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After some general remarks about the interrelation between philo-
sophical and statistical thinking, the discussion centres largely on
significance tests. These are defined as the calculation of p-values
rather than as formal procedures for ”acceptance” and ”rejection”.
A number of types of null hypothesis are described and a principle
for evidential interpretation set out governing the implications of p-
values in the specific circumstances of each application, as contrasted
with a long-run interpretation. A number of more complicated situ-
ations are discussed in which modification of the simple p-value may
be essential.

1. Statistics and inductive philosophy.

1.1. What is the Philosophy of Statistics?. The philosophical founda-
tions of statistics may be regarded as the study of the epistemological, con-
ceptual and logical problems revolving around the use and interpretation of
statistical methods, broadly conceived. As with other domains of philoso-
phy of science, work in statistical science progresses largely without worrying
about ”philosophical foundations”. Nevertheless, even in statistical practice,
debates about the different approaches to statistical analysis may influence
and be influenced by general issues of the nature of inductive-statistical in-
ference, and thus are concerned with foundational or philosophical matters.
Even those who are largely concerned with applications are often interested
in identifying general principles that underlie and justify the procedures
they have come to value on relatively pragmatic grounds. At one level of
analysis at least, statisticians and philosophers of science ask many of the
same questions.

• What should be observed and what may justifiably be inferred from
the resulting data?

• How well do data confirm or fit a model?
• What is a good test?
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• Does failure to reject a hypothesis H? constitute evidence ”confirming”
H?

• How can it be determined whether an apparent anomaly is genuine?
How can blame for an anomaly be assigned correctly?

• Is it relevant to the relation between data and a hypothesis if looking
at the data influences the hypothesis to be examined?

• How can spurious relationships be distinguished from genuine regular-
ities?

• How can a causal explanation and hypothesis be justified and tested?
• How can the gap between available data and theoretical claims be

bridged reliably?

That these very general questions are entwined with long standing debates
in philosophy of science helps explain why the field of statistics tends to cross
over, either explicitly or implicitly, into philosophical territory. Some may
even regard statistics as a kind of ”applied philosophy of science” (Fisher [9];
Kempthorne [11]), and statistical theory as a kind of ”applied philosophy of
inductive inference”. As Lehmann [13] has emphasized, Neyman regarded his
work not only as a contribution to statistics but also to inductive philosophy.
A core question that permeates ”inductive philosophy” both in statistics and
philosophy is: What is the nature and role of probabilistic concepts, methods,
and models in making inferences in the face of limited data, uncertainty and
error?

Given the occasion of our contribution, a session on philosophy of statis-
tics for the second Lehmann symposium, we take as our springboard the
recommendation of Neyman ([13], p. 17) that we view statistical theory
as essentially a Frequentist Theory of Inductive Inference. The question
then arises as to what conception(s) of inductive inference would allow this.
Whether or not this is the only or even the most satisfactory account of
inductive inference, it is interesting to explore how much progress towards
an account of inductive inference, as opposed to inductive behavior, one
might get from frequentist statistics (with a focus on testing and associ-
ated methods). These methods are, after all, often used for inferential ends,
to learn about aspects of the underlying data generating mechanism, and
much confusion and criticism (e.g., as to whether and why error rates are
to be adjusted) could be avoided if there was greater clarity on the roles in
inference of hypothetical error probabilities.

Taking as a backdrop remarks by Fisher [9], Lehmann [13] on Neyman,
and by Popper [25] on induction, we consider the roles of significance tests in
bridging inductive gaps in traditional hypothetical deductive inference. Our
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goal is to identify a key principle of evidence by which hypothetical error
probabilities may be used for inductive inference from specific data, and to
consider how it may direct and justify (a) different uses and interpretations
of statistical significance levels in testing a variety of different types of null
hypotheses, and (b) when and why ”selection effects” need to be taken
account of in data dependent statistical testing.

1.2. The role of probability in frequentist induction. The defining fea-
ture of an inductive inference is that the premises (evidence statements) can
be true while the conclusion inferred may be false without a logical con-
tradiction: the conclusion is ”evidence transcending”. Probability naturally
arises in capturing such evidence transcending inferences, but there is more
than one way this can occur. Two distinct philosophical traditions for using
probability in inference are summed up by Pearson ([23], p. 228).

For one school, the degree of confidence in a proposition, a quantity vary-
ing with the nature and extent of the evidence, provides the basic notion to
which the numerical scale should be adjusted. The other school notes the
relevance in ordinary life and in many branches of science of a knowledge of
the relative frequency of occurrence of a particular class of events in a series
of repetitions, and suggests that ”it is through its link with relative fre-
quency that probability has the most direct meaning for the human mind”.

Frequentist induction, whatever its form, employs probability in the sec-
ond manner. For instance, significance testing appeals to probability to char-
acterize the proportion of cases in which a null hypothesis H0 would be
rejected in a hypothetical long-run of repeated sampling, an error proba-
bility. This difference in the role of probability corresponds to a difference
in the form of inference deemed appropriate: The former use of probability
traditionally has been tied to the view that a probabilistic account of in-
duction involves quantifying a degree of support or confirmation in claims
or hypotheses.

Some followers of the frequentist approach agree, preferring the term ”in-
ductive behavior” to describe the role of probability in frequentist statistics.
Here the inductive reasoner ”decides to infer” the conclusion, and probabil-
ity quantifies the associated risk of error. The idea that one role of prob-
ability arises in science to characterize the ”riskiness” or probativeness or
severity of the tests to which hypotheses are put is reminiscent of the phi-
losophy of Karl Popper [25]. In particular, Lehmann ([14], p. 32) has noted
the temporal and conceptual similarity of the ideas of Popper and Neyman
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on ”finessing” the issue of induction by replacing inductive reasoning with
a process of hypothesis testing.

It is true that Popper and Neyman have broadly analogous approaches
based on the idea that we can speak of a hypothesis having been well-tested
in some sense, quite different from its being accorded a degree of probabil-
ity, belief or confirmation; this is ”finessing induction”. Both also broadly
shared the view that in order for data to ”confirm” or ”corroborate” a hy-
pothesis H, that hypothesis would have to have been subjected to a test with
high probability or power to have rejected it if false. But despite the close
connection of the ideas, there appears to be no reference to Popper in the
writings of Neyman (Lehmann [14], p. 3) and the references by Popper to
Neyman are scant and scarcely relevant. Moreover, because Popper denied
that any inductive claims were justifiable, his philosophy forced him to deny
that even the method he espoused (conjecture and refutations) was reliable.
Although H might be true, Popper made it clear that he regarded corrobora-
tion at most as a report of the past performance of H: it warranted no claims
about its reliability in future applications. By contrast, a central feature of
frequentist statistics is to actually assess and control the probability that
a hypothesis would have rejected a hypothesis, if false. These probabilities
come from formulating the data generating process in terms of a statistical
model.

