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It is not generally appreciated that the p value, as conceived by R. A. Fisher, is not
compatible with the Neyman-Pearson hypothesis test in which it has become embedded.
The p value was meant to be a flexible inferential measure, whereas the hypothesis
test was a rule for behavior, not inference. The combination of the two methods has
led to a reinterpretation of the p value simultaneously as an "observed error rate" and
as a measure of evidence. Both of these interpretations are problematic, and their
combination has obscured the important differences between Neyman and Fisher on
the nature of the scientific method and inhibited our understanding of the philosophic
implications of the basic methods in use today. An analysis using another method
promoted by Fisher, mathematical likelihood, shows that the p value substantially
overstates the evidence against the null hypothesis. Likelihood makes clearer the
distinction between error rates and inferential evidence and is a quantitative tool for
expressing evidential strength that is more appropriate for the purposes of epidemiology
than the p value. Am J Epidemiol 1993;137:485-96.
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Editor's note: For a discussion of this pa-
per and for the author's response, see pages
497 and 500, respectively.

Much has been written about the proper
roles for inductive and deductive reasoning

Received for publication November 4,1991, and in final
form August 5, 1992.

From the Division of Biostatistics, Oncology Center, The
Johns Hopkins University School of Medicine, Baltimore,
MD.

Reprint requests to Dr. Steven N. Goodman, 550 N.
Broadway, Suite 1103, Baltimore, MD 21205.

The author thanks Dr. Sander Greenland, Dr. Steven
Lane, and Dr. Teddy SekJenfeW for helpful suggestions on
this paper and Dr. Richard Royall for introducing him to
the subject.

485

in epidemiology (1-3), but it is unclear to
what degree such discussions affect epide-
miologic practice. In this essay, we will re-
view a historical debate about induction and
deduction that has direct relevance to the
way epidemiologists express quantitative un-
certainty and to the methods they use daily.
It is a debate that continues at a lower ebb
than in the past because it has suffered a
curious fate: The approaches of each side
have been improperly combined, creating a
new procedure with such a strong illusion of
coherence that even when it produces prob-
lems, the combination is not recognized as
their source.

This "new procedure" is the one currently
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used in most epidemiologic and medical
research. An experiment is designed to con-
trol the probabilities of two types of "error,"
designated type I (a, usually equal to 0.05)
and type II (/S, usually less than 0.20). When
the data are in, a p value is used as a quan-
titative measure of evidence against the null
hypothesis. If the p value is less than a, the
result is declared "significant," and the null
hypothesis is regarded as unlikely to be true.

Numerous writers have pointed out the
dangers of drawing automatic conclusions
based on this procedure (4-8), the impor-
tance of using biologic judgment to interpret
such results, and its problems from a Bayes-
ian or likelihood perspective (9-17). In
many institutions, those caveats are part of
standard epidemiologic teaching. What we
will examine here is a conflict within the
method itself: the incompatibility of the p
value with the hypothesis test in which if is
today imbedded. We will then show how
likelihood methods can both illuminate and
resolve the conflict. Though this situation
has been pointed out by a number of statis-
ticians and philosophers (18-28), most re-
searchers are unaware of its existence, no
less its implications. It has become so
blurred over the decades that for clarity we
need to return to the time and writings of
the scientists who developed the original
ideas: R. A. Fisher for the p value and Jerzy
Neyman for the hypothesis test.

R. A. FISHER AND THE p VALUE

Some features of R. A. Fisher's life pro-
vide insight into his scientific philosophy,
which has a direct bearing on the interpre-
tation of the p value. R. A. Fisher, who has
been called the "father of modern statistics,"
was interested in the fields of biometry and
genetics, and he played a major role in bring-
ing both fields out of their infancies. Though
he was an abstract thinker of the highest
order, Fisher regarded with scorn solutions
to biologic problems derived without a full
understanding of the reasoning used by the
experimenters. He stated that the teaching
of statistics should be entrusted "only to
such mathematicians as have had suffi-

ciently prolonged experience of practical re-
search, and of responsibility for drawing
conclusions from actual data, upon which
practical action is to be taken" (29, p. 435).
He ultimately held professorships in eugen-
ics and genetics, but never had a permanent
academic appointment in statistics.

