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ABSTRACT

Despite the widespread use of key concepts of the Neyman–Pearson (N–P) statistical

paradigm—type I and II errors, significance levels, power, confidence levels—they have

been the subject of philosophical controversy and debate for over 60 years. Both current

and long-standing problems of N–P tests stem from unclarity and confusion, even

among N–P adherents, as to how a test’s (pre-data) error probabilities are to be

used for (post-data) inductive inference as opposed to inductive behavior. We argue

that the relevance of error probabilities is to ensure that only statistical hypotheses

that have passed severe or probative tests are inferred from the data. The severity

criterion supplies a meta-statistical principle for evaluating proposed statistical

inferences, avoiding classic fallacies from tests that are overly sensitive, as well as

those not sensitive enough to particular errors and discrepancies.
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1 Introduction and overview

Questions about the nature and justification of probabilistic and statistical

methods have long been of central interest to philosophers of science.

Debates over some of the most widely used statistical tools—significance

tests, Neyman–Pearson (N–P) tests and estimation—over the past 60 years,

are entwined with a core philosophical question:

‘Where should probability enter in inductive inference in science?’

In tackling this question there are two main distinct philosophical tradi-

tions from which to draw (Pearson [1950], p. 394). In one, probability is used

to provide a post-data assignment of degree of probability, confirmation,

or belief in a hypothesis; while in a second, probability is used to assess the

reliability of a test procedure to assess and control the frequency of errors

in some (actual or hypothetical) series of applications (error probabilities).

We may call the former degree of confirmation approaches, the latter, error

probability or error statistical approaches. Since the former has seemed most

in sync with philosophical conceptions of inductive inference, while the latter

is embodied in statistical significance tests and N–P methods, it is easy to see

why conflict has abounded in the philosophical literature. The ‘error prob-

ability’ versus ‘degree of confirmation’ debates take such forms as: decision

vs. inference, pre-data vs. post-data properties, long-run vs. single case, and

have been discussed by numerous philosophers e.g., Earman, Fetzer, Giere,

Gillies, Glymour, Hacking, Horwich, Howson, Kyburg, Levi, Peirce,

Rosenkrantz, Salmon, Seidenfeld, Spielman, Urbach.1

As advances in computer power have made available sophisticated

statistical methods from a variety of schools (N–P, Fisherian, Bayesian,

1 A partial list among statisticians who contributed to these debates: Armitage, Barnard, Berger,

Birnbaum, Cox, de Finetti, Edwards, Efron, Fisher, Good, Jeffreys, Kempthorne, LeCam,

Lehmann, Lindley, Neyman, Pearson, Pratt, Savage. Excellent collections of contributions

by philosophers and statisticians are Godambe and Sprott ([1971]), and Harper and Hooker

([1976]).
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algorithmic), a happy eclecticism may seem to have diminished the need to

resolve the philosophical underpinnings of the use and interpretation of stat-

istical methods. However, the significance test controversy is still hotly

debated among practitioners, particularly in psychology, epidemiology,

ecology, and economics; one almost feels as if each generation fights the

‘statistics wars’ anew, with journalistic reforms, and task forces aimed at

stemming the kind of automatic, recipe-like uses of significance tests that

have long been deplored.2 Moreover, the newer statistical methods involving

model selection algorithms and multiple hypothesis testing do not get away

from, but rather pile up applications of, significance test results. Having never

resolved satisfactorily questions of the role of error probabilities, practition-

ers face a shortage of general principles for how—or even whether—to

calculate error probabilities in such contexts.

Not that practitioners are waiting for philosophers to sort things out.

We read, for instance, in a recent article in Statistical Science: ‘professional

agreement on statistical philosophy is not on the immediate horizon, but this

should not stop us from agreeing on methodology’ (Berger [2003], p. 2).

However, the latter question, we think, turns on the former.3 Seeking an

agreement on numbers first, with the assumption that philosophy will follow,

leads to ‘reconciliations’ that may not do justice to core principles underlying

the disparate philosophies involved. In particular, using error probabilities as

posterior probabilities (however ingenious the latest attempts), leads to

‘hybrids’ from mutually inconsistent statistical paradigms (Gigerentzer

[1993]). Many Bayesian practitioners, wishing to avoid the infirmities of

eliciting and depending on subjective prior probabilities, turn to developing

prior ‘weights’ as reference points from which to calculate ‘objective’ poster-

iors. However, the various proposed ‘reference’ priors are themselves open to

persistent problems and paradoxes (Kass and Wasserman [1996]). David Cox

recently argued that their main conceptual justification is that, in a given class

of cases, they lead, at least approximately, to procedures with acceptable

frequentist properties (Cox [2006]), thereby raising anew the question of the

nature and role of frequentist error probabilities. While not wishing to

refight old battles, we propose to reopen the debate from a contemporary

perspective—one that will allow developing an interpretation of tests (and

associated methods) that avoids cookbooks, is inferential, and yet keeps to

the philosophy of frequentist error probability statistics. Ironically, we will

extract some needed threads from little discussed papers by Neyman—one

2 The social science literature criticizing significance testing is too vast to encompass; some key

sources are: Cohen ([1988]), Harlow et al. ([1997]), Morrison and Henkel ([1970]), MSERA

([1998]), Thompson ([1996]).
3 In this article, Berger considers how to reconcile Fisher and Neyman, as well as Jeffreys; see the

comments in Mayo ([2003b]).
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of the key, early, controversial figures (Neyman [1955], [1956], [1957a],

[1957b]).

1.1 Behavioristic and inferential rationales for
Neyman–Pearson (N–P) tests

In ‘Inductive Behavior as a Basic Concept of Philosophy of Science,’

Jerzy Neyman ([1957a]) suggests that ‘in relation to science, the philosophy

of science plays the same role as anatomy and neurology play in relation

to the process of walking’ (pp. 7–8): to understand and improve on the

proper functioning of the processes in question. In a proper ‘anatomization’

of the process of statistical induction, Neyman charges, ‘the term ‘‘inductive

reasoning’’ is a misnomer, . . . and that a better term would be something like

inductive behavior’ (p. 8)—the process of adjusting our actions to observations.

A Neyman and Pearson (N–P) test, as Neyman interprets it, is a rule of

inductive behavior:

To decide whether a hypothesis, H, of a given type be rejected or not,

calculate a specified character, t(x0) of the observed facts [the test statistic];

if t(x) > t(x0) Reject H; if t(x) � t(x0) Accept H (Neyman and Pearson

[1933], p. 291).