Neyman throughout his work emphasizes the importance of a probabilis-
tic model of the system under study and describes frequentist statistics as
modelling the phenomenon of the stability of relative frequencies of results of
repeated ”trials”, granting that there are other possibilities concerned with
modelling psychological phenomena connected with intensities of belief, or
with readiness to bet specified sums, etc. citing Carnap [2], Koopman [??],
de Finetti [??] and Savage [26]. In particular Neyman criticized the view of
”frequentist” inference taken by Carnap for overlooking the key role of the
stochastic model of the phenomenon studied. Statistical work related to the
inductive philosophy of Carnap [2] is that of Keynes [12] and, with a more
immediate impact on statistical applications, Jeffreys [??].

1.3. Induction and hypothetical-deductive inference. While ”hypotheti
cal-deductive inference” may be thought to ”finesse” induction, in fact induc-
tive inferences occur throughout empirical testing. Statistical testing ideas
may be seen to fill these inductive gaps: If the hypothesis were deterministic
we could find a relevant function of the data whose value (i) represents the
relevant feature under test and (ii) which can be predicted by the hypothesis.
We calculate the function and then see whether the data agree or disagree
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with the prediction. If the data conflict with the prediction, then either the
hypothesis is in error or some auxiliary or other background factor may be
blamed for the anomaly (Duhem’s problem).

Statistical considerations enter in two ways. If H is a statistical hypoth-
esis, then usually no outcome strictly contradicts it. There are major prob-
lems involved in regarding data as inconsistent with H merely because they
are highly improbable; all individual outcomes described in detail may have
very small probabilities. Rather the issue, essentially following Popper ([25],
pp. 86, 203), is whether the possibly anomalous outcome represents some
systematic and reproducible effect.

The focus on falsification by Popper as the goal of tests, and falsifica-
tion as the defining criterion for a scientific theory or hypothesis, clearly is
strongly redolent of Fisher’s thinking. While evidence of direct influence is
virtually absent, the views of Popper agree with the statement by Fisher
([8], p. 16) that every experiment may be said to exist only in order to give
the facts the chance of disproving the null hypothesis. However, because
Popper’s position denies ever having grounds for inference about reliability,
he denies that we can ever have grounds for inferring reproducible deviations.

The advantage in the modern statistical framework is that the probabili-
ties arise from defining a probability model to represent the phenomenon of
interest. Had Popper made use of the statistical testing ideas being devel-
oped at around the same time, he might have been able to substantiate his
account of falsification.

The second issue concerns the problem of how to reason when the data
”agree” with the prediction. The argument from H entails data y, and that
y is observed, to the inference that H is correct is, of course, deductively
invalid. A central problem for an inductive account is to be able nevertheless
to warrant inferring H in some sense. However, the classical problem, even in
deterministic cases, is that many rival hypotheses (some would say infinitely
many) would also predict y, and thus would pass as well as H. In order for a
test to be probative, one wants the prediction from H to be something that
at the same time is in some sense very surprising and not easily accounted
for were H false and important rivals to H correct. We now consider how
the gaps in inductive testing may bridged by a specific kind of statistical
procedure, the significance test.

2. Statistical significance tests. Although the statistical significance
test has been encircled by controversies for over 50 years, and has been
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mired in misunderstandings in the literature, it illustrates in simple form a
number of key features of the perspective on frequentist induction that we
are considering. See for example Morrison and Henkel [19] and Gibbons and
Pratt [10]. So far as possible, we begin with the core elements of significance
testing in a version very strongly related to but in some respects different
from both Fisherian and Neyman-Pearson approaches, at least as usually
formulated.

2.1. General remarks and definition. We suppose that we have empir-
ical data denoted collectively by y and that we treat these as observed
values of a random variable Y . We regard y as of interest only in so far as
it provides information about the probability distribution of Y as defined
by the relevant statistical model. This probability distribution is to be re-
garded as an often somewhat abstract and certainly idealized representation
of the underlying data generating process. Next we have a hypothesis about
the probability distribution, sometimes called the hypothesis under test but
more often conventionally called the null hypothesis and denoted by H0.
We shall later set out a number of quite different types of null hypotheses
but for the moment we distinguish between those, sometimes called simple,
that completely specify (in principle numerically) the distribution of Y and
those, sometimes called composite, that completely specify certain aspects
and which leave unspecified other aspects.

In many ways the most elementary, if somewhat hackneyed, example is
that Y consists of n independent and identically distributed components
normally distributed with unknown mean µ and possibly unknown standard
deviation σ. A simple hypothesis is obtained if the value of σ is known,
equal to σ0, say, and the null hypothesis is that µ = µ0, a given constant. A
composite hypothesis in the same context would have σ unknown and again
specify the value of µ.

Note that in this formulation it is required that some unknown aspect
of the distribution, typically one or more unknown parameters, is precisely
specified. The hypothesis that, for example, µ ≤ µ0 is not an acceptable
formulation for a null hypothesis in a Fisherian test; while this more general
form of null hypothesis is allowed in Neyman-Pearson formulations.

The immediate objective is to test the conformity of the particular data
under analysis with H0 in some respect to be specified. To do this we find a
function t = t(y) of the data, to be called the test statistic, such that

• the larger the value of t the more inconsistent are the data with H0;
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• the corresponding random variable T = t(Y ) has a (numerically)
known probability distribution when H0 is true.

These two requirements parallel the corresponding deterministic ones. To
assess whether there is a genuine discordancy (or reproducible deviation)
from H0 we define the so-called p-value corresponding to any t as

p = p(t) = P (T > t;H0),

regarded as a measure of concordance with H0 in the respect tested. In at
least the initial formulation alternative hypotheses lurk in the undergrowth
but are not explicitly formulated probabilistically; also there is no question
of setting in advance a preassigned threshold value and ”rejecting” H0 if
and only if p ≤ α. Moreover, the justification for tests will not be limited
to appeals to long run-behavior but will instead identify an inferential or
evidential rationale. We now elaborate.

2.2. Inductive behavior vs. inductive inference. The reasoning may be
regarded as a statistical version of the valid form of argument called in de-
ductive logic modus tollens. This infers the denial of a hypothesis H from
the combination that H entails E, together with the information that E
is false. Because there was a high probability (1 − p) that a less signifi-
cant result would have occurred were H0 true, we may justify taking low
p-values, properly computed, as evidence against H0. Why? There are two
main reasons:

Firstly such a rule provides low error rates (i.e., erroneous rejections) in
the long run when H0 is true, a behavioristic argument. In line with an
error-assessment view of statistics we may give any particular value p, say,
the following hypothetical interpretation: suppose that we were to treat the
data as just decisive evidence against H0. Then in hypothetical repetitions
H0 would be rejected in a long-run proportion p of the cases in which it is
actually true. However, knowledge of these hypothetical error probabilities
may be taken to underwrite a distinct justification.

This is that secondly such a rule provides a way to determine whether a
specific data set is evidence of a discordancy from H0.

