Example 1. Assume that you want to estimate the mean $\mathbb{E}_{\mu^{\dagger}}[X]$ of some random variable X with respect to some unknown distribution μ^{\dagger} on the interval [0, 1] based on the observation of n i.i.d. samples, given to finite resolution δ , from the unknown distribution μ^{\dagger} . The Bayesian answer to this problem is to assume that μ^{\dagger} is the realization of some random measure distributed according to some prior π (i.e. $\mu \sim \pi$) and then compute the posterior value of the mean by conditioning on the data. Now to specify the prior π you need to specify the distribution of all the moments of μ (i.e. the distribution of the infinite dimensional vector $(\mathbb{E}_{\mu}[X], \mathbb{E}_{\mu}[X^2], \mathbb{E}_{\mu}[X^3], \ldots))$. So a natural way to assess the sensitivity of the Bayesian answer with respect to the choice of prior is to specify the distribution \mathbb{Q} of only a large, but finite, number of moments of μ (i.e. specify the distribution of $(\mathbb{E}_{\mu}[X], \mathbb{E}_{\mu}[X^2], \dots, \mathbb{E}_{\mu}[X^k])$ where k can be arbitrarily large). This defines a class of priors Π and our results show that no matter how large k is, no matter how large the number of samples n is, for any \mathbb{Q} that has a density with respect to the uniform distribution on the first k moments, if you observe the data at a fine enough resolution then the minimum and maximum of the posterior value of the mean over the class of priors Π are 0 and 1.