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1. Introduction

I am pleased to have the opportunity to comment on this interesting and provocative
paper. I shall begin by citing three points on which the authors happily depart from

existing work on statistical foundations.

First, there is the authors’ recognition that methodology is ineluctably bound up with

philosophy. ‘If nothing else, … strictures derived from philosophy can inhibit research

progress’ (Gelman& Shalizi, 2013, p. 11). They note, for example, the reluctance of some

Bayesians to test their models because of their belief that ‘Bayesian models were

by definition subjective’, or perhaps because checking involves non-Bayesian methods

(p. 4, n. 4).
Second, they recognize that Bayesian methods need a new foundation. Although the

subjective Bayesian philosophy, ‘strongly influenced by Savage (1954), is widespread and

influential in the philosophy of science (especially in the form of Bayesian confirmation

theory…)’, and while many practitioners perceive the ‘rising use of Bayesian methods in

applied statistical work’ (p. 9), as supporting this Bayesian philosophy, the authors flatly

declare that ‘most of the standard philosophy of Bayes iswrong’ (p. 10, n. 2). Despite their

qualification that ‘A statisticalmethod can be useful even if its philosophical justification is

in error’, their stance will rightly challenge many a Bayesian.
This will be especially so when one has reached their third thesis, which seeks a new

foundation that uses non-Bayesian ideas. Although the authors at first profess that their

‘perspective is not new’, but rather follows many other statisticians who emphasize ‘the

value of Bayesian inference as an approach for obtaining statistical methods with good
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frequency properties’ (p. 10), they go on to announce they are ‘going beyond the

evaluation of Bayesian methods based on their frequency properties – as recommended

by Rubin (1984), Wasserman (2006), among others – to emphasize the learning that

comes from the discovery of systematic differences between model and data’ (p. 21).
Moreover, they suggest that ‘Implicit in the best Bayesian practice is a stance that has

much in common with the error-statistical approach of Mayo (1996), despite the latter’s

frequentist orientation.1 Indeed, crucial parts of Bayesian data analysis, such as model

checking, can be understood as “error probes” in Mayo’s sense (2)’, which might be seen

as using modern statistics to implement the Popperian criteria for severe tests.

In the Popperian spirit, let me stick my neck out and conjecture that the authors

are correct. This is not the place to detail the error-statistical account, but I will

illustrate from among its themes where they pertain to the present paper (see Mayo
& Spanos, 2011).

The idea that non-Bayesian ideas might afford a foundation for the many strands of

Bayesianism is not as preposterous as it first seems. Supplying a foundation requires that

we step back from formal methods themselves. That is what the error-statistical

philosophy attempts to provide for such well-known (‘sampling theory’) tools as

significance tests and confidence interval methods. But the idea of severe testing is

sufficiently general to apply to any othermethods on offer. On the face of it, any inference,

whether to the adequacy of amodel (for a given purpose) or to a posterior probability, can
be said to be warranted just to the extent that the inference has withstood severe testing.

If the authors are right, several novel pathways for situating current work suddenly

open up. But that is for another time. Here, I will point up some places where error-

statistical methods might yield tools to promote the authors’ ends, but also others where

they will hold up large warning signs! In so doing I will often refer to the ‘philosophical

coda’ in the last several pages of their paper. Leaving to one side quibbles about some of

the philosophical positions they mention, their ‘coda’ contains many important

philosophical insights that should be applied throughout.

2. Testing in their data-analysis cycle

The authors claim their statistical analysis is used ‘not for computing the posterior

probability that any particular model was true – we never actually did that’ (p. 13), but

rather ‘to fit rich enoughmodels’ and upon discerning that aspects of themodel ‘did not fit
our data’ (p. 13), to build a more complex, better-fitting, model; which in turn called for

alteration when faced with new data.

This cycle, they rightly note, involves a ‘non-Bayesian checking of Bayesian models’

(p. 17), but they should not describe it as purely deductive; it is not. Nor should they wish

to hold to that old distorted view of a Popperian test as ‘the rule of deduction which says

that ifp impliesq, andq is false, then pmust be false’ (withp andq the hypothesis and data,

respectively) (p. 28). Having thrown off one oversimplified picture, they should avoid

slipping into another. As Popper well knew, any observable predictions are derived only
with the help of various auxiliary claims A1,…, An. Confronted with anomalous data one

1 I refer to thesemethods as ‘error-statistical’ because of their focus onusing samplingdistributions to control and
assess error probabilities. In contexts of scientific inference, error probabilities are used to evaluate severity and
non-severity. The single concept of severity applies to both the usual rejections and non-rejections, but severity,
which is data-dependent, is only in the same direction as power in the case of non-rejections. (This qualifies a
point on p. 15 of Gelman & Shalizi 2013.)
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may at most infer that either H or one of the auxiliaries is to blame: Duhem’s problem.