‘Accept/Reject’ are identified with deciding to take specific actions, for

example, rejecting H might be associated with publishing a result, or announ-

cing a new effect. The set of outcomes that lead to ‘Reject H’ make up the

test’s rejection (or critical) region; it is specified so that:

it may often be proved that if we behave according to such a rule . . . we

shall reject H when it is true not more, say, than once in a hundred times,

and in addition we may have evidence that we shall reject H sufficiently

often when it is false. (Neyman and Pearson [1933], p. 291)

Why should one accept/reject statistical hypotheses in accordance with a test

rule with good error probabilities? The inductive behaviorist has a ready answer:

Behavioristic rationale: We are justified in ‘accepting/rejecting’ hypotheses

in accordance with tests having low error probabilities because we will

rarely err in repeated applications.

By and large, however, error statistical practitioners seem to regard the error

probabilistic behavior of tests in (actual or hypothetical) repetitions as simply a

useful way to describe the properties of tests: and these properties enable tests

to suitably function for inductive inference in science. Indeed, wishing to

disentangle themselves from the decision-behavior construal, most users of

N–P tests favor such generic labels as hypothesis tests, statistical significance

tests, or error probability methods—we will use error statistics for short. Their
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thinking, if only implicit, is that error probabilities admit of an inferential

rationale:

Inferential Rationale (general): Error probabilities provide a way to deter-

mine the evidence a set of data x0 supplies for making warranted inferences

about the process giving rise to data x0.

The as yet unanswered question is how do error statistical tests satisfy the

inferential rationale? How, in short, should we bridge the gap from error

properties of procedures to specific inferences based on them:

Error probabilities ! inference

An adequate answer requires the philosophical ‘anatomist’ to go beyond

the traditional N–P paradigm which leaves this issue unattended, where we

understand by the ‘N–P paradigm’ the uninterpreted statistical tools based on

error probabilities. Whether this ‘going beyond’ is to be viewed as a reinter-

pretation, extension, or theoretical foundation of N–P theory, in order for it

to succeed, it must address three main problems that have long been taken as

obstacles for using N–P tests for inductive inference as opposed to inductive

behavior; namely, that N–P tests are too:

(i) Coarse: N–P tests tell us whether to reject or accept hypotheses

according to whether t(x) falls in the test’s rejection region or not, but

evaluating evidence and inference post-data seem to require more

data-specific interpretations.

(ii) Open to Fallacies: N–P tests give rise to fallacies of rejection (statistical

significance vs. substantive significance) and of acceptance (no evidence

against is not evidence for).

(iii) Focused on Pre-Data, Behavioristic Goals (in specifying and justifying

tests): The good long-run performance characteristics of N–P tests (low

type I and type II error probabilities) may conflict with criteria that seem

appropriate for inference once the data are available, i.e., post-data.

By assuming the former, degree-of-confirmation philosophy, it is often

supposed that in order for N–P methods to avoid problems (i)–(iii), pre-

data error probabilities must be made to supply hypotheses with some

post-data degrees of confirmation or support:

Degree of confirmation rationale: Error probabilities may be used post-

data to assign degrees of confirmation or support to hypotheses.

But error probabilities do not, nor were they intended to, supply such

degrees of probability or confirmation; interpreting them as if they did yields

inconsistent ‘hybrids’. Post-data (posterior) degrees of probability require

prior probability assignments to (an exhaustive set of) hypotheses, and N–P

tests were developed to avoid reliance on such prior probabilities, however they
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are interpreted (e.g., logical, subjective). One may simply posit the inferential

rationale, by fiat, but this is to skirt and not answer the philosophical question

(Hacking [1965]; Birnbaum [1969]). Birnbaum ([1977]) attempted an

‘evidential’ interpretation of N–P tests by means of his ‘Confidence Concept,’

but this remains a pre-data error probability notion. An attempt by Kiefer

([1977]) to deal with the coarseness problem via his notion of ‘conditional’

error probabilities also differs from the approach we will take.

1.2 Severity rationale: induction as severe testing

We propose to argue that N–P tests can (and often do) supply tools for inductive

inference by providing methods for evaluating the severity or probativeness of

tests. An inductive inference, in this conception, takes the form of inferring

hypotheses or claims that survive severe tests. In the ‘severe testing’ philosophy

of induction, the quantitative assessment offered by error probabilities tells us

not ‘how probable’, but rather, ‘how well probed’ hypotheses are. This suggests

how to articulate the general inferential rationale we seek:

Severity rationale: Error probabilities may be used to make inferences

about the process giving rise to data, by enabling the assessment of

how well probed or how severely tested claims are, with data x0.

Although the degree of severity with which a hypothesis H has passed a test is

used to determine if it is warranted to infer H, the degree of severity is not

assigned to H itself: it is an attribute of the test procedure as a whole (including

the inference under consideration). The intuition behind requiring severity is that:

Data x0 in test T provide good evidence for inferring H (just) to the extent

that H passes severely with x0, i.e., to the extent that H would (very

probably) not have survived the test so well were H false.

Karl Popper is well known to have insisted on severe tests: ‘Observations or

experiments can be accepted as supporting a theory (or a hypothesis, or a

scientific assertion) [H ] only if these observations or experiments are severe

tests of the theory’ (Popper [1994], p. 89)—that is, H survived ‘serious criti-

cism’. However, Popper, and the modern day ‘critical rationalists’ deny they

are commending a reliable process—or at least, ‘they must deny this if they

[are] to avoid the widespread accusation that they smuggle into their theory

either inductive reasoning or some metaphysical inductive principle.’

(Musgrave [1999], pp. 246–7). All we know, says Popper, is that the surviving

hypotheses ‘may be true’; but high corroboration is at most a report

of H’s past performance—we are not warranted in relying on it. By

contrast, N–P tests will be regarded as good only insofar as they can be

shown to have appropriately low error probabilities, which itself involves

inductive justification. (For further discussion of critical rationalism see

Mayo [2006], pp. 63–96).
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1.3 Severity as a meta-statistical concept: three required
restrictions on the N–P paradigm

N–P tests do not directly supply severity assessments. Having specified a

null hypothesis H0, and an alternative hypothesis H1 (the complement of

H0) a N–P test, mathematically speaking, is simply a rule that maps each

possible outcome x ¼ (x1, . . . , xn) into H0 or H1, so as to control at small

values the probability of erroneous rejections (type I error) and erroneous

acceptances (type II error). The severity principle is a meta-statistical prin-

ciple to direct the uses of tests for the severity goal. Although N–P tests map

data into two outputs, accept and reject, both may be regarded as passing a

given statistical claim H with which data x agrees; we have then to ascertain if

such agreement would occur (and how frequently) under specific denials of H.