In particular, a low p-value, so long as it is properly computed, provides
evidence of a discrepancy from H0 in the respect examined, while a p-value
that is not small affords evidence of accordance or consistency with H0

(where this is to be distinguished from positive evidence for H0, as discussed
below in Section 2.3). Interest in applications is typically in whether p is in
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some such range as p ≥ 0.1 which can be regarded as reasonable accordance
with H0 in the respect tested, or whether p is near to such conventional
numbers as 0.05, 0.01, 0.001. Typical practice in much applied work is to
give the observed value of p in rather approximate form. A small value
of p indicates that (i) H0 is false (there is a discrepancy from H0) or (ii)
the basis of the statistical test is flawed, often that real errors have been
underestimated, for example because of invalid independence assumptions,
or (iii) the play of chance has been extreme.

It is part of the object of good study design and choice of method of
analysis to avoid (ii) by ensuring that error assessments are relevant.

There is no suggestion whatever that the significance test would typically
be the only analysis reported. In fact, a fundamental tenet of the conception
of inductive learning most at home with the frequentist philosophy is that
inductive inference requires building up incisive arguments and inferences by
putting together several different piece-meal results. Although the complex-
ity of the story makes it more difficult to set out neatly, as, for example, if a
single algorithm is thought to capture the whole of inductive inference, the
payoff is an account that approaches the kind of full-bodied arguments that
scientists build up in order to obtain reliable knowledge and understanding
of a field.

Amidst the complexity, significance test reasoning reflects a fairly straight-
forward conception of evaluating evidence anomalous for H0 in a statistical
context, the one Popper perhaps had in mind but lacked the tools to im-
plement. The basic idea is that error probabilities may be used to evaluate
the ”riskiness” of the predictions H0 is required to satisfy, by assessing the
reliability with which the test discriminates whether (or not) the actual pro-
cess giving rise to the data accords with that described in H0. Knowledge
of this probative capacity allows determining if there is strong evidence of
discordancy The reasoning is based on the following frequentist principle for
identifying whether or not there is evidence against H0:

FEV (i) y is (strong) evidence against H0, i.e. (strong) evidence of dis-
crepancy from H0, if and only if, with high probability, a less discordant
result would have occurred, if H0 correctly described the distribution gen-
erating y.

A corollary of FEV is that y is not (strong) evidence against H0, if the
probability of a more discordant result is not very low, even if H0 is correct.
That is, if there is a moderately high probability of a more discordant result,
even were H0 correct, then H0 accords with y in the respect tested.
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Somewhat more controversial is the interpretation of a failure to find a
small p-value; but an adequate construal may be built on the above form of
FEV.

2.3. Failure and confirmation. The difficulty with regarding a modest
value of p as evidence in favour of H0 is that accordance between H0 and
y may occur even if rivals to H0 seriously different from H0 are true. This
issue is particularly acute when the amount of data is limited. However,
sometimes we can find evidence for H0, understood as an assertion that a
particular discrepancy, flaw, or error is absent, and we can do this by means
of tests that, with high probability, would have reported a discrepancy had
one been present. As much as Neyman is associated with automatic decision-
like techniques, in practice at least, both he and E. S. Pearson regarded the
appropriate choice of error probabilities as reflecting the specific context of
interest.

There are two different issues involved. One is whether a particular value
of p is to be used as a threshold in each application. This is the procedure
set out in most if not all formal accounts of Neyman-Pearson theory. The
second issue is whether control of long-run error rates is a justification for
frequentist tests or whether the ultimate justification of tests lies in their
role in interpreting evidence in particular cases. In the account given here,
the achieved value of p is reported, at least approximately, and the ”accept-
reject” account is purely hypothetical to give p an operational interpretation.
E. S. Pearson [23] is known to have disassociated himself from a narrow
behaviourist interpretation (Mayo [15]). Neyman, at least in his discussion
with Carnap (Neyman [20]) seems also to hint at a distinction between
behavioural and inferential interpretations.

In an attempt to clarify the nature of frequentist statistics, Neyman in
this discussion was concerned with the term ”degree of confirmation” used
by Carnap. In the context of an example where an optimum test had failed
to ”reject” H0, Neyman considered whether this ”confirmed” H0. He noted
that this depends on the meaning of words such as ”confirmation” and ”con-
fidence” and that in the context where H0 had not been ”rejected” it would
be ”dangerous” to regard this as confirmation of H0 if the test in fact had
little chance of detecting an important discrepancy from H0 even if such
a discrepancy were present. On the other hand if the test had appreciable
power to detect the discrepancy the situation would be ”radically different”.

Neyman is highlighting an inductive fallacy associated with ”negative
results”, namely that if data y yield a test result that is not statistically sig-
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nificantly different from H0 (e.g., the null hypothesis of no effect), and yet
the test has small probability of rejecting H0, even when a serious discrep-
ancy exists, then y is not good evidence for inferring that H0 is confirmed by
y. One may be confident in the absence of a discrepancy, according to this
argument, only if the chance that the test would have correctly detected a
discrepancy is high.

Neyman compares this situation with interpretations appropriate for in-
ductive behaviour. Here confirmation and confidence may be used to describe
the choice of action, for example refraining from announcing a discovery or
the decision to treat H0 as satisfactory. The rationale is the pragmatic be-
havioristic one of controlling errors in the long-run. This distinction implies
that even for Neyman evidence for deciding may require a distinct crite-
rion than evidence for believing; but unfortunately Neyman did not set out
the latter explicitly. We propose that the needed evidential principle is an
adaption of FEV(i) for the case of a p-value that is not small:

FEV(ii): A moderate p value is evidence of the absence of a discrepancy
δ from H0, only if there is a high probability the test would have given
a worse fit with H0 (i.e., smaller p value) were a discrepancy δ to exist.
FEV(ii) especially arises in the context of embedded hypotheses (below).

What makes the kind of hypothetical reasoning relevant to the case at
hand is not solely or primarily the long-run low error rates associated with
using the tool (or test) in this manner; it is rather what those error rates
reveal about the data generating source or phenomenon. The error-based
calculations provide reassurance that incorrect interpretations of the evi-
dence are being avoided in the particular case. To distinguish between this
”evidential” justification of the reasoning of significance tests, and the ”be-
havioristic” one, it may help to consider a very informal example of applying
this reasoning ”to the specific case”. Thus suppose that weight gain is mea-
sured by well-calibrated and stable methods, possibly using several measur-
ing instruments and observers and the results show negligible change over a
test period of interest. This may be regarded as grounds for inferring that
the individual’s weight gain is negligible within limits set by the sensitivity
of the scales. Why?

While it is true that by following such a procedure in the long run one
would rarely report weight gains erroneously, that is not the rationale for the
particular inference. The justification is rather that the error probabilistic
properties of the weighing procedure reflect what is actually the case in the
specific instance. (This should be distinguished from the evidential interpre-
tation of Neyman-Pearson theory suggested by Birnbaum [1], which is not
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data-dependent.)