As a practicing scientist, Fisher had an
abiding interest in creating an objective,
quantitative method to aid the process of
inductive inference—drawing conclusions
from observations. He did not believe that
the use of the Bayes formula to convert prior
probabilities of hypotheses (before the data)
to posterior probabilities (after the data) was
justified in scientific research, where prior
probabilities are usually uncertain. He ulti-
mately proposed three inferential methods
that did not require prior probabilities of
hypotheses. The first two were relatively in-
formal, one based on the p value and the
other on mathematical likelihood. A third,
formal method was called "fiducial infer-
ence." It was generally regarded as unsuc-
cessful and will not be discussed here.

Fisher was not the first to use the p value,
but he was the first to outline formally the
logic behind its use, as well as the means to
calculate it in a wide variety of situations.
Fisher's definition for the p value, or "sig-
nificance probability," was essentially, the
same used today: it equaled the probability
of a given experimental observation, plus
more extreme ones, under a null hypothesis.
If this number were small, one could "reject"
the null hypothesis as unlikely to be true.
The use of a threshold p value as a basis for
rejection was called a "significance test."
This is important to distinguish from the
"hypothesis test," which will be discussed
shortly.

Fisher's formal definition of the p value
appears similar to the one used today, but
his notions about how it was to be used and
interpreted were somewhat different. First,
the p value was not to be interpreted as a
hypothetical frequency of "error" if the ex-
periment were repeated. It was a measure of
evidence in a single experiment, to be used
to reflect on the credibility of the null hy-
pothesis, in light of the data. Second, as a
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measure of evidence, the p value was meant
to be combined with other sources of infor-
mation about the phenomenon under study.
If a threshold for "significance" was used, it
was to be flexible and to depend on back-
ground knowledge about the phenomenon
being studied (30).

The idea that a p value should be used
flexibly as a measure of evidence within a
complex descriptive and inferential process
is shared by most epidemiologists today. But
Fisher's rejection of its frequency interpre-
tation is contrary to how most modern re-
searchers conceive of it. If the p value does
not reflect the frequency of hypothetical re-
sults upon repetition of the experiment, how
can its numerical value be interpreted? This
was not the only unanswered question im-
plicit in Fisher's significance probability.
Which outcomes were "more extreme," and
how were they relevant? In what way could
the p value be combined with other infor-
mation? How could it be used inductively?
Finally, how could one "reject" the null
hypothesis with no alternative to accept
(26)?

THE NEYMAN-PEARSON HYPOTHESIS
TEST

In 1928, the mathematicians Jerzy Ney-
man and Egon Pearson published a land-
mark paper on the theoretical foundation
for a procedure they called a "hypothesis
test" (31). In one stroke, they seemed to
solve many of the problems posed by Fish-
er's significance probability (26). They intro-
duced the idea of the "alternative hypothe-
sis" and its associated type II error. In a
hypothesis test, one was to choose null and
alternative hypotheses and the a and /? error
rates. These error rates were supposed to be
tailored to a particular experimental situa-
tion, according to the consequences of each
error (32), which contrasts with the almost
universal use of a = 0.05 today. These rates
would define a "critical region" for the sum-
mary statistic (e.g., Z > 1.96). If a result fell
into the critical region, then the alternative
hypothesis was to be accepted and the null
hypothesis rejected; if not, the null was to

be accepted and the alternative rejected.
This last characteristic contrasts with the oft
repeated "one can never accept the null hy-
pothesis, only fail to reject it," which was a
feature not of the hypothesis test, but of
Fisher's significance test, which had no al-
ternative hypothesis.

There was no measure of evidence in the
Neyman-Pearson hypothesis test, although
some have attempted to interpret it that way
(33). After an experiment, one was to report
only whether the result fell in the critical
region, not where it fell, as would be shown
by a p value. This difference was not a minor
one, for it represented a complete rejection
of inductive reasoning. Neyman and Pear-
son were acutely aware of this, as they
showed in the introduction to one of their
original papers:

. . . No test based upon a theory of proba-
bility can by itself provide any valuable
evidence of the truth or falsehood of a
hypothesis.