That is,

A statistical hypothesis H passes a severe test T with data x0 if,

(S-1) x0 agrees with H, and

(S-2) with very high probability, test T would have produced a result that

accords less well with H than x0 does, if H were false.4

Our specific focus will be on cases where ‘H is false’ refers to discrepancies

from parameters in a statistical model, but we will also suggest how the idea

may be generalized to inferring the presence of ‘an error’ or flaw, very generally

conceived. A main task for statistical testing is to learn, not just whether H is

false, but approximately, how far from true H is, with respect to parameters in

question.

The severity function has three arguments: a test, an outcome or result, and

an inference or a claim. ‘The severity with which inference H passes test T

with outcome x’ may be abbreviated by:

SEV(Test T, outcome x, claim H).

Granted, other terms could serve as well to bring out the essential features

of our conception; the main thing is to have a notion that exemplifies the

‘probative’ concept, that is not already attached to other views, and to which

the formal apparatus of N–P testing lends itself. The severity goal not only requires

that:

(a) ‘Accept/Reject’ be interpreted inferentially, as evidence of the

presence or absence of departures, (appropriate to the testing

context or question),

4 Condition (S-2) can equivalently be written: with very low probability, test T would have

produced a result that accords with H as well as (or better than) x0 does, if H were false

(and a given discrepancy were present).
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it requires as well that:

(b) the test statistic t(X) defines an appropriate measure of

accordance or distance (as required by severity condition

S-1).5

To emphasize (b), we will use d(X) for the test statistic; see Pearson ([1947],

p. 143). Thirdly,

(c) the severity evaluation must be sensitive to the particular

outcome x0; it must be a post-data assessment.

Moreover, the guide for evaluating, and possibly adjusting, error

probabilities (e.g., in multiple hypothesis testing, in data mining) is

whether the probativeness is altered with respect to the particular error of

interest; see Mayo and Cox ([2006]).

An informal example may serve to capture the distinction between the

behavioristic and severity rationales that we will be developing: Suppose a

student has scored very high on a challenging test—that is, she earns a

score that accords well with a student who has mastered the material.

Suppose further that it would be extraordinary for a student who had not

mastered most of the material to have scored as high, or higher than, she

did. What warrants inferring that this score is good evidence that she has

mastered most of the material? The behavioristic rationale would be that

to always infer a student’s mastery of the material just when they scored

this high, or higher, would rarely be wrong in the long run. The

severity rationale, by contrast, would be that this inference is warranted

because of what the high score indicates about this student—mastery of the

material.

From the severe-testing perspective, error probabilities have a crucial role

to play in obtaining good test procedures (pre-data), and once the data x0 are

in (post-data), they enable us to evaluate the probativeness or severity with

which given hypotheses pass tests with x0. The severity criterion, we will

argue, gives guidance as to what we should look for in scrutinizing N–P

tests and inferences based on them; in so doing, the cluster of challenges

underlying (i)–(iii) may be answered. Having the necessary impact on the

controversy as it is played out in practice, however, demands not merely

laying out a general principle of inference, but showing how it may be imple-

mented. That is the goal of our discussion. We limit ourselves here to familiar

classes of hypotheses tests, though our points may be extended to many

classes of tests. See for example Spanos ([2006]).

5 In an appropriate distance measure between H and x, the larger d(x) is the more indicative of

discrepancy from H.
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2 Error statistical tests from the severity perspective

Although the severity perspective directs the above restrictions/

reintepretations, we retain several distinguishing features offered by the

N–P (error-statistical) paradigm. To begin with, in error-statistical testing,

one is asking a question about the data generating mechanism, framed

in terms of a statistical hypothesis H. H cannot merely be an event; rather,

H must assign a probability to each possible outcome x, i.e., it gives the

‘probability of x under H’, abbreviated as P(x;H). This notation helps also

to avoid confusion with conditional probabilities in Bayes’s theorem, P(xjH),

where H is treated as a random variable with its own prior probabilities.6

The hypothesis testing question is put in terms of a null (or test) hypothesis

H0, and alternative H1, the union of which exhausts the parameter space

of the a statistical model which can be represented as a pair (X , Q); where

X denotes the set of all possible values of the sample X ¼ (X1, . . . , Xn)—a set

of random variables—one such value being the data x0 ¼ (x1, . . . , xn), and Q

denotes the set of all possible values of the unknown parameter(s) u. In

hypothesis testing Q is used as a shorthand for the family of densities indexed

by u, i.e. Q:¼ { f(x; u), u 2 Q}, and the generic form of null and alternative

hypotheses is:

H0: � 2Q0 vs: H1 : � 2Q1, where Q0, Q1ð Þ constitutes a partition of Q:7

There is a test statistic d(X) reflecting the distance from H0 in the direction

of H1, such that the distribution of d(X), its sampling distribution, evaluated

under H0, involves no unknown parameters. Because error probabilities

concern the distribution of d(X), evaluated under both the null and alter-

native hypotheses, interpreting a given result involves considering not just

the observed value, d(x0), but other possible values in X that could have

occurred.8

For simplicity, we limit our focus to examples with a single unknown para-

meter m, but our results apply to any hypothesis testing situation that can be

viewed as a special case of the above generic form; see Spanos ([1999], ch. 14).

2.1 N–P Test T(a): type I, II error probabilities and power

Example. Consider a sample X ¼ (X1, . . . , Xn) of size n, where each Xi is

assumed to be Normal (N(m, s2)), Independent and Identically Distributed

6 Freedman ([1995]) employs P ( . kH) to avoid the same confusion, but ‘;’ is more familiar.
7 Note that this precludes the artificial point against point hypothesis test that is so often the basis

of criticisms (Hacking, [1965]; Royall, [1997]).
8 By contrast, posterior probabilities are evaluated conditional on the particular observed value of

X, say x0. Other values that could have resulted but did not are irrelevant once x0 is in hand.
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(NIID), with the standard deviation s known, say s ¼ 2:

M: Xi � NIID m, s2
� �

, where �1 < m < 1, i ¼ 1, 2, . . . , n:

To keep the focus on the main logic, we assume that the null and alternative

hypotheses of interest will concern the mean m:

H0: m6m0 vs: H1: m > m0:

The relevant test statistic is: d Xð Þ ¼ X�m0

� �
=sx, where X is the sample

mean with standard deviation sx ¼ (s/
ffiffiffi
n

p
). Under the null, d(X) is distributed

as standard Normal, denoted by d(X) � N(0, 1).

