Example 6. Although one may find a prior that is both consistent and qualitatively robust when Θ is totally bounded and the model is well-specified, extensions of the mechanism illustrated in Figures 2 and 3 suggest that misspecification implies non qualitative robustness. Consider the example illustrated in Figure 4, where the model P is the re-

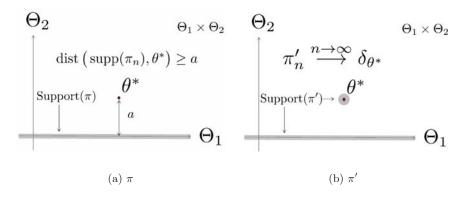


Figure 4: Non-robustness caused by misspecification

striction of a well specified larger model $\bar{P}: \Theta_1 \times \Theta_2 \to \mathcal{M}(X)$ to $\theta_2 = 0$. Assume that the data generating distribution is $\bar{P}(\theta_1^*, \theta_2^*)$ where $\theta_2^* \neq 0$, so that the restricted model P is misspecified. Let π be any prior distribution on $\Theta_1 \times \{\theta_2 = 0\}$. Although π may satisfy Cromwell's rule the mechanisms presented here suggest that is not qualitatively robust with respect to perturbed priors having support on $\Theta_1 \times \Theta_2$. Indeed, let π' be an arbitrarily small perturbation of π obtained by removing some mass from the support of π and adding that mass around θ^* . Note that π' can be chosen arbitrarily close to π while satisfying the local consistency assumption, which implies that the posterior distributions of π' concentrate on θ^* while the posterior distributions of π remain supported on $\Theta_1 \times \{\theta_2 = 0\}$. Note that if \bar{P} is interpreted as an extension of the model P, then this mechanism suggests that we can establish conditions under which Bayesian inference is not qualitatively robust under model extension.