But we may look at the purpose of tests
from another viewpoint. Without hoping
to know whether each separate hypothesis
is true or false, we may search for rules to
govern our behaviour with regard to them,
in following which we insure that, in the
long run of experience, we shall not often
be wrong. Here, for example, would be such
a "rule of behaviour"; to decide whether H
of a given type be rejected or not, calculate
a specified character, x, of the observed
facts; if x> Xo, reject H, if x < XQ, accept
H. Such a rule tells us nothing as to whether
in a particular case H is t rue. . . But it may
often be proved that if we behave according
to such a rule, then in the long run we shall
reject H when it is true not more, say, than
once in a hundred times, and in addition
we may have evidence that we shall reject
H sufficiently often when it is false (32, pp.
290-1).

This is a remarkable passage, remarkable
because it presents so straightforwardly a
statistical fact that is so contrary to current
scientific practice. It states that if we want
to use only "objective" probability, i.e., the
probability of data under a given hypothesis,
we cannot infer from a single experiment
anything about the truth of the hypothesis.
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But isn't the purpose of statistical methods
to enable us to make inferences about hy-
potheses from individual experiments?
Doesn't the p value tell us something about
the null hypothesis? As we shall see, the p
value is a strange kind of probability, very
different from the error rate of hypothesis
tests, and one must bring in nonprobabilistic
concepts to tell us what it says about the null
hypothesis.

Neyman and Pearson held that the best
we can do with deductive probability theory
is a rule for statistically dictated behavior,
which they claimed would serve us well in
the long run. Whether we believe a hypoth-
esis we "accept" is not the issue; it is only
necessary that we act as though it were true.
Neyman saw this not just as a model for
statistics, but for the scientific method.

In the past, claims have been made fre-
quently that statistical estimation involves
some mental processes described as induc-
tive reasoning. . . . in the ordinary proce-
dure of statistical estimation, there is no
phase corresponding to the description of
"inductive reasoning." . . . all reasoning is
deductive and leads to certain formulae and
their properties. A new phase arrives when
we decide to apply these formulae and to
enjoy the consequences of their properties.
This phase is marked by an act of will (not
reasoning) and, therefore, if it is desired to
use the adjective "inductive"... it should
be used in connection with the noun "be-
havior" rather than "reasoning" (34, p.
210).

FISHER'S REACTION

Fisher clearly saw what was at stake here.
The difference between his p value and hy-
pothesis tests, which he derisively called
"acceptance procedures" and "decision
functions," was not merely mathematical;
they represented different visions of science.
The modern-day importance of such differ-
ences is seen in the innumerable debates
where the term "unscientific" is an epithet,
and credibility is accorded only to those
allowed to wear the "scientific" mantle. In
his last book (30), Fisher returned to this
issue repeatedly, stating his position in
strong language, as was his style:

The concept that the scientific worker can
regard himself as an inert item in a vast
cooperative concern working according to
accepted rules is encouraged by directing
attention away from his duty to form cor-
rect scientific conclusions, to summarize
them and to communicate them to his
scientific colleagues, and by stressing his
supposed duty mechanically to make a
succession of automatic "decisions."
. . . The idea that this responsibility can be
delegated to a giant computer programmed
with Decision Functions belongs to a phan-
tasy of circles rather remote from scientific
research. The view has, however, really
been advanced (Neyman, 1938) that Induc-
tive Reasoning does not exist, but only
"Inductive Behaviour"! (30, pp. 104-5).

Perhaps most distressing to Fisher was
that his position was virtually obscured by
the incorporation of p values into hypothesis
tests:

On the whole the ideas (a) that a test of
significance must be regarded as one of a
series of similar tests applied to a succession
of similar bodies of data, and (b) that the
purpose of the test is to discriminate or
"decide" between two or more hypotheses,
have greatly obscured their understand-
ing. . . (30, pp. 45-6).

. . . The conclusions drawn from [signifi-
cance] tests constitute the steps by which
the research worker gains a better under-
standing of his experimental material. . . .
More recently, indeed, a considerable body
of doctrine has attempted to explain, or
rather to reinterpret, these tests on the basis
of quite a different model, mainly as a
means to making decisions in an accep-
tance procedure. The differences between
these two situations seem to the author
many and wide, and I do not think it would
have been possible had the authors of this
reinterpretation had any real familiarity
with work in the natural sciences, or con-
sciousness of those features of an observa-
tional record which permit of an improved
scientific understanding... (30, pp. 79-
80).