The test is specified so that the probability of a Type I error, a, is fixed at

some small number, such as 0.05 or 0.01, the significance level of the test:

Type I error probability ¼ P d Xð Þ > ca; H0ð Þ � a,

where C1(a) ¼ {x: d(x) > ca} denotes the rejection region.9 Let T(a) denote

the test defined by d(X) and C1(a). Having fixed the type I error, as the ‘more

important’ of the two, N–P test principles then seek out the test that at the

same time has a small probability of committing a type II error b. Since the

alternative hypothesis H1, as is typical, contains more than a single value of

the parameter, it is composite, we abbreviate by b(m1) the type II error prob-

ability corresponding to m ¼ m1, for m1 values greater than m0, i.e., in the

alternative region:

Type II error probability at m1ð Þ ¼ P d Xð Þ � ca; m1ð Þ

¼ b m1ð Þ, for any m1 > m0:

The ‘optimality’ of a N–P test of significance level a, is specified primarily

in terms of minimizing b(m1) for all m1 > m0, or equivalently, maximizing the

power (see Lehmann [1986]):

POW T að Þ; m1ð Þ ¼ P d Xð Þ > ca; m1ð Þ, for m1 > m0:

The above components define a N–P test T(a) with significance level a

which rejects H0 with data x0 if and only if d(x0) is greater than ca.

Test T að Þ: if d x0ð Þ > ca;Reject H0; if d x0ð Þ � ca, Accept H0:

NumericalExample.Letm0¼ 12,a¼ .025, n¼100,s¼ 2 (sx¼ 0.2). The test rule

associated with test T(a) is: Reject H0 iff d(x0) > 1.96, i.e., whenever �xx > 12:4.

9 A sufficient condition for an appropriate rejection region is that for any two significance levels a1

and a2 such that 0 6 a1 < a2 6 1, C1(a1) is a subset of C1(a2). This goes hand in hand with

specifying a test statistic that provides an appropriate ‘distance measure’ as severity requires;

see note 5.
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Note that while test T(a) describes a familiar ‘one-sided’ test, our dis-

cussion easily extends to the case where one is interested in ‘two-sided’

departures: One simply combines two tests, ‘one to examine the possibility

that m1 > m0, the other for m1 < m0’ (Cox and Hinkley [1974], p. 106, replaced

u with m). In this case, the a level two-sided test combines both one-sided

tests, each with significance level 0.5a.

2.2 Specifying Test T(a) using p-values

An alternative, but equivalent, way to specify the N–P test is in terms

of the observed significance level or the p-value (Fisher [1935]), defined as

‘the probability of a difference larger than d(x0), under the assumption that

H0 is true,’ i.e.

p x0ð Þ ¼ P d Xð Þ > d x0ð Þ; H0ð Þ:

Test T að Þ: if p x0ð Þ � a, reject H0; if p x0ð Þ > a, accept H0:

Fisherian significance tests differ from N–P tests primarily in so far as the

alternative hypothesis H1, in the N–P sense, is absent. As a result, the error

probabilities are confined to those evaluated under the null, and thus, in

contrast to the N–P paradigm, there is no notion of ‘optimality’ (based on

power), associated with the choice of a test.

Fisher ([1935], [1956]), eschewed the N–P behavioristic model (which he

regarded as a distortion of his significance tests on which it was built), pre-

ferring to report the observed p-value: if small (e.g., 0.05 or 0.01) the null

hypothesis would be rejected at that level. Some prefer to simply report the

p-value as a degree of inconsistency between x0 and H0 (the ‘pure significance

test’): the smaller the p-value, the more inconsistent (Cox [1958]). Even N–P

practitioners often prefer to report the observed p-value rather than merely

whether the predesignated cut-off for rejection, ca, has been reached, because

it ‘enables others to reach a verdict based on the significance level of their

choice’ (Lehmann, [1986], p. 70). Problems arise when p-values are inter-

preted illegitimately as degrees of probability of H0 (an inconsistent hybrid).

For example, a difference that is significant at level .01 does not mean we

assign the null hypothesis a probability .01. Nevertheless, p-value reports

have many inadequacies. To report p-values alone is widely disparaged as

failing to assess the discrepancy or ‘effect size’ indicated (see Rosenthal

[1994]; Thompson [1996]); nowadays it is often required (e.g., in psychology

journals) that effect-size measures accompany p-values.

The severity conception retains aspects of, and also differs from, both

Fisherian and Neyman–Pearsonian accounts, as traditionally understood.

We wish to retain the post-data aspect of p-values—indeed extend it to

other post-data error probabilities—but without forfeiting the advantages
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offered by explicitly considering alternatives from the null hypothesis.

A severity analysis allows both the data dependency of (post-data) error

probabilities as well as an inferential report of the ‘discrepancy’ from the

null that is warranted by data x0. It is a ‘hybrid’ of sorts, but it grows

from a consistent inferential philosophy.10

3 Neyman’s post-data use of power

Given the pre-data emphasis of the better known formulations of N–P

theory, it is of interest to discover that, in discussing ‘practice’, Neyman, at

times, calls attention to ‘the use of the concept of the power of a test in three

important phases of scientific research: (i) choice of a statistical test, (ii) design

of an experiment, and (iii) interpretation of results’ (Neyman [1957b], p. 10).

Phases (i) and (ii) are pre-data. In particular, by designing T(a) so that

POW(T(a); m1) ¼ high, a tester ensures, ahead of time, that there is a high

probability that the test would detect a discrepancy g if it existed, for

m1 ¼ m0 þ g. That a test ‘detects a discrepancy’ means it rejects H0 or reports

a statistically significant (a-level) departure from H0—perhaps a better term

is that it ‘signals’ a discrepancy (we do not know it would do so correctly).

Phase (iii), however, is post-data. In phase (iii), ‘the numerical values of

probabilities of errors of the second kind are most useful for deciding whether

or not the failure of a test to reject a given hypothesis could be interpreted as

any sort of ‘confirmation’ of this hypothesis’ (Neyman [1956], p. 290). To

glean how Neyman intends power to be used in phase (iii), it is interesting

to turn to remarks he directs at Carnap, and at Fisher, respectively.11

3.1 Neyman: does failure to reject H warrant confirming H?

Addressing Carnap, ‘In some sections of scientific literature the prevailing

attitude is to consider that once a test, deemed to be reliable, fails to reject

the hypothesis tested, then this means that the hypothesis is ‘confirmed’

(Neyman [1955]). Calling this ‘a little rash’ and ‘dangerous’, he claims

‘a more cautious attitude would be to form one’s intuitive opinion only

after studying the power function of the test applied’ (p. 41).

10 It is a mistake to regard the introduction of the alternative hypothesis, and with it, the notion

of power, as entailing the behavioristic model of tests. While, in responding to Fisher ([1955])

distanced himself from the behavioristic construal, he described the introduction of alternative

hypotheses as a ‘Pearson heresy’, whose aim was to put the choice of test under sounder footing.