The significance test is a measuring device for accordance with a specified
hypothesis calibrated, as with measuring devices in general, by its perfor-
mance in repeated applications, in this case assessed typically theoretically
or by simulation. Just as with the use of measuring instruments, applied to a
specific case, we employ the performance features to make inferences about
aspects of the particular thing that is measured, aspects that the measuring
tool is appropriately capable of revealing.

Of course for this to hold the probabilistic long-run calculations must be as
relevant as feasible to the case in hand. The implementation of this surfaces
in statistical theory in discussions of conditional inference, the choice of
appropriate distribution for the evaluation of p. Difficulties surrounding this
seem more technical than conceptual and will not be dealt with here, except
to note that the exercise of applying (or attempting to apply) FEV may
help to guide the appropriate test specification.

3. Types of null hypothesis and their corresponding inductive
inferences. In the statistical analysis of scientific and technological data,
there is virtually always external information that should enter in reaching
conclusions about what the data indicate with respect to the primary ques-
tion of interest. Typically, these background considerations enter not by a
probability assignment but by identifying the question to be asked, designing
the study, interpreting the statistical results and relating those inferences to
primary scientific ones and using them to extend and support underlying
theory. Judgments about what is relevant and informative must be supplied
for the tools to be used non-fallaciously and as intended. Nevertheless, there
are a cluster of systematic uses that may be set out corresponding to types
of test and types of null hypothesis.

3.1. Types of null hypothesis. We now describe a number of types of
null hypothesis. The discussion amplifies that given by Cox ([4], [5]) and by
Cox and Hinkley [6]. Our goal here is not to give a guide for the panoply of
contexts a researcher might face, but rather to elucidate some of the different
interpretations of test results and the associated p-values. In Section 4.3, we
consider the deeper interpretation of the corresponding inductive inferences
that, in our view, are (and are not) licensed by p-value reasoning.

1. Embedded null hypotheses. In these problems there is formulated, not
only a probability model for the null hypothesis, but also models that rep-
resent other possibilities in which the null hypothesis is false and, usually,
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therefore represent possibilities we would wish to detect if present. Among
the number of possible situations, in the most common there is a parametric
family of distributions indexed by an unknown parameter ? partitioned into
components θ = (φ, λ), such that the null hypothesis is that φ = φ0, with λ
an unknown nuisance parameter and, at least in the initial discussion with
φ one-dimensional. Interest focuses on alternatives φ > φ0.

This formulation has the technical advantage that it largely determines
the appropriate test statistic t(y) by the requirement of producing the most
sensitive test possible with the data at hand.

There are two somewhat different versions of the above formulation. In one
the full family is a tentative formulation intended not to so much as a possible
base for ultimate interpretation but as a device for determining a suitable
test statistic. An example is the use of a quadratic model to test adequacy
of a linear relation; on the whole polynomial regressions are a poor base
for final analysis but very convenient and interpretable for detecting small
departures from a given form. In the second case the family is a solid base for
interpretation. Confidence intervals for φ have a reasonable interpretation.

One other possibility, that arises very rarely, is that there is a simple null
hypothesis and a single simple alternative, i.e. only two possible distribu-
tions are under consideration. If the two hypotheses are considered on an
equal basis the analysis is typically better considered as one of hypotheti-
cal or actual discrimination, i.e. of determining which one of two (or more,
generally a very limited number) of possibilities is appropriate, treating the
possibilities on a conceptually equal basis.

There are two broad approaches in this case. One is to use the likelihood
ratio as an index of relative fit, possibly in conjunction with an application
of Bayes theorem. The other, more in accord with the error probability
approach, is to take each model in turn as a null hypothesis and the other
as alternative leading to an assessment as to whether the data are in accord
with both, one or neither hypothesis. Essentially the same interpretation
results by applying FEV to this case, when it is framed within a Neyman-
Pearson framework.

We can call these three cases those of a formal family of alternatives, of a
well-founded family of alternatives and of a family of discrete possibilities.

2. Dividing null hypotheses. Quite often, especially but not only in tech-
nological applications, the focus of interest concerns a comparison of two
or more conditions, processes or treatments with no particular reason for
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expecting the outcome to be exactly or nearly identical, e.g., compared with
a standard a new drug may increase or may decrease survival rates.

One, in effect, combines two tests, the first to examine the possibility that
µ > µ0, say, the other for µ < µ0. In this case, the two-sided test combines
both one-sided tests, each with its own significance level. The significance
level is twice the smaller p, because of a ”selection effect” (Cox and Hinkley
[6], p. 106). We return to this issue in Section 4. The null hypothesis of
zero difference then divides the possible situations into two qualitatively
different regions with respect to the feature tested, those in which one of the
treatments is superior to the other and a second in which it is inferior.

3. Null hypotheses of absence of structure. In quite a number of relatively
empirically conceived investigations in fields without a very firm theory base,
data are collected in the hope of finding structure, often in the form of
dependencies between features beyond those already known. In epidemiology
this takes the form of tests of potential risk factors for a disease of unknown
aetiology.

4. Null hypotheses of model adequacy. Even in the fully embedded case
where there is a full family of distributions under consideration, rich enough
potentially to explain the data whether the null hypothesis is true or false,
there is the possibility that there are important discrepancies with the model
sufficient to justify extension, modification or total replacement of the model
used for interpretation. In many fields the initial models used for interpre-
tation are quite tentative; in others, notably in some areas of physics, the
models have a quite solid base in theory and extensive experimentation. But
in all cases the possibility of model misspecification has to be faced even if
only informally.

There is then an uneasy choice between a relatively focused test statistic
designed to be sensitive against special kinds of model inadequacy (power-
ful against specific directions of departure), and so-called omnibus tests that
make no strong choices about the nature of departures. Clearly the latter will
tend to be insensitive, and often extremely insensitive, against specific alter-
natives. The two types broadly correspond to chi-squared tests with small
and large numbers of degrees of freedom. For the focused test we may either
choose a suitable test statistic or, almost equivalently, a notional family of
alternatives. For example to examine agreement of n independent observa-
tions with a Poisson distribution we might in effect test the agreement of
the sample variance with the sample mean by a chi-squared dispersion test
(or its exact equivalent) or embed the Poisson distribution in, for example,
a negative binomial family.
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5. Substantively-based null hypotheses. In certain special contexts, null
results may indicate substantive evidence for scientific claims in contexts
that merit a fifth category. Here, a theory T for which there is appreciable
theoretical and/or empirical evidence predicts that H0 is, at least to a very
close approximation, the true situation.

(a) In one version, there may be results apparently anomalous for T , and
a test is designed to have ample opportunity to reveal a discordancy with
H0 if the anomalous results are genuine.

(b) In a second version a rival theory T ∗ predicts a specified discrepancy
from H0. and the significance test is designed to discriminate between T
and the rival theory T ∗ (in a thus far not tested domain).