It would appear that the division between
the two camps could not be deeper, nor the
distinctions more sharply put. Yet the two
approaches somehow became intertwined.
This occurred because the p value served as
a bridge that permitted their confounding.
To understand this, we need to explore in
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more depth the quantitative meaning and
interpretation of the p value.

p VALUE AS AN "OBSERVED ERROR
RATE"

We will first examine the interpretation of
the p value as an "observed error rate." That
interpretation is reflected in textbooks and
articles, some of which differ in their defi-
nitions of this fundamental measure:

The p value is the observed a level... the
smallest level of significance a at which an
experimenter... would reject [the null hy-
pothesis] on the basis of the observed out-
come. .. (35, pp. 171-2).

. . . statistical methods are used to define
the probability that a false positive outcome
(type I error) of a study is due to sampling
variability or chance. By convention, a "sig-
nificant" difference between therapeutic
outcomes is usually accepted when a prob-
ability or alpha level is less than 5% (p <
0.05) (36).

The p value is the likelihood of a study
being positive when the null hypothesis is
true; it is analogous to the false-positive
rate... of a diagnostic test (37, p. 2459).

Each of these passages suggests that a p
value is akin, albeit not identical, to a type I
error rate; the last mistakenly defines it as
identical to a. This linkage is misleading.
The significance level, a, is the probability
of a set of future outcomes, represented by
the "tail area" of the null distribution. Im-
plicit in the concept is that we don't know
which of those outcomes will occur. The tail
area represented by the p value is quite
different; we know the outcome, and by
definition it lies exactly on the border of the
tail area. The "error rate" concept requires
that a result can be anywhere within the tail
area, which is not the situation with the p
value. An error rate interpretation of the p
value implies partial ignorance about the
results, but if we had such ignorance, we
could not calculate the p value.

A real-world example illustrates this. Sup-
pose a school reports class rank in the fol-
lowing manner. Any student at the Mh per-
centile of the class is said to be "within the

top N percent." For example, if a particular
student ranks 15th out of 100 students, that
student is reported as being "within the top
15 percent" of the class. The " 15 percent"
cited in this way falsely implies ignorance
about the student's actual rank and suggests
that the reporting threshold was set indepen-
dently of the student. This same illusion is
created when we interpret the p value as an
"observed" error rate. Also like the p value,
this " 15 percent" has the peculiar property
of including no one else in the class; every-
one with a higher class rank will report being
in a higher percentile.

Another factor that makes the error rate
interpretation of p values problematic is that
they are usually calculated conditionally.
Fisher felt that aspects of the data irrelevant
to the effect under study should not affect
the p value. This is done by treating the
irrelevant data (such as the marginal totals
in contingency tables) as though they were
fixed before the experiment and is implicit
in many standard methods, such as linear
regression and the Fisher exact test. How-
ever, conditioning on a quantity unknown
until after the experiment means that the
postexperiment p value cannot be a pure
reflection of the preexperiment, uncondi-
tional alpha (24, 38, 39).

Confusion about what p values represent
is reflected in the many styles of reporting
them. One style is to state only whether p is
less or greater than 0.05. This is the pure
hypothesis test perspective, linking the im-
precisely reported p value directly to the
pretrial type I error rate. Another method,
which is more informative about the ob-
served data but breaks the link to type I
error, is to quote the exact p value, e.g.,
"p = 0.02." In an effort to have it both ways,
intermediate approaches have arisen. One is
the "roving alpha" style, in which the inves-
tigator classifies the p value as falling into
one of several fixed categories, usually p <
0.05, p < 0.01, and p < 0.001. Another
involves expressing the exact p value as an
inequality, i.e., writing "/? < 0.02" when p =
0.02. None of these approaches are optimal,
since we will see that the shift from the pre-
to postexperiment perspective involves more
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than juggling an inequality sign; it should
mean changing the number itself.