While mentioned in the philosophical coda (p. 31), they should be explicitly raising

Duhemian concerns all along.

To infer evidence of a genuine anomaly is to make an inductive inference to the
existence of a reproducible effect: Popper called it a falsifying hypothesis. Although

falsification rules must be probabilistic in some sense, it is not enough to regard the

anomaly as genuine simply because the outcome is highly improbable under a

hypothesized model. Individual outcomes described in detail may easily have very small

probabilities without being genuine anomalies.

Alluding to Mayo and Cox (2006), the authors suggest that any account that moves

from data to hypotheses might be called a theory of inductive inference in our sense. Not

at all. The requirements for reliable or severe tests must be met. Our point was to show
that sampling theory methods, contrary to what has been supposed, satisfy these

requirements, so long as they are suitably interpreted. Severity assignments are not

posterior probabilities, but they do involve induction. Since the authors concur with the

idea of ‘a model being severely tested if it passes a probe which had a high probability of

detecting an error if it is present’ (Gelman and Shalizi, 2013, p. 21), it will be up to them to

show they can satisfy this.

3. Significance tests and p-values in model checking

In probing the adequacy of statistical models, the authors recommend a method akin to

‘pure significance testing’ (p. 20), where no specific alternativemodels are considered. In

frequentist significance testing for misspecifications, the ‘null’ hypothesis asserts, in

effect, that a given model adequately captures the data-generating mechanism, and one

constructs a relevant test statistic whose distributionmay be computed, at least under the
null hypothesis. The authors do something analogous, using what they call the posterior

predictive distribution as the reference (or sampling) distribution of the chosen test

statistic. Here, they build on a distinct strand in the ‘Bayesian p-value’ research

programme, one of whose developers was Gelman.

Some claim that, at least for large sample sizes, their analysis leads essentially to

‘rediscovering’ frequentist p-values (Bayarri & Berger, 1998; Ghosh, Delampady, &

Samatra, 2006, p. 182). But the authors are right to point out that all participants in the

Bayesian p-value program implicitly ‘disagree with the standard inductive view’ of
Bayesianism (Gelman and Shalizi, 2013, p. 18, n. 11). Even if some use such tests only to

infer the adequacy or inadequacy of an underlying model (with a view to later finding

Bayesian posteriors), the reasoning employs hypothetical repetitions of the data in these

inferences, thereby apparently violating the likelihood principle.2 If the authors’

approach is accused of producing a non-Bayesian animal, as has been alleged, so it seems

do other Bayesian p-value appeals. (The qualifications that Berger and others propose to

distinguish degrees of heresy donot seem toholdwater.)More constructively, the value of

employing a sampling distribution to represent statisticallywhat itwould be likewere one
or another assumption of the data-generating mechanism violated, argues for the validity

of such non-Bayesian reasoning more generally.

2 The likelihood principle (LP), despite following from Bayes’ theorem, has become highly controversial. See
Mayo, 2010 for a discussion of the flaw in Birnbaum’s (1962) argument that the LP follows from frequentist
principles. Since Gelman and Shalizi are rejecting inference by way of Bayes’ theorem, they are not bound to the
LP as other Bayesians are.
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Nevertheless, the fact that the authors approve of reasoning akin to frequentist

p-values does not automatically show that their methods enjoy the virtues that enable

frequentist significance tests to reliably distinguish underlying sources of various

observed discordancies.3 Their examples, as presented, leave gaps that need to be filled
in.

3.1. Reasonably large p-value

To compute ‘whether the observed data set is the kind of thing that the fitted model

produces with reasonably high probability’ – assuming the replicated data are of the same

size and shape as y0 – ‘generated under the assumption that the fitted model, prior and

likelihoodboth, is true’ (p. 18), they check to see if the Bayesianp-value is reasonably high.
If it is high, then the data are ‘unsurprising if the model is true’. However, as the authors

themselves note, ‘Whether this is evidence for the usefulness of the model depends on

how likely it is to get such a high p-valuewhen themodel is false, the “severity” of the test’

(p. 18). But it is not clear how they are able to get this severity computation under the

falsity of the model (a power-type assessment). A correct severity assessment with local

testswould need to be qualified: the datamay only indicate the absence of those violations

that the test was at least reasonably capable of detecting, if present.