For an example of (a) physical theory suggests that because the quantum
of energy in nonionizing electro-magnetic fields, such as those from high
voltage transmission lines, is much less than is required to break a molecular
bond, there should be no carcinogenic effect from exposure to such fields.
Thus in a randomized experiment in which two groups of mice are under
identical conditions except that one group is exposed to such a field, the null
hypothesis that the cancer incidence rates in the two groups are identical
may well be exactly true and would be a prime focus of interest in analysing
the data. Of course the null hypothesis of this general kind does not have
to be a model of zero effect; it might refer to agreement with previous well-
established empirical findings or theory.

3.2. Some general points. We have in the above described essentially
one-sided tests. The extension to two-sided tests does involve some issues of
definition but we shall not discuss these here.

Several of the types of null hypothesis involve an incomplete probability
specification. That is, we may have only the null hypothesis clearly specified.
It might be argued that a full probability formulation should always be
attempted covering both null and feasible alternative possibilities. This may
seem sensible in principle but as a strategy for direct use it is often not
feasible; in any case models that would cover all reasonable possibilities
would still be incomplete and would tend to make even simple problems
complicated with substantial harmful side-effects.

Note, however, that in all the formulations used here some notion of ex-
planations of the data alternative to the null hypothesis is involved by the
choice of test statistic; the issue is when this choice is made via an explicit
probabilistic formulation. The general principle of evidence FEV helps us
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to see that in specified contexts, the former suffices for carrying out an
evidential appraisal (see Section 3.3).

It is, however, sometimes argued that the choice of test statistic can be
based on the distribution of the data under the null hypothesis alone, in
effect choosing minus the log probability as test statistic, thus summing
probabilities over all sample points as or less probable than that observed.
While this often leads to sensible results we shall not follow that route here.

3.3. Inductive inferences based on outcomes of tests. How does signif-
icance test reasoning underwrite inductive inferences or evidential evalua-
tions in the various cases? The hypothetical operational interpretation of
the p-value is clear but what are the deeper implications either of a modest
or of a small value of p? These depends strongly both on (i) the type of
null hypothesis, and (ii) the nature of the departure or alternative being
probed, as well as (iii) whether we are concerned with the interpretation of
particular sets of data, as in most detailed statistical work, or whether we
are considering a broad model for analysis and interpretation in a field of
study. The latter is close to the traditional Neyman-Pearson formulation of
fixing a critical level and accepting, in some sense, H0 if p > α and rejecting
H0 otherwise. We consider some of the familiar shortcomings of a routine or
mechanical use of p-values.

3.4. The routine-behavior use of p-values. Imagine one sets α = 0.05
and that results lead to a publishable paper if and only for the relevant
p, the data yield p < 0.05. The rationale is the behavioristic one outlined
earlier. Now the great majority of statistical discussion, going back to Yates
[31] and earlier, deplores such an approach, both out of a concern that it
encourages mechanical, automatic and unthinking procedures, as well as a
desire to emphasize estimation of relevant effects over testing of hypotheses.
Indeed a few journals in some fields have in effect banned the use of p-values.
In others, such as a number of areas of epidemiology, it is conventional to
emphasize 95% confidence intervals, as indeed is in line with much main-
stream statistical discussion. Of course, this does not free one from giving a
proper frequentist account of the use and interpretation of confidence levels,
which we do not do here (though see Section 3.6).

Nevertheless the relatively mechanical use of p-values, while open to par-
ody, is not far from practice in some fields; it does serve as a screening
device, recognizing the possibility of error, and decreasing the possibility of
the publication of misleading results. A somewhat similar role of tests arises
in the work of regulatory agents, in particular the FDA. While requiring
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studies to show p less than some preassigned level by a preordained test
may be inflexible, and the choice of critical level arbitrary, nevertheless such
procedures have virtues of impartiality and relative independence from un-
reasonable manipulation. While adhering to a fixed p-value may have the
disadvantage of biasing the literature towards positive conclusions, it offers
an appealing assurance of some known and desirable long-run properties.
They will be seen to be particularly appropriate for Example 3 of Section
4.2.

3.5. The inductive-evidence use of p-values. We now turn to the use
of significance tests which, while more common, is at the same time more
controversial; namely as one tool to aid the analysis of specific sets of data,
and/or base inductive inferences on data. The discussion presupposes that
the probability distribution used to assess the p-value is as appropriate as
possible to the specific data under analysis.

The general frequentist principle for inductive reasoning, FEV, or some-
thing like it, provides a guide for the appropriate statement about evidence
or inference regarding each type of null hypothesis. Much as one makes
inferences about changes in body mass based on performance characteris-
tics of various scales, one may make inferences from significance test results
by using error rate properties of tests. They indicate the capacity of the
particular test to have revealed inconsistencies and discrepancies in the re-
spects probed, and this in turn allows relating p-values to hypotheses about
the process as statistically modelled. It follows that an adequate frequentist
account of inference should strive to supply the information to implement
FEV.

Embedded Nulls. In the case of embedded null hypotheses, it is straight-
forward to use small p-values as evidence of discrepancy from the null in the
direction of the alternative. Suppose, however, that the data are found to
accord with the null hypothesis (p not small). One may, if it is of interest,
regard this as evidence that any discrepancy from the null is less than δ,
using the same logic in significance testing. In such cases concordance with
the null may provide evidence of the absence of a discrepancy from the null
of various sizes, as stipulated in FEV(ii).

To infer the absence of a discrepancy from H0 as large as δ we may
examine the probability β(δ) of observing a worse fit with H0 if µ = µ0 + δ.
If that probability is near one then, following FEV(ii), the data are good
evidence that µ < µ0 + δ. Thus β(δ) may be regarded as the stringency or
severity with which the test has probed the discrepancy δ; equivalently one
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might say that µ < µ0 + δ has passed a severe test (Mayo [15]).

This avoids unwarranted interpretations of consistency with H0 with in-
sensitive tests. Such an assessment is more relevant to specific data than is
the notion of power, which is calculated relative to a predesignated critical
value beyond which the test ”rejects” the null. That is, power appertains to
a prespecified rejection region, not to the specific data under analysis.

Although oversensitivity is usually less likely to be a problem, if a test
is so sensitive that a p-value as or even smaller than the one observed, is
probable even when µ < µ0 + δ, then a small value of p is not evidence of
departure from H0 in excess of δ.

If there is an explicit family of alternatives, it will be possible to give
a set of confidence intervals for the unknown parameter defining H0 and
this would give a more extended basis for conclusions about the defining
parameter.

Dividing and Absence of Structure Nulls. In the case of dividing nulls,
discordancy with the null (using the two-sided value of p) indicates direction
of departure (e.g., which of two treatments is superior), accordance with
H0 indicates that these data do not provide adequate evidence even of the
direction any difference. One often hears criticisms that it is pointless to test
a null hypothesis known to be false, but even if we do not expect two means,
say, to be equal, the test is informative in order to divide the departures into
qualitatively different types. The interpretation is analogous when the null
hypothesis is one of absence of structure: a modest value of p indicates
that the data are insufficiently sensitive to detect structure. If the data are
limited this may be no more than a warning against over interpretation
rather than evidence for thinking that indeed there is no structure present.
That is because the test may have had little capacity to have detected any
structure present. A small value of p, however, indicates evidence of a genuine
effect; that to attempt a substantive interpretation of the effect found would
not be to follow an error-prone procedure.

