figures 5 and 6. 
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