3.2. Small p-value

A small p-value, on the other hand, is taken as evidence of incompatibility betweenmodel

anddata (where theirmodel includes theprior). Thequestion that arises here is:what kind

of incompatibility are we allowed to say this is evidence of? Even when it is warranted to

infer there is evidence of a systematic departure from the assumed model and prior, the

pure significance test would seem only to allow us to infer that there is a flaw somewhere

either in the likelihood or prior. It would be fallacious to claim that one thereby has
evidence for a specific alternative that ‘explains’ the effect – at least not without further

work to pass the alternative with severity. (It is a kind of fallacy of rejection; see Mayo &

Spanos, 2006, 2011).

Yet at times it appears that the authors will go from detecting an anomaly for the initial

model (e.g., a logistic regression with varying intercept) to inferring a specific expansion

to the model (e.g., one with both varying intercept and slope.) How have the other

potential sources of misfit been probed and ruled out? I am not saying that they commit

this common fallacy, only that we have not been told how they will avoid it. Aris Spanos
calls it ‘error fixing’. It is illustrated by a Durbin–Watson test that moves from evidence of

some violation of independence to inferring the alternative hypothesis (autocorrelation)

which describes just one of many types of dependence (Mayo & Spanos, 2004; Spanos,

2000, 2006). The test had little or no ability to identify other types of dependencies, and

other model flaws.

A well-developed account of misspecification tests (under the error-statistical

umbrella) exists, even though, admittedly, it is not used as often as it should be

(Spanos, 1999). It is here that the authors could get real mileage from, as well as help
to expand the use of, the error-statistical account of model-misspecification testing. At

3 They claim their p-values are ‘generalizations of classical p-values, merely replacing point estimates of
parameters h with averages over the posterior distribution’ (p. 18).

60 Deborah G. Mayo



the heart of the account is the recognition that significance tests must be used in a

proper sequence to reflect the interdependence of the model assumptions.

Judicious combinations of omnibus (non-parametric), directional (parametric) and

simulation-based tests deliberately invoke dissimilar assumptions, and allow probing
as broadly away from the model in question as possible. One must keep track of the

assumptions each test requires to get going. It is very easy to show that even in the

simplest models, such as the normal i.i.d. model, departures from dependence can

misleadingly influence the result of testing for normality. An error statistician would

worry about the authors jumping into the model validation task without first listing a

complete set of probabilistic assumptions, for example, underlying their logistic

regressions. This is particularly important for the subsequent task of respecifying the

original model in light of the detected departures from the assumptions. Let me be
clear that I can see no reason why (in principle) the authors could not avail

themselves of this battery of tools, and this would be a fruitful avenue for future

work; certainly more so than any one of the ongoing controversies about such things

as which of the menu of Bayesian p-values has better asymptotic properties.

4. Some puzzles

With this in mind, it is puzzling that the authors claim to ‘find graphical test summaries

more illuminating than p-values’ (p. 18). Although useful, particularly in getting ideas for

discrepancies to probe, exclusive reliance on eyeballing loosens, rather than tightens, the

required constraints demanded to ensure that one knows which model violations any

given test can or cannot discern with severity. The choice of which residuals to look at, as

with the choice of test statistic, already implies the type or direction of departure. Data

plots that seem to indicate one flaw, say non-normality, can easily be the result of an
entirely different assumption, say independence, being at fault; but the given graphical

discernment may have had little chance to reveal this.

Perhaps the disparaging of p-value reasoning by Bayesians leads them to champion

something less advertently non-Bayesian, such as graphical analysis. They emphasize ‘we

are not claiming that classic p-values are the answer. As is indicated by the literature on the

Jeffreys–Lindley paradox (notably Berger & Sellke, 1987), p-values can drastically

overstate the evidence against a null hypothesis’. My puzzle here is that the allegations in

Berger and Sellke, and more recently in Berger (2003), are based on assuming a Bayesian
inference of the sort the authors have said theywere rejecting. From the error statistician’s

perspective, what these Bayesians regard as problematic for frequentist p-values is

actually problematic for their ‘conditionalp-values’ (for two-sided tests): highly significant

results are construed as no evidence against the null, or even evidence in favour of the null

(the posterior to the null going up in value) (Mayo, 2003). Talk about low power. But the

relevant point here is simply that the authors should not see the choice as between an

unsophisticated use of significance tests and eyeballing. They need the full battery of

misspecification tests.
It is true that allegations of double-counting are frequently heard when the ‘same’ data

are used to arrive at as well as to check model discrepancies. That may be another reason

they prefer to stickwith somethingmore informal (such as graphicalmethods). However,

it is precisely the effect on the test’s error probability that will tell us whether double-

counting is problematic or not. With misspecification tests, correctly applied, it is not

problematic.
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Having heretically announced that they seek a non-Bayesian (error-statistical)

foundation for Bayesian methods, the authors might as well take advantage of themileage

it can afford.