Analogous reasoning applies when assessments about the probativeness
or sensitivity of tests are informal. If the data are so extensive that accor-
dance with the null hypothesis implies the absence of an effect of practical
importance, and a reasonably high p-value is achieved, then it may be taken
as evidence of the absence of an effect of practical importance. Likewise, if
the data are of such a limited extent that it can be assumed that data in
accord with the null hypothesis are consistent also with departures of scien-
tific importance, then a high p-value does not warrant inferring the absence



18 D. G. MAYO AND D. R. COX

of scientifically important departures from the null hypothesis.

Nulls of model adequacy. When null hypotheses are assertions of model
adequacy, the interpretation of test results will depend on whether one has a
relatively focused test statistic designed to be sensitive against special kinds
of model inadequacy, or so called omnibus tests. Concordance with the null
in the former case gives evidence of absence of the type of departure that the
test is sensitive in detecting, whereas, with the omnibus test, it is less infor-
mative. In both types of tests, small p-value is evidence of some departure,
but so long as various alternative models could account for the observed
violation (i.e., so long as this test had little ability to discriminate between
them), these data by themselves may only provide provisional suggestions
of alternative models to try.

Substantive Nulls. In the preceding cases, accordance with a null could at
most provide evidence to rule out discrepancies of specified amounts or types,
according to the ability of the test to have revealed the discrepancy. More
can be said in the case of substantive nulls. If the null hypothesis represents
a prediction from some theory being contemplated for general applicability,
consistency with the null hypothesis may be regarded as some additional ev-
idence for the theory, especially if the test and data are sufficiently sensitive
to exclude major departures from the theory. As encapsulated in Fisher’s
aphorism (Cochran [3]) that to help make observational studies more nearly
bear a causal interpretation, one should make ones theories elaborate, by
which he meant one should plan a variety of tests of different consequences
of a theory, to obtain a comprehensive check of its implications. The limited
result that one set of data accords with the theory adds one piece to the evi-
dence whose weight stems from accumulating an ability to refute alternative
explanations.

In the first type of example under this rubric, there may be apparently
anomalous results for a theory or hypothesis T , where T has successfully
passed appreciable theoretical and/or empirical scrutiny. Were the appar-
ently anomalous results for T genuine, it is expected that H0 will be rejected,
so that when it is not, the results are positive evidence against the reality
of the anomaly. In a second type of case, one again has a well-tested the-
ory T , and a rival theory T ∗ is determined to conflict with T in a thus far
untested domain, with respect to an effect. By identifying the null with the
prediction from T , any discrepancies in the direction of T ∗ are given a very
good chance to be detected, such that, if no significant departure is found,
this constitutes evidence for T in the respect tested.

Although the general theory of relativity, GTR, was not facing anoma-
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lies in the 1960s, rivals to the GTR predicted a breakdown of the Weak
Equivalence Principle for massive self-gravitating bodies, e.g., the earth-
moon system: this effect, called the Nordvedt effect would be 0 for GTR
(identified with the null hypothesis) and non-0 for rivals. Measurements of
the round trip travel times between the earth and moon (between 1969 and
1975) enabled the existence of such an anomaly for GTR to be probed.
Finding no evidence against the null hypothesis set upper bounds to the
possible violation of the WEP, and because the tests were sufficiently sensi-
tive, these measurements provided good evidence that the Nordvedt effect
is absent, and thus evidence for the null hypothesis (Will [30]). Note that
such a negative result does not provide evidence for all of GTR (in all its
areas of prediction), but it does provide evidence for its correctness with
respect to this effect. The logic is this: theory T predicts H0 is at least a
very close approximation to the true situation; rival theory T ∗ predicts a
specified discrepancy from H0, and the test has high probability of detecting
such a discrepancy from T were T ∗ correct. Detecting no discrepancy is thus
evidence for its absence.

3.6. Confidence intervals. As noted above in many problems the pro-
vision of confidence intervals, in principle at a range of probability levels,
gives the most productive frequentist analysis. If so, then confidence interval
analysis should also fall under our general frequentist principle. It does. In
one sided testing of µ = µ0 against µ > µ0, a small p-value corresponds to
µ0 being (just) excluded from the corresponding (1− 2p) (two-sided) confi-
dence interval (or 1− p for the one-sided interval). Were µ = µL, the lower
confidence bound, then a less discordant result would occur with high prob-
ability (1− p). Thus FEV licenses taking this as evidence of inconsistency
with µ = µL (in the positive direction). Moreover, this reasoning shows the
advantage of considering several confidence intervals at a range of levels,
rather than just reporting whether or not a given parameter value is within
the interval at a fixed confidence level.

Neyman developed the theory of confidence intervals ab initio i.e. relying
only implicitly rather than explicitly on his earlier work with E.S. Pear-
son on the theory of tests. It is to some extent a matter of presentation
whether one regards interval estimation as so different in principle from
testing hypotheses that it is best developed separately to preserve the con-
ceptual distinction. On the other hand there are considerable advantages
to regarding a confidence limit, interval or region as the set of parameter
values consistent with the data at some specified level, as assessed by test-
ing each possible value in turn by some mutually concordant procedures.
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In particular this approach deals painlessly with confidence intervals that
are null or which consist of all possible parameter values, at some specified
significance level. Such null or infinite regions simply record that the data
are inconsistent with all possible parameter values, or are consistent with all
possible values. It is easy to construct examples where these seem entirely
appropriate conclusions.

4. Some complications: selection effects. The idealized formula-
tion involved in the initial definition of a significance test in principle starts
with a hypothesis and a test statistic, then obtains data, then applies the
test and looks at the outcome. The hypothetical procedure involved in the
definition of the test then matches reasonably closely what was done; the pos-
sible outcomes are the different possible values of the specified test statistic.
This permits features of the distribution of the test statistic to be relevant
for learning about corresponding features of the mechanism generating the
data. There are various reasons why the procedure actually followed may be
different and we now consider one broad aspect of that.

It often happens that either the null hypothesis or the test statistic are in-
fluenced by preliminary inspection of the data, so that the actual procedure
generating the final test result is altered. This, in turn may alter the capa-
bilities of the test to detect discrepancies from the null hypotheses reliably,
calling for adjustments in its error probabilities.

To the extent that p is viewed as an aspect of the logical or mathematical
relation between the data and the probability model such preliminary choices
are irrelevant. This will not suffice in order to ensure that the p-values serve
their intended purpose for frequentist inference, whether in behavioral or
evidential contexts. To the extent that one wants the error-based calculations
that give the test its meaning to be applicable to the tasks of frequentist
statistics, the preliminary analysis and choice may be highly relevant.