If p values are not a form of error rate,
what are they? We will now examine Fisher's
proposal for p values as measures of induc-
tive evidence in single experiments, or in his
words, "a rational and well-defined measure
of reluctance to the acceptance of the hy-
potheses they test" (30, p. 47).

p VALUES AND LIKELIHOOD

To examine the inferential meaning of the
p value, we need to review the concept of
inductive evidence. An inductive measure
assigns a number (a measure of support or
credibility) to a hypothesis, given observed
data. Inductive statistical evidence can be
defined as the relative inductive support
given to two hypotheses by the data (40). By
this definition the p value is not an inductive
measure of evidence, because it involves
only one hypothesis and because it is based
partially on unobserved data in the tail re-
gion (14, 20,41).

To assess the quantitative impact of these
philosophical issues, we need to turn to an
inductive statistical measure: mathematical
likelihood. This was the second inferential
method promoted by Fisher. It is computa-
tionally simple, but conceptually subtle. We
must first distinguish likelihood from its ver-
nacular usage as a synonym for probability.
When we speak of the "likelihood of a hy-
pothesis," we are speaking of its support by
the data, not its "probability of being true."
The likelihood of a hypothesis, given the
observed data, is proportional to the proba-
bility of the observed data, given that hy-
pothesis (11, 14, 20, 42). Even though prob-
ability and likelihood are closely linked,
Fisher made their distinction clear

Mathematical likelihood is not, of course,
to be confused with mathematical proba-
bility . . . like mathematical probability,
[likelihood] can serve in a well-defined
sense as a "measure of rational belief; but
it is a quantity of a different kind than
probability, and does not obey the laws of
probability. Whereas such a phrase as "the
probability of A or B" has a simple mean-
ing... the phrase "the likelihood of A or

B" is more parallel with "the income of
Peter or Paul—you cannot know what it
is until you know which is meant.

. . . The likelihood supplies a natural order
of preference among the possibilities under
consideration . . . (30, pp. 72-3).

The ratio of likelihoods (or their loga-
rithm) can be used as a measure of the
relative evidential support given by the data
to two hypotheses (11, 40). The likelihood
ratio is computed by taking the ratio of the
data's probability under the null hypothesis
to its probability under a specific alternative
hypothesis. Likelihood ratios are used in
Bayes' theorem (posterior odds = likelihood
ratio x prior odds) and are a familiar part
of the mathematics of screening and diag-
nostic tests (43). Even though the likelihood
ratio is part of Bayes' theorem, it is com-
pletely separate from the prior odds of hy-
potheses. It is the part where "the data
speak." Many epidemiologists are already
familiar with this measure: the deviance, a
general index of model fit, is twice the log-
arithm of a likelihood ratio of two nested
models, and in genetic epidemiology, the
Lod score is a log likelihood ratio (44).

We will use likelihood ratios to quantify
the difference between two states of knowl-
edge, represented by precise and imprecise p
values (e.g., p = 0.05 vs. p < 0.05). For
simplicity, we will assume that the p values
are unconditional. In that case, when p <
0.05, it is correct to say that under the null
hypothesis, an event with a 5 percent prob-
ability has occurred. However, when p =
0.05, many epidemiologists tend to make
the same claim; it is hard to know what else
to say. Because p values allow us to distin-
guish these situations only via the inequality
sign, a quantitative difference in the evi-
dence against the null hypothesis is not gen-
erally appreciated. Likelihood ratios will
show that the difference is substantial.

In table 1, two likelihood ratios are com-
pared, one for a "precise" p value, e.g., p =
0.03, and one for a corresponding hypothesis
test, e.g., p < a = 0.03. The alternative
hypothesis used here is the one against which
the hypothesis test has 90 percent power
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TABLE 1. Ratio of the nkefihood of the null hypothesis to the hypothesis of a difference associated with
90% power, a = 0.05, under two different descriptions of the experimental result (p = a,ps a), shown for
a range of p values, under a gaussian model

a

0.10
0.05
0.03
0.01
0.001

z

1.64
1.96
2.17
2.58
3.28

Evidence for the nud
hypothesis vs.

p-a

0.94
0.33
0.16
0.044
0.005

Aoos.ow

pS a

0.05
0.03
0.017

0.007
0.001

Minimum evidence
for the m j

hypothesis when

(standardized
Hkeftood)*

0.26
0.15
0.10
0.036
0.005

* The last column Is the smalest possible Dkeftood ratio of the nut hypothesis against any alternative.