5. The role of priors and testing priors

In many Bayesian accounts the prior probability distribution is assumed as a given, either

as a way of introducing prior beliefs into the analysis (as with subjective Bayesians) or,

conversely, to avoid introducing prior beliefs (as with the appeal to reference or default

priors). In contrast, the authors claim that theirmethods provideways of testing priors. To
check if something has satisfied its role, however, we had best be clear on what its

intended role is.

The authors tell us what a prior need not be. It will not, or need not, be a default prior.

Because their prior is testable, they are freed from finding the unique objectively correct

prior, unlike the default Bayesians.

Nor need the prior represent a statistician’s beliefs. The prior distribution, the authors

claim, is one of the assumptions of the model and does not need to represent the

statistician’s personal degree of belief in alternative parameter values. (Suppose it does,
however. I wonder if in that case the approach focuses only on checking the likelihood,

assuming the prior?)

Elsewhere we hear that themodel ‘is the combination of the prior distribution and the

likelihood, each of which represents some compromise among scientific knowledge,

mathematical convenience, and computational tractability’ (p. 20). So what does it mean

to say we have tested the prior and it fails? It could mean the prior represents false beliefs,

or it is not so convenient after all, or …?

At other times the authors claim that they view the prior as ‘a regularization device’,
making fittedmodels less sensitive to certain details of the data. I do not pretend to be clear

on why the likelihood here needs smoothing or regularizing; but accepting that it does,

I am unclear as to how checking the prior-likelihood model can be seen as checking the

regularization device. (Perhaps when the prior serves to regularize, then, once again,

there is no reason to check; they do not say.) Again, Duhemian problems loom large; there

are all kinds of things one might consider changing to make it all fit.

There is no problemwith the prior servingmany functions, so long as its particular role

is pinned down for the case at hand. The error-statistical account would suggest first
checking the likelihood portion of the model, and then turning to the prior. If a battery of

tests is available (with orwithout priors) it is hard to see that there is any advantage to their

forgoing them. This leads to my last key point.

6. Error statistics is piecemeal

A central feature of the error-statistical philosophy of science is in its distinguishing

substantive scientific questions from various statistical ones. In almost all cases these are

distinct; while hypotheses that appear in standard null hypothesis tests may be far too

simple to represent the main or primary scientific question at hand, for the tasks of

checking for errors and discerning systematic effects in data, they are just the ticket.

However, there are several places where the authors do not avail themselves of this

important distinction. They instead infer from the fact that, strictly speaking, our models

of the world may be false, that therefore all inferences to statistical models are false.
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A hypothesis that Einstein’s model of light deflection fully captures light deflection

phenomena is false, but claims that radio-astronomical data are genuinely anomalous for

a Newtonian deflection are true, and have been known to be true, at least since the

1970s.
By the authors’ own lights, the statistical model is supposed to capture the systematic

statistical information in themodel, relative to the aspects or questions themodel is trying

to capture. To their credit, the authors emphasize that theywish to rejectmodels if they do

not account for all the systematic (statistical) information patterns in the data (Spanos,

2007). However, if all models incorrectly captured the statistical information, one forfeits

the very idea of severely ruling out specific ways a model can fail for the problem at hand.

‘Since we are quite sure our models are wrong, we need to check whether the

misspecification is so bad that inferences regarding the scientific parameters are in
trouble’ (p.17). This assumes that claims about being in trouble may be correct. If they

have split things off properly, error statisticians can pinpoint the trouble: we determine

how badly a violation would distort the error probabilities for a statistical inference that

will rely on the model.

7. Concluding remark

The authors have provided a radical and important challenge to the foundations of current

Bayesian statistics, in away that reflects current practice. Their paper points to interesting

new research problems for advancing what is essentially a dramatic paradigm change in

Bayesian foundations. While their examples involve survey sampling, they clearly see

themselves as advancing a general conception.

I hope that Gelman and Shalizi’s paper will motivate Bayesian epistemologists in

philosophy to take note of foundational problems in Bayesian practice, and that it will
inspire philosophically-minded frequentist error statisticians to help craft a new

foundation for using statistical tools – one that will afford a series of error probes that,

taken together, enable stringent or severe testing.
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