See Mayo ([1992], [1996]).
11 To our knowledge, Neyman discusses post-data power in just the three articles cited here. Other

non-behavioral signs may be found also in Neyman ([1976]) wherein he equates ‘deciding’ with

‘concluding’ and declares that his ‘preferred substitute for ‘do not reject H’ is ‘no evidence

against H is found’, both of which, being ‘cumbersome’ are abbreviated with ‘accept H’. This

last point is not unusual for Neyman.
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[If] the chance of detecting the presence [of discrepancy from the null], . . .

is extremely slim, even if [the discrepancy is present] . . . , the failure of

the test to reject H0 cannot be reasonably considered as anything like a

confirmation of H0. The situation would have been radically different

if the power function [corresponding to a discrepancy of interest] were,

for example, greater than 0.95.12 (ibid., p. 41)

Although in theory, once the N–P test is set up, the test is on ‘automatic

pilot’—H0 is accepted or rejected according to whether d(x0) > ca—in prac-

tice, even behaviorist Neyman betrays a more nuanced post-data appraisal.

In an ironic retort, Neyman ([1957a]) criticizes Fisher’s move from a

large p-value to confirming the null hypothesis as ‘much too automatic

[because] . . . large values of p may be obtained when the hypothesis tested

is false to an important degree. Thus, . . . it is advisable to investigate . . . what

is the probability (of error of the second kind) of obtaining a large value of

p in cases when the [null is false to a specified degree]’ (p. 13, replaced

P with p)—that is, the power of the test. Note: a large value of p leads to

‘accept H0’, or to reporting a non-statistically significant difference. Further-

more, Neyman regards the post-data reasoning based on power as precisely

analogous to the construal of rejection:

[If] the probability of detecting an appreciable error in the hypothesis

tested was large, say .95 or greater, then and only then is the decision in

favour of the hypothesis tested justifiable in the same sense as the decision

against this hypothesis is justifiable when an appropriate test rejects it at a

chosen level of significance (Neyman [1957b], pp. 16–7).

Since he is alluding to Fisher, he combines notions from Fisherian and

N–P tests in a general principle underlying the post-data use of power for

interpreting ‘Accept H0’, i.e., a non-significant difference d(x0):

(3.1) If data d(x0) are not statistically significantly different from H0—i.e.,

p is not small—and the power to detect discrepancy g is high (low), then

d(x0) is (not) good evidence that the actual discrepancy is less than g.

Admittedly, no such testing principle is to be found in the standard

theoretical expositions of N–P testing theory.13 The emphasis on the

12 There are obvious similarities to the Popperian demand that hypotheses be highly corro-

borated. Neyman’s recommendation would seem to offer a way to obtain a positive upshot

from the falsificationist goals that Gillies ([1973]) looks to significance tests to provide. Mere

failures to reject H0 should not count as Popperian corroboration for H0, but an assertion such

as our ‘the departure from H0 is no greater than g’.
13 Early proponents of essentially the principle in (3.1) may be found in Bailey ([1971]), Cohen

([1988]), Gibbons and Pratt ([1975]), Mayo ([1983]). More recently, it arises in those wishing to

reform significance tests (e.g., in psychology—see references in note 2) by supplementing them

with ‘effect size’ measures, unaware that the seeds are already in Neyman ([1955], [1957a],

[1957b]).
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predesignation of tests may even seem to discourage such a post-data use of

error probabilities.

Note how the stipulations in (3.1) adhere to severity requirements (S-1) and

(S-2). The inference being considered for scrutiny is:

H: ‘the discrepancy from m0ð Þ is less than g’

which, notice, differs from H0, unless g ¼ 0. The statistically insignificant

result ‘agrees with’ H, so we have (S-1), and from the high power, we satisfy

(S-2): that is, with very high probability, test T would have produced a result

that accords less well with H than x0 does, were H false (were the discrepancy

from m0 to exceed g). Note that to ‘accord less well with H’ means, in

this context, obtain a smaller p-value than observed. Nevertheless, severity

calls for replacing the coarse assessment based on power with a data-

dependent analysis.

4 Severe testing as a basic concept for an adequate
post-data inference

The post-data use of power in (3.1) retains an unacceptable coarseness: Power

is always calculated relative to the cut-off point ca for rejecting H0. Consider

test T(a) with particular numerical values: a ¼ 0:025, n ¼ 100, s ¼ 2

sx ¼ 0:2ð Þ:
H0: m � 12 vs: H1: m > 12:

Reject H0 iff d x0ð Þ > 1:96, i:e:, iff x � 12:4:

(Equivalently, Reject H0 iff the p-value is less than 0.025.) Suppose, for

illustration, g* ¼ 0.2 is deemed substantively important (m :¼ m0 þ g* ¼
12.2). To determine if ‘it is a little rash’ to take a non-significant result, say

d(x0) ¼ �1.0, as reasonable evidence that g < g* (i.e., an important discrep-

ancy is absent), we are to calculate POW(T(a), g*), which is only 0.169! But

why treat all values of d(x0) in the acceptance region the same?

What if we get ‘lucky’ and our outcome is very much smaller than the

cut-off 1.96? Intuition suggests that d(x0) ¼ �1.0 provides better evidence

for g < g* than d(x0) ¼ 1.95 does. The evaluation of POW(T(a),.2), however,

will be identical for both sample realizations. In fact, were m as large as 12.2,

there is a high probability of observing a larger difference than �1. In

particular, P(d(X) > �1.0; 12.2) ¼ 0.977. This suggests that, post-data, the

relevant threshold is no longer the pre-designated ca, but d(x0). That is, rather

than calculating:

Power at m ¼ 12:2: P d Xð Þ > ca; m ¼ 12:2ð Þ,
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one should calculate what may be called,

Attained or actualð Þ Power : P d Xð Þ > d x0ð Þ;m ¼ 12:2ð Þ:

The attained power against alternative m ¼ 12.2 gives the severity with

which m < 12.2 passes test T(a) when H0 is accepted.14 Several numerical

illustrations will be shown.

4.1 The severity interpretation of acceptance (SIA)
for test T(a)

Applying our general abbreviation we write ‘the severity with which the claim

m � m1 passes test T(a), with data x0’:

SEV T að Þ, d x0ð Þ, m � m1ð Þ,

where m1 ¼ (m0 þ g), for some g � 0. For notational simplicity, we suppress

the arguments (T(a), d(x0)) where there is no confusion, and use the

abbreviation: SEV(m � m1)—but it must be kept in mind that we are talking

here of test T(a). We obtain a principle analogous to 3.1:

SIA: (a): If there is a very high probability that d(x0) would have been

larger than it is, were m> m1, then m� m1 passes the test with high severity,

i.e. SEV(m � m1) is high.