The general point involved has been discussed extensively in both philo-
sophical and statistical literatures, in the former under such headings as
requiring novelty or avoiding ad hoc hypotheses, under the latter, as rules
against peeking at the data or shopping for significance, and thus requir-
ing selection effects to be taken into account. The general issue is whether
the evidential bearing of data y on an inference or hypothesis H0 is altered
when H0 has been either constructed or selected for testing in such a way
as to result in a specific observed relation between H0 and y, whether that
is agreement or disagreement. Those who favour logical approaches to con-
firmation say no (e.g., Mill [18], Keynes [12]), whereas those closer to an
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error statistical conception say yes (Whewell [29], Pierce [24]). Following
the latter philosophy, Popper required that scientists set out in advance
what outcomes they would regard as falsifying H0, a requirement that even
he came to reject; the entire issue in philosophy remains unresolved (Mayo
[15]).

Error statistical considerations allow going further by providing criteria
for when various data dependent selections matter and how to take account
of their influence on error probabilities. In particular, if the null hypothesis
chosen for testing because the test statistic is large, the probability of finding
some such discordance or other may be high even under the null. Thus,
following FEV(i), we would not have genuine evidence of discordance with
the null, and unless the p-value is modified appropriately, the inference would
be misleading. To the extent that one wants the error-based calculations that
give the test its meaning to supply reassurance that apparent inconsistency
in the particular case is genuine and not merely due to chance, adjusting
the p-value is called for.

Such adjustments often arise in cases involving data dependent selections
either in model selection or construction; often the question of adjusting
p arises in cases involving multiple hypotheses testing, but it is important
not to run cases together simply because there is data dependence or mul-
tiple hypothesis testing. We now outline some special cases to bring out the
key points in different scenarios. Then we consider whether allowance for
selection is called for in each case.

4.1. Examples.

Example 1. An investigator has, say, 20 independent sets of data, each
reporting on different but closely related effects. The investigator does all
20 tests and reports only the smallest p, which in fact is about 0.05, and its
corresponding null hypothesis. The key points are the independence of the
tests and the failure to report the results from insignificant tests.

Example 2. A highly idealized version of testing for a DNA match with a
given specimen, perhaps of a criminal, is that a search through a data-base
of possible matches is done one at a time, checking whether the hypothesis
of agreement with the specimen is rejected. Suppose that sensitivity and
specificity are both very high. That is, the probabilities of false negatives
and false positives are both very small. The first individual, if any, from
the data-base for which the hypothesis is rejected is declared to be the true
match and the procedure stops there.
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Example 3. A microarray study examines several thousand genes for po-
tential expression of say a difference between Type 1 and Type 2 disease
status. There are thus several thousand hypotheses under investigation in
one step, each with its associated null hypothesis.

Example 4. To study the dependence of a response or outcome variable y
on an explanatory variable x it is intended to use a linear regression analysis
of y on x. Inspection of the data suggests that it would be better to use the
regression of log y on log x, for example because the relation is more nearly
linear or because secondary assumptions, such as constancy of error variance,
are more nearly satisfied.

Example 5. To study the dependence of a response or outcome variable
y on a considerable number of potential explanatory variables x, a data-
dependent procedure of variable selection is used to obtain a representation
which is then fitted by standard methods and relevant hypotheses tested.

Example 6. Suppose that preliminary inspection of data suggests some
totally unexpected effect or regularity not contemplated at the initial stages.
By a formal test the effect is very ”highly significant”. What is it reasonable
to conclude?

4.2. Need for adjustments for selection. There is not space to discuss
all these examples in depth. A key issue concerns which of these situations
need an adjustment for multiple testing or data dependent selection and
what that adjustment should be. How does the general conception of the
character of a frequentist theory of analysis and interpretation help to guide
the answers?

We propose that it does so in the following manner: Firstly it must be
considered whether the context is one where the key concern is the control
of error rates in a series of applications (behavioristic goal), or whether it is
a context of making a specific inductive inference or evaluating specific evi-
dence (inferential goal). The relevant error probabilities may be altered for
the former context and not for the latter. Secondly, the relevant sequence of
repetitions on which to base frequencies needs to be identified. The general
requirement is that we do not report discordance with a null hypothesis by
means a procedure that would report discordancies fairly frequently even
though the null hypothesis is true. Ascertainment of the relevant hypothet-
ical series on which this error frequency is to be calculated demands con-
sideration of the nature of the problem or inference. More specifically, one
must identify the particular obstacles that need to be avoided for a reliable
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inference in the particular case, and the capacity of the test, as a measuring
instrument, to have revealed the presence of the obstacle.

When the goal is appraising specific evidence, our main interest, FEV
gives some guidance. More specifically the problem arises when data are
used to select a hypothesis to test or alter the specification of an underlying
model in such a way that FEV is either violated or it cannot be determined
whether FEV is satisfied (Mayo and Kruse [16]).

Example 1. Hunting for statistical significance. The test procedure is very
different from the case in which the single null found statistically significant
was preset as the hypothesis to test, perhaps it is H0,13 ,the 13th null hy-
pothesis out of the 20. In Example 1, the possible results are the possible
statistically significant factors that might be found to show a ”calculated”
statistical significant departure from the null. Hence the type 1 error proba-
bility is the probability of finding at least one such significant difference out
of 20, even though the global null is true (i.e., all twenty observed differences
are due to chance). The probability that this procedure yields erroneous
rejection differs from, and will be much greater than, 0.05 (and is approxi-
mately 0.64). There are different, and indeed many more, ways one can err
in this example than when one null is prespecified, and this is reflected in
the adjusted p-value.

This much is well known, but should this influence the interpretation of
the result in a context of inductive inference? According to FEV it should.
However the concern is not the avoidance of often announcing genuine effects
erroneously in a series, the concern is that this test performs poorly as a
tool for discriminating genuine from chance effects in this particular case.
Because at least one such impressive departure, we know, is common even
if all are due to chance, the test has scarcely reassured us that it has done
a good job of avoiding such a mistake in this case. Even if there are other
grounds for believing the genuineness of the one effect that is found, we deny
that this test alone has supplied such evidence.

Frequentist calculations serve to examine the particular case, we have
been saying, by characterizing the capability of tests to have uncovered
mistakes in inference, and on those grounds, the ”hunting procedure” has
low capacity to have alerted us to, in effect, temper our enthusiasm, even
where such tempering is warranted. If, on the other hand, one adjusts the
p-value to reflect the overall error rate, the test again becomes a tool that
serves this purpose.

Example 1 may be contrasted to a standard factorial experiment set up to
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investigate the effects of several explanatory variables simultaneously. Here
there are a number of distinct questions, each with its associated hypothesis
and each with its associated p-value. That we address the questions via
the same set of data rather than via separate sets of data is in a sense a
technical accident. Each p is correctly interpreted in the context of its own
question. Difficulties arise for particular inferences only if we in effect throw
away many of the questions and concentrate only on one, or more generally
a small number, chosen just because they have the smallest p. For then
we have altered the capacity of the test to have alerted us, by means of a
correctly computed p-value, whether we have evidence for the inference of
interest.