(two-sided a = 0.05), a typical choice in
epidemiologic research. We assume that we
know the direction of the effect. The likeli-
hood ratio for the precise p value corre-
sponds to the ratio of heights of the two
probability densities at the observed data.
The likelihood ratio for the imprecise/? value
is the ratio of areas of the two probability
densities beyond the observed data (figure 1;
see Appendix for mathematical details).

With this alternative hypothesis, up <
0.05" represents 11 times (= 0.33/0.03) less
evidence in support of the null hypothesis
than does "/? = 0.05." Using Bayes' theorem,
with initial probabilities of 50 percent on
both hypotheses (i.e., initial odds = 1), this
means that after observing p = 0.05, the
probability that the null hypothesis is true
falls only to 25 percent (= 0.33/(1+ 0.33)).
When p < 0.05, the truth probability of the
null hypothesis drops to 3 percent (= 0.03/
(1 + 0.03)). Below p values of 0.001, there
is not much practical difference between the
two situations, but in the critical range of
0.001-0.05, the differences are of a magni-
tude that could qualitatively affect the con-
clusions we draw from data. When we use
the tail region to represent a result that is
actually on its border, we misrepresent the
evidence, making the case against the null
hypothesis look much stronger than it ac-
tually is.

Since Fisher simultaneously promoted p
values and likelihood, one might have ex-
pected him to make clear the advantage of
the p value definition, but he never did. As

the philosopher Ian Hacking noted, "At no
time does Fisher state why one is allowed to
add the clause 'or a greater value' so as to
form the region of rejection" (20, p. 82).
Some insight into his thinking might be
gained from the following comment on con-
fidence intervals (italics added; "/?" refers to
the probability parameter of a binomial dis-
tribution, not the p value):

Objection has sometimes been made that
the method of calculating confidence limits
by setting an assigned value such as 1 % on
the frequency of observing 3 or less.. . is
unrealistic in treating values less than 3,
which have not been observed, in exactly
the same manner as 3, which is the one
that has been observed. This feature is in-
deed not very defensible save as an approx-
imation. It should be pointed out that when
the probability of 3 or less is small, most of
this small probability will be due to the case
"exactly 3," and that the contribution of
the other three cases is not very important,
although it does increase or decrease with
varying p at a relative rate different from
the contribution of "exactly 3" itself... It
would, however, have been better to have
compared the different possible values of p,
in relation to the frequencies with which
the actual values observed would have been
produced by them, as is done by Mathe-
matical Likelihood . . . (30, p. 71).

As with many things Fisher wrote, the
preceding passage can be interpreted in a
variety of ways. Since one can show a rela-
tion between p values and the tail area dis-
cussed above, one could argue that Fisher
was implicitly acknowledging here that the
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p value was an "approximate" attempt, with-
out an alternative hypothesis, to get infor-
mation like that provided by likelihood ra-
tios. This is consistent with his vagueness
about the quantitative interpretation of the
p value, his stress on its informal use, and
his fury and frustration at seeing it subsumed
by hypothesis testing.

THE STANDARDIZED LIKELIHOOD

Can likelihood ratios be used in lieu of p
values? Since every alternative hypothesis
has a different likelihood, the comparison of
each of those alternative hypotheses to the
null hypothesis yields a different likelihood
ratio. One proposal, promoted by Fisher and
others (11, 19, 45), is to use the likelihood
ratio of the null hypothesis to the unique
hypothesis with maximum likelihood: with
gaussian data, the hypothesis that the true
population values are equal to the observed
estimates. This ratio is called the standard-
ized likelihood. In figure 1, this would mean
using the alternative hypothesis whose prob-
ability density is centered on the observed
mean. Since this alternative has the highest
likelihood, the standardized likelihood rep-
resents the smallest amount of statistical
evidence that can be attributed to the null
relative to any alternative. It is a "worse case
scenario" for the null. It has a Bayesian
interpretation as the smallest factor, after

seeing the data, by which one can multiply
the prior odds of the null hypothesis to get
the final odds.