(b): If there is a very low probability that d(x0) would have been larger than

it is, even if m> m1, then m� m1 passes with low severity, i.e. SEV(m � m1)

is low.

We are deliberately keeping things at a relatively informal level, to aid

in clarity. The explicit formula for evaluating SEV(m � m1) in the case of

a statistically insignificant result (‘Accept H0’), in the context of test

T(a) is:

SEV m�m1ð Þ¼P d Xð Þ>d x0ð Þ;m�m1falseð Þ¼P d Xð Þ>d x0ð Þ;m>m1ð Þ:15

As in the case of power, severity is evaluated at a point m1 ¼ (m0þg), for

some g � 0; yet the above holds because for values m > m1 the severity

14 We are coining ‘attained power’ simply to connect it with the familiar idea, for the case of

‘accept H0’. To avoid confusion, we will drop the term once the general notion of severity is in

place. In the case of ‘reject H0’ severity is [1 � ‘attained’ power].
15 The calculations are easily obtained by means of the Standard Normal Distribution table, using

the area to the right of d x0ð Þ � m1 � m0ð Þ=sx½ � ¼ x � m1ð Þ=sx since:

SEV m 6 m1ð Þ ¼ P Z > ½ x � m1ð Þ=sx�Þ where Z � N 0, 1ð Þð Þ:ð

To apply this to the above example, x ¼ 11:8, so that z ¼ (11.8 � 12.2)/.2 ¼ �2.0

Hence, P(Z > �2) ¼.977, i.e. the standard Normal area to the right of �2.0 is .977.
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increases, i.e.

SEV m�m1ð Þ>P d Xð Þ>d x0ð Þ;m¼m1ð Þ:16

That is, the power of the test against m ¼ m1 provides a lower bound for

severity for the inference or claim m � m1.

It is important to emphasize that we are not advocating changing the

original null and alternative hypotheses of the given test T(a); rather we

are using the severe testing concept to evaluate which inferences are war-

rented, in this case of the form m 6 m1—the kind of scrutiny one might

especially need, as Neyman puts it, ‘when we are faced with . . . interpreting

the results of an experiment planned and performed by someone else’

(Neyman [1957b], p. 15). It is a meta-statistical check on various inferences

one might draw using T(a) with data x0.

4.2 The fallacy of acceptance (i.e., an insignificant difference):
Ms Rosy

A ‘fallacy of acceptance’ is often of concern when H0 expresses a desirable

situation such as, ‘there is a zero increased risk’ of some sort, or ‘a model

assumption, e.g., independence, is satisfied’, and an insignificant result is

interpreted too readily as positive evidence of no increased risk, or no viola-

tion of the given assumption. The test, we might say, gives too rosy an inter-

pretation of the result: it would very probably overlook risk increases, and

violations of interest, respectively—even were these present.

Say test T(a) yields the statistically insignificant result d(x0) ¼ 1.5, i.e.

�xx ¼ 12:3, so the test outputs ‘Accept H0’ since the cut-off for rejection was

12.4. Suppose Ms. Rosy makes the following assertion:

‘We may infer that any discrepancy from 12 is absent or no greater than .1.’

That is, she infers m � 12.1. Imagine someone critically evaluating

this result wished to ask: How severely does m � 12.1 pass with �xx ¼ 12:3

(d(x0) ¼ 1.5)?

The answer is: SEV m � 12:1ð Þ ¼ P d Xð Þ > 1:5; m > 12:1ð Þ ¼ :16:17

Since so insignificant a result would occur 84% of the time even if a dis-

crepancy of .1 from H0 exists, we would deny that Ms. Rosy’s interpretation

16 This inequality brings out the relationship between severity and power since for d(x0) < ca:

POW T að Þ, m ¼ m1ð Þ ¼ P d Xð Þ > ca; m ¼ m1ð Þ ¼ P Z > ca� m1�m0ð Þ=sx½ �ð Þ, where Z � N 0; 1ð Þð Þ:

17 The actual evaluation of severity takes the form:

P X > 12:3; m ¼ 12:1
� �

¼ P Z > 1ð Þ ¼ 0:16 where Z � N 0; 1ð Þð Þ:
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was warranted with severity. The general reasoning here is a straightforward

application of SIA:

If a test has a very low probability to detect the existence of a given

discrepancy from m0, then such a negative result is poor evidence that

so small a discrepancy is absent.

However, by dint of the same reasoning, we can find some discrepancy

from H0 that this statistically insignificant result warrants ruling out—one

which very probably would have produced a more significant result than was

observed. So even without identifying a discrepancy of importance ahead

of time, the severity associated with various inferences can be evaluated.

For example the assertion that m � 13 severely passes with x ¼ 12:3

(d(x0) ¼ 1.5) since:

SEV m � 13ð Þ ¼ P d Xð Þ > 1:5; m > 13Þ ¼ 0:9997:ð
Risk-based policy controversies may often be resolved by such an

assessment of negative results (Mayo [1991b]).

4.3 Severity and Power

To illustrate the evaluation of severity and its relationship to power, still

keeping to the test output ‘Accept H0’, consider Figure 1, showing the power

Figure 1. Case ‘Accept H0’—Power vs. Severity: the severity for m � 12.2 with

different outcomes x0. Here d(X) ¼ (X�m0)/sx. Power curve is the solid line.

For d(x0) ¼ 1.95 (�xx ¼ 12.39), SEV(m � 12.2) ¼ .171,

For d(x0) ¼ 1.50 (�xx ¼ 12.30), SEV(m � 12.2) ¼ .309,

For d(x0) ¼ 0.50 (�xx ¼ 12.10), SEV(m � 12.2) ¼ .691.
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curve (solid line), as well as the severity curves (dotted lines) corresponding

to three different sample realizations �xx ¼ 12:39, �xx ¼ 12:3, �xx ¼ 12.1. In each

case we can work with the sample mean �xx or the corresponding standardized

distance statistic d(x0).

In the case of x ¼ 12:39, where the observed result d(x0) ¼ 1.95 is just

inside the critical threshold ca¼ 1.96, the power curve provides a good

approximation to the severity of inferring m � m0, where m0 ¼ (m0 þ g), for

different values of the discrepancy g. That is, the power evaluates the worst

(i.e., lowest) severity values for any outcome that leads to ‘Accept H0’

with test T(a). To illustrate reading the graph, the evaluations underneath

Figure 1 compare the severity for inferring m � 12.2 for the three different

samples.18

Figure 2 highlights a distinct use for the severity curves in Figure 1: one first

chooses a high severity level, say 0.95, and then evaluates the corresponding

discrepancy g that is warranted at this pre-specified level. A handful of low

and high benchmarks suffices for avoiding fallacies of acceptance.