Example 2. Explaining a known effect by eliminative induction. Example 2
is superficially similar to Example 1, finding a DNA match being somewhat
akin to finding a statistically significant departure from a null hypothesis:
one searches through data and concentrates on the one case where a ”match”
with the criminal’s DNA is found, ignoring the non-matches. If one adjusts
for ”hunting” in Example 1, shouldn’t one do so in broadly the same way in
Example 2? No.

In Example 1 the concern is that of inferring a genuine, reproducible”
effect, when in fact no such effect exists; in Example 2, there is a known effect
or specific event, the criminal’s DNA, and reliable procedures are used to
track down the specific cause or source (as conveyed by the low ”erroneous-
match” rate.) The probability is high that we would not obtain a match with
person i, if i were not the criminal; so, by FEV, finding the match is, at a
qualitative level, good evidence that i is the criminal. Moreover, each non-
match found, by the stipulations of the example, virtually excludes that
person; thus, the more such negative results the stronger is the evidence
when a match is finally found. The more negative results found, the more
the inferred ”match” is fortified; whereas in Example 1 this is not so.

Because at most one null hypothesis of innocence is false, evidence of
innocence on one individual increases, even if only slightly, the chance of
guilt of another. An assessment of error rates is certainly possible once the
sampling procedure for testing is specified. Details will not be given here.

A broadly analogous situation concerns the anomaly of the orbit of Mer-
cury: the numerous failed attempts to provide a Newtonian interpretation
made it all the more impressive when Einstein’s theory was found to predict
the anomalous results precisely and without any ad hoc adjustments.

Example 3. Micro-array data. In the analysis of micro-array data, a rea-
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sonable starting assumption is that a very large number of null hypotheses
are being tested and that some fairly small proportion of them are (strictly)
false, a global null hypothesis of no real effects at all often being implausi-
ble. The problem is then one of selecting the sites where an effect can be
regarded as established. Here, the need for an adjustment for multiple test-
ing is warranted mainly by a pragmatic concern to avoid ”too much noise in
the network”. The main interest is in how best to adjust error rates to indi-
cate most effectively the gene hypotheses worth following up. An error-based
analysis of the issues is then via the false-discovery rate, i.e. essentially the
long run proportion of sites selected as positive in which no effect is present.
An alternative formulation is via an empirical Bayes model and the conclu-
sions from this can be linked to the false discovery rate. The latter method
may be preferable because an error rate specific to each selected gene may
be found; the evidence in some cases is likely to be much stronger than in
others and this distinction is blurred in an overall false-discovery rate. See
Shaffer [27] for a systematic review.

Example 4. Redefining the test. If tests are run with different specifica-
tions, and the one giving the more extreme statistical significance is chosen,
then adjustment for selection is required, although it may be difficult to as-
certain the precise adjustment. By allowing the result to influence the choice
of specification, one is altering the procedure giving rise to the p-value, and
this may be unacceptable. While the substantive issue and hypothesis re-
main unchanged the precise specification of the probability model has been
guided by preliminary analysis of the data in such a way as to alter the
stochastic mechanism actually responsible for the test outcome.

An analogy might be testing a sharpshooter’s ability by having him shoot
and then drawing a bull’s-eye around his results so as to yield the highest
number of bull’s-eyes, the so-called principle of the Texas marksman. The
skill that one is allegedly testing and making inferences about is his ability to
shoot when the target is given and fixed, while that is not the skill actually
responsible for the resulting high score.

By contrast, if the choice of specification is guided not by considerations of
the statistical significance of departure from the null hypothesis, but rather
because the data indicates the need to allow for changes to achieve linear-
ity or constancy of error variance, no allowance for selection seems needed.
Quite the contrary: choosing the more empirically adequate specification
gives reassurance that the calculated p-value is relevant for interpreting the
evidence reliably. This might be justified more formally by regarding the
specification choice as an informal maximum likelihood analysis, maximiz-
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ing over a parameter orthogonal to those specifying the null hypothesis of
interest.

Example 5. Data mining. This example is analogous to Example 1, al-
though how to make the adjustment for selection may not be clear because
the procedure used in variable selection may be tortuous. Here too, the diffi-
culties of selective reporting are bypassed by specifying all those reasonably
simple models that are consistent with the data rather than by choosing
only one model (Cox and Snell [7]). The difficulties of implementing such a
strategy are partly computational rather than conceptual. Examples of this
sort are important in much relatively elaborate statistical analysis in that
series of very informally specified choices may be made about the model
formulation best for analysis and interpretation (Spanos [28]).

Example 6. The totally unexpected effect. This raises major problems. In
laboratory sciences with data obtainable reasonably rapidly, an attempt to
obtain independent replication of the conclusions would be virtually oblig-
atory. In other contexts a search for other data bearing on the issue would
be needed. High statistical significance on its own would be very difficult
to interpret, essentially because selection has taken place and it is typically
hard or impossible to specify with any realism the set over which selection
has occurred. The considerations discussed in Examples 1-5, however, may
give guidance. If, for example, the situation is as in Example 2 (explaining
a known effect) the source may be reliably identified in a procedure that
fortifies, rather than detracts from, the evidence. In a case akin to Example
1, there is a selection effect, but it is reasonably clear what is the set of pos-
sibilities over which this selection has taken place, allowing correction of the
p-value. In other examples, there is a selection effect, but it may not be clear
how to make the correction. In short, it would be very unwise to dismiss the
possibility of learning from data something new in a totally unanticipated
direction, but one must discriminate the contexts in order to gain guidance
for what further analysis, if any, might be required.

5. Concluding remarks. We have argued that error probabilities in
frequentist tests may be used to evaluate the reliability or capacity with
which the test discriminates as to whether or not the actual process giving
rise to data is in accordance with that described in H0. Knowledge of this
probative capacity allows determination of whether there is strong evidence
against H0 based on the frequentist principle we set out FEV. What makes
the kind of hypothetical reasoning relevant to the case at hand is not the
long-run low error rates associated with using the tool (or test) in this man-
ner; it is rather what those error rates reveal about the data generating
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source or phenomenon. We have not attempted to address the relation be-
tween the frequentist and Bayesian analyses of what may appear to be very
similar issues. A fundamental tenet of the conception of inductive learning
most at home with the frequentist philosophy is that inductive inference
requires building up incisive arguments and inferences by putting together
several different piece-meal results; we have set out considerations to guide
these pieces. Although the complexity of the issues makes it more difficult
to set out neatly, as, for example, one could by imagining that a single algo-
rithm encompasses the whole of inductive inference, the payoff is an account
that approaches the kind of arguments that scientists build up in order to
obtain reliable knowledge and understanding of a field.
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