For gaussian data, the standardized like-
lihood is equal to exp(—Z2/2), where Z is
the number of standard errors from the null
hypothesis. In table 1, we see that the weak-
est evidence for the null hypothesis is still
3-5 times higher than the associated 2-sided
p value. (Using one-sided p values would
double the disparity.) When p = 0.05, the
support that can be mustered for the best
alternative is only 6.7 times (1/0.15) the
support for the null hypothesis. This means
that, if the null hypothesis has initial odds
of 1.0, p = 0.05 makes the final odds no
lower than 0.15, corresponding to a proba-
bility of 1/(1 + 0.15) = 0.13. In order for
the final probability of the null hypothesis
to be 5 percent (final odds = 1/19) after
observing p = 0.05, its initial probability can
be no higher than 26 percent. If a relation is
thought to be improbable, corresponding
perhaps to an initial null probability of 80
percent, a p = 0.05 would lower this proba-
bility only to 38 percent. The standardized
likelihood needed to make it only 5 percent
probable is 5/95 + 80/20 = 1/76 = 0.013,
corresponding to a p value of 0.003. So even
the strongest quantitative case against the
null is not nearly as strong as the p value
would indicate (18, 19,46).

FIGURE 1. Graphical representation of the derivation of table 1. The curves are the gaussian probability densities
for outcomes under Ho and HA, the null and alternative hypotheses. The likelihood ratio associated with the precise
p value (p •• a) is A/B, the ratio of the curve heights at the observed data. The likelihood ratio associated with the
imprecise p value (p s a) is the ratio of the small striped area to the total shaded area (including the striped area).
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The standardized likelihood seems to
more accurately represent the informal
weight that is put on p values. Epidemiolo-
gists usually describe p values in the 0.02-
0.05 range as representing only moderate
evidence against the null. That description
is better reflected by the corresponding range
of the gaussian standardized likelihood,
0.07-0.15, than by 0.02-0.05. An implausi-
ble association with a p value in that range
will often not be seriously considered, con-
sistent with the calculations above. It has
been suggested that Fisher himself tended to
use in practice a rejection threshold of p =
0.01, which corresponds to a standardized
likelihood of 0.04, in keeping with the no-
tion that a "1 in 20" ratio should be the
evidential threshold to reject the null hy-
pothesis (28). Because the standardized like-
lihood usually varies monotonically with the
p value, the issue of the p value's three- to
fivefold overstatement of the evidence is
sometimes dismissed as a problem of "cali-
bration." Imagine explaining that to a new
student, to a policymaker, or in a court of
law.

IMPLICATIONS FOR SCIENCE

We have seen that there are serious prob-
lems with both the error rate and evidential
interpretations of the p value. When we
combine them, insisting that the p value
must reflect the "correct" type I error to
properly represent the evidence, we create a
potent illusion that produces a host of par-
adoxes and problems, although their source
is rarely recognized. They include the "mul-
tiple looks" problem (47-50), the multiple
comparisons problem (51), how sample size
affects the interpretation of a given p value
(25, 52), the probability of replicating a sig-
nificant finding as a function of the p value
(53), whether one-sided p values should be
used for one-sided hypotheses (54), and the
appropriate thresholds for meta-analyses
(55).

An important aspect of this analysis is the
insight it gives into Fisher and Neyman's
primary concern and source of conflict: the
nature of the scientific method. Neyman's

position was that we should set up rules with
pretrial error rates for hypothesis rejection
and "enjoy the consequences" of their use.
The p value's continuous scale undercut this
by inviting the use of informal induction
regardless of where the pretrial rejection
threshold was set. A p value of 0.04 produces
a different reaction than one of 0.00001,
though both are significant at a = 0.05. The
nature of that different reaction is outside
the domain of deductive probability theory,
and therefore, according to Neyman, outside
the realm of the objective scientific method.

Also inimical to Neyman's position was
the error rate interpretation of the p value.
It implied that, ifp = 0.001, one could state
that one was "enjoying the consequences"
of using a rule with a = 0.001. This under-
mined the reason that error rates had to be
set before the experiment, vitiating the force
of Neyman's rules for the objective conduct
and interpretation of research. The obliga-
tory statement in most research articles, up
values below 0.05 were considered statisti-
cally significant," is an empty exercise in
semantics. It tells us nothing, only that the
word "significant" will be used to refer to
relations where p < 0.05. If only "statistical
significance" was reported, without p values,
then the declaration of the pretrial a would
be critical.