Figure 2. Case ‘Accept H0’—Power vs. Severity: the discrepancy excluded with

severity .95 for m � m1 corresponding to different outcomes x0. Power curve is the

solid line.

For d(x0) ¼ 1.95 (�xx ¼ 12.39), SEV(m � 12.72) ¼ .95,

For d(x0) ¼ 1.50 (�xx ¼ 12.30), SEV(m � 12.63) ¼ .95,

For d(x0) ¼ 0.50 (�xx ¼ 12.10), SEV(m � 12.43) ¼ .95.

18 An Excel program, written by Geoff Cumming, can be used to evaluate such severity curves.

This program is available at www.econ.vt.edu/spanos.
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To summarize, when the null hypothesis is accepted, the goal is to be able

to rule out as small a discrepancy g from the null as possible. Restricting the

analysis to power calculations allows evaluating severity for the case where

d(x0) just misses the critical threshold ca—which, while useful, gives coarse

severity assessments by treating all the results d(x) below ca the same. To

avoid the ‘too coarse’ charge, we take account of the observed statistically

insignificant result d(x0), thereby enabling the post-data analysis to rule out

values of m even closer to m0.

5 Fallacy of rejection: statistical vs. substantive significance

Perhaps the most often heard, and best known, fallacy concerns taking a

rejection of H0 as evidence for a substantive claim: statistical significance is

conflated with substantive significance. We need to distinguish two types of

concerns.

5.1 Taking a rejection of H0 as evidence for a
substantive claim or theory

A familiar fallacy stems from reasoning that if a result is statistically signi-

ficant, say at the 0.001 level, that ‘one’s substantive theory T, which entails

the [statistical] alternative H1, has received some sort of direct quantitative

support of magnitude around .999’ (Meehl [1970], p. 257). Not only does this

fallaciously construe an error probability as a degree of confirmation in H0,

it erroneously conflates the statistical alternative with a substantive theory T.

For example, finding a positive discrepancy from 12—which we may imagine

is the mean concentration of lead in blood—would not warrant inferring a

specific causal explanation. To rely on significance testing to corroborate a

substantive scientific theory T, Meehl warns, is to subject T to only ‘a feeble

risk’, and thereby violate Popperian requirements for science. In a similar

vein, Imre Lakatos declares:

After reading Meehl ([1967]) [and other psychologists] one wonders

whether the function of statistical techniques in the social sciences is

not primarily to provide a machinery for producing phony corroborations

and thereby a semblance of ‘scientific progress’ where, in fact, there

is nothing but an increase in pseudo-intellectual garbage. (Lakatos

[1978], pp. 88–9)

The criticism here alludes to (Fisherian) significance tests. In contrast

to the Fisherian tests, the N–P framework requires the null and alternative

hypotheses to exhaust the parameter space of a (given) statistical

model, thereby permitting only the statistical alternative H1 to be

inferred upon rejecting H0, not a substantive theory T which might entail
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H1.19 Even with its exhaustive space of hypotheses, fallacies of rejection can

still enter the N–P paradigm, because finding a statistically significant effect,

d(x0) > ca, need not be indicative of large or meaningful effect sizes.

5.2 A statistically significant difference from H0 may
fail to indicate a substantively important magnitude

In the case where T(a) has led to the rejection of the null hypothesis H0 with

data x0 the inference that ‘passes’ the test is of the form m > m1, where

m1 ¼ (m0 þ g), for some g � 0. In other words, a statistically significant

result indicates a departure from H0 in the direction of the alternative, so

severity condition (S-1) is satisfied: the alternative has ‘survived’ the test.

Before we can infer, with severity, evidence of a particular positive departure,

condition (S-2) demands we consider: How probable would so significant a

result be if such a departure were absent?

Applying our general abbreviation, we write ‘the severity with which test

T(a) passes m1 > m0 with data x0’ as: SEV(m > m1). It is evaluated by:

SEV m>m1ð Þ :¼P d Xð Þ� d x0ð Þ; m>m1 falseð Þ¼P d Xð Þ� d x0ð Þ; m�m1ð Þ:

Because the assertions m > m1 and m � m1, constitute a partition of the

parameter space of m, there is a direct relationship, in test T(a), between the

definitions of severity in the case of Accept and Reject H0. That is,

SEV m>m1ð Þ¼ 1� SEV m�m1ð Þ:20

As before, severity is evaluated at a point m1, because for any values of m

less than m1 the severity in test T(a) increases, i.e.

SEV m>m1ð Þ>P d Xð Þ� d x0ð Þ; m¼m1ð Þ:

5.3 Principle for the severity interpretation of a rejection (SIR)

As with acceptances of H0, an adequate post-data construal of ‘Reject H0’

calls for a rule showing (a) the discrepancies that are well warranted, and (b)

those which are not. The severity interpretation for a rejection of H0, for test

T(a) (i.e., d(x) > ca) is this:

SIR: (a) If there is a very low probability of so large a d(x0), if m� m1, then

hypothesis m > m1 passes with high severity, i.e.

SEV m > m1ð Þ is high:

19 True, the price for this is that using statistically inferred effects to learn about substantive

theories demands linking, piece-meal, statistical inferences to subsequent ones, but this is a

distinct issue to be dealt with separately (e.g., Mayo, [2002]).
20 Note that to assert ‘it is not the case that SEV(H) is high’ does not entail that SEV(H) is low nor

that SEV(not-H) is high. There may fail to be high severity for both H and for its denial.

Articulating the full logic for SEV is a future project.
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(b) If there is a very high probability of obtaining so large a d(x0) (even) if

m � m1, then hypothesis m > m1 passes with low severity, i.e.

SEV m > m1ð Þ is low:

Choosing a small significance level a ensures that the inference: m> m0, passes

with high severity whenever we ‘Reject H0’ with d(x0).

It is instructive to observe the dramatic contrast between data-specific

assessments of a rejection and the usual assessment of the power of test

T(a) at the alternative m1 = m0 + g as in Figure 3. To illustrate how to

read this graph, consider asking questions about the severity for different

inferences.

A. First suppose that the outcome is �xx¼ 12.6, (i.e., d(x0) ¼ 3.0).

How severely does test T(a) pass m1 > 12.2 with this result? The

answer is .977, because: SEV(m > 12.2) ¼ P(d(X) � 3.0; m1 ¼ 12.2) ¼ .977.

B. Now consider a different outcome, say, �xx ¼ 13, (i.e., d(x0) ¼ 5.0).

How severely does test T(a) pass m1 > 12.2 with this result? The

answer is .9997, because: SEV(m > 12.2) ¼ P(d(X) � 5.0; m1 ¼ 12.2) ¼ .9997.