The interpretation of the p value as an
observed a was even more damaging to Fish-
er's position than it was to Neyman's. It
facilitated the incorporation of the p value
into the hypothesis test framework, which
we have seen was anathema to Fisher. It also
implied that evidence and uncertainty about
hypotheses could be described in the lan-
guage of unconditional, pretrial probability.
As Fisher wrote in a letter to a colleague,
" . . . the concept of mathematical probabil-
ity is inadequate to express the nature and
extent of our uncertainty in the face of cer-
tain types of observational material, while
in all cases the concept of mathematical
likelihood will supply very helpful guidance,
if we are prepared to give up our irrational
urge to express ourselves only in terms of
mathematical probability" (56, p. 92).

This "irrational urge" (or the lack of alter-
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natives) may be the source of the dilemma
many epidemiologists face when attempting
to express uncertainty in policy settings.
Suppose we perform a study and obtain p =
0.03 for an unlikely relation. Summarizing
this as "if there is no relationship, there is a
3 percent probability that the observed or
larger effect could have been obtained due
to chance" may not do justice to either our
informal assessment of the meaning of p =
0.03 or our uncertainty about the relation.
It also invites the misinterpretation that
there is a 97 percent chance that the effect
is real. Noting that the gaussian standardized
likelihood for p = 0.03 is 0.10, it would be
more appropriate to say something like, "the
plausibility of some relation, relative to the
plausibility of no relation, is at most tenfold
greater than it was before the experiment."
This uses a correct quantitative measure of
evidence, calls attention to its comparative
nature, and highlights the importance of the
prior plausibility of the association.

measure of inductive evidence. Even though
Fisher, Neyman, and many others have rec-
ognized these as fallacies, their perpetuation
has been encouraged by the manner in
which we use the p value today. One conse-
quence is that we overestimate the evidence
for associations, particularly with p values
in the range of 0.001-0.05, creating mislead-
ing impressions of their plausibility. Another
result is that we minimize the importance of
judgment in inference, because its role is
unclear when postexperiment evidential
strength is thought to be measurable with
preexperiment "error-rates." Many experi-
enced epidemiologists have tried to correct
these problems by offering guidelines about
how p values should be used. We may be
more effective if, in the spirts of Fisher and
Neyman, we instead focus on clarifying what
p values mean, and on what we mean by the
"scientific method."

CONCLUSION

The originators of the statistical frame-
works that underlie modern epidemiologic
studies recognized that their methods could
not be interpreted properly without an
understanding of their philosophical
underpinnings. Neyman held that inductive
reasoning was an illusion and that the only
meaningful parameters of importance in an
experiment were constraints on the number
of statistical "errors" we would make, de-
fined before an experiment. Fisher rejected
mechanistic approaches to inference, believ-
ing in a more flexible, inductive approach
to science. One of Fisher's developments,
mathematical likelihood, fit into such an
approach.

The p value, which Fisher wanted used in
a similar manner, invited misinterpretation
because it occupied a peculiar middle
ground. Because of its resemblance to the
pretrial a error, it was absorbed into the
hypothesis test framework. This created two
illusions: that an "error rate" could be mea-
sured after an experiment and that this post-
trial "error rate" could be regarded as a
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APPENDIX

The likelihood ratios that appeared in table 1 are calculated as follows:

Testing Ho: n = 0 vs. HA: n = Ao.05,0.90

where Ao.05.090 is the difference against which the hypothesis test has two sided a = 0.05 and
one-sided /3 = 0.10 (power = 0.90). The Z score corresponding to this alternative hypothesis,
ZA, equals 1.96 + 1.28 = 3.24. Because we are comparing a precise p value to a corresponding
hypothesis test, the observed Z score will be designated by Za.

The likelihood ratio (LR) for the imprecise p value, corresponding to the ratio of shaded
areas in figure 1, is

LR(//0 vs. HA\p< a) =
1 - *(ZO - 3.24)

where $(Z) is the area under the gaussian curve to the left of Z.
The likelihood ratio for the precise p value, corresponding to A/B in figure 1, is

kp~z2j2

LR(H0 vs. HA\p = a)
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