Figure 3 also illustrates vividly the contrast between the relevant

severity calculations (dotted curves) and power (solid line) in the case of

‘reject H0’. If d(x) has led to reject H0, d(x0) > ca, the severity for

inferring m > m1:

SEV m > m1ð Þ > 1 � POW T að Þ; m1ð Þ:

 

Figure 3. Case ‘Reject H0’—Power vs. Severity: the severity for m > 12.2 with

different outcomes x0. Power curve is the solid line.
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That is, one minus the power of the test at m1 ¼ m0 þ g provides a

lower bound for the severity for inferring m > m1. It follows that:

The higher the power of the test to detect discrepancy g, the lower the

severity for inferring m > m1 on the basis of a rejection of H0.

This immediately avoids common fallacies wherein an a level rejection is

taken as more evidence against the null, the higher the power of the test

(see Section 5.4). The upshot is this: a statistically significant result with a

small a level indicates, minimally, some discrepancy from m0 with high sever-

ity, 1–a; however, the larger the discrepancy one purports to have found, the

less severely one’s inference is warranted.

Notice that in the case of g ¼ 0, we are back to the prespecified alternative

m > m0; and thus, in this limiting case: SEV(m > m0) > 1 � a (Figure 4).

5.4 Comparing significant results with different sample sizes
in T(a): large n problem

Whereas high power is desirable when evaluating a failure to reject H0 with test

T(a), in interpreting reject H0, too high a power is the problem. An asset of the

Figure 4. The severity associated with inferring m > 12.1 with the same d(x0) ¼
1.96, but different sample sizes n (the discrepancies are from 12):

for n ¼ 25 and d(x0) ¼ 1.96, SEV(m > 12.1) ¼ .933,

for n ¼ 100 and d(x0) ¼ 1.96, SEV(m > 12.1) ¼ .833,

for n ¼ 400 and d(x0) ¼ 1.96, SEV(m > 12.1) ¼ .500.
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severity requirement is that it gives a single criterion for properly interpreting both

cases.21

Consider the common complaint that an a-significant result is indicative of

different discrepancies when sample sizes differ, and that with large enough

sample size, an a-significant rejection of H0 can be very probable, even if the

underlying discrepancy from m0 is substantively trivial. In fact, for any dis-

crepancy g, however small, a large enough sample size yields a high probab-

ility (as high as one likes) that the test will yield an a-significant rejection (for

any a one wishes)—i.e.,

POW T að Þ; m1 ¼ m0 þ gð Þ is high:

N–P theory does not come with a warning about how the desideratum of

high power can yield tests so sensitive that rejecting H0 only warrants infer-

ring the presence of a small discrepancy.

On the contrary, statistical significance at a given level is often

(fallaciously) taken as more evidence against the null the larger the sample

size (n).22 In fact, it is indicative of less of a discrepancy from the null than if

it resulted from a smaller sample size. Utilizing the severity assessment we see

at once that an a-significant difference with n1 passes m > m1 less severely

than with n2 where n1 > n2.

5.5 General testing rules for T(a), using the
severe testing concept

With reference to the one-sided test T(a), one might find it useful to

define two severity rules for a metastatistical scrutiny of the N–P test

outcomes: ‘Accept H0’ and ‘Reject H0’, corresponding to (SIA) and (SIR):

For Accept H0:

If, with data x0, we accept H0 (i.e. d(x0) � ca), then test T(a) passes:

(1) m � �xx þ k«sx with severity (1 � «), for any 0 < « < 1, where

P(d(X) > k«) ¼ «.23

21 The ‘large n problem’ is also the basis for the ‘Jeffreys-Good-Lindley’ paradox brought out by

Bayesians: even a highly statistically significant result can, as n is made sufficiently large,

correspond to a high posterior probability accorded to a null hypothesis. (Good, [1983];

Edwards, Lindman, and Savage, [1963]; Lindley, [1957]). Some suggest adjusting the signific-

ance level as a function of n; the severity analysis, instead, assesses the discrepancy or ‘effect

size’ that is, and is not, indicated by dint of the significant result.
22 Rosenthal and Gaito ([1963]) document this fallacy among psychologists.
23 Equivalently, rule (1) is: test T(a) passes m� m0þ g with severity (1 � «), for g ¼ (d(x0) þ k«)sx.
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For Reject H0:

If, with data x0, we reject H0 (i.e. d(x0) > ca), then T(a) passes:

(2) m > �xx � k«sx with severity (1 � «), for any 0 < « < 1.24

Without setting a fixed level, one may apply the severity assessment at a

number of benchmarks, to infer the extent of discrepancies that are and are

not warranted by the particular dataset. In our conception of evidence, if an

inference could only be said to pass a test with low severity, then there fails to be

evidence for that inference (though the converse does not hold, see Note 20). A

N–P tester may retain the usual test reports only supplemented by a statement

of errors poorly probed. That is, knowing what is not warranted with severity

becomes at least as important as knowing what is: it points to the direction of

what may be tried next and of how to improve inquiries.

We emphasize that the data-specificity of the severity evaluation quantifies

the extent of the discrepancy (g) from the null that is (or is not) indicated by

data x0, using the sampling distribution of the test statistic d(X) on the basis

of which all N–P error probabilities are derived. This reflects the fundamental

difference between the current post-data inference and existing Bayesian

accounts.

6 The severe testing concept and confidence intervals

A question that is likely to arise, especially in view of (1) and (2) in

Section 5.5 is:

What is the correspondence between inferences severely passed and a

Confidence Interval (CI) estimate?

Given the popularity of CI’s in attempts to replace the dichotomous

‘accept/reject’ with a report indicating ‘effect size’, a brief foray into CI’s

seems needful.

In CI estimation procedures, a statistic is used to set upper or lower

(1-sided) or both (2-sided) bounds. For a parameter, say m, a (1 � a) CI

estimation procedure leads to estimates of form: m ¼ X � e.

Different sample realizationsx lead to different estimates, but one can ensure,

pre-data, that (1 � a)100% of the time the true (fixed, but unknown) parameter

value m, whatever it may be, will be included in the interval formed. Although

critics of N–P tests are at one in favoring CI’s, it is important to realize that

CI’s are still squarely within the error-statistical paradigm. Moreover, they

too are open to classic problems: they require predesignated assignments of a

confidence level, and they are plagued with questions of interpretation.25

24 Equivalently, rule (2) is: test T(a) passes m> m0 þ g with severity (1 � «), for g¼ (d(x0) � k«)sx.
25 That is because one cannot assign the degree of confidence as a probability to the observed

interval.
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6.1 Dualities between one and two-sided intervals and tests

In fact there is a precise duality relationship between (1 � a) CI’s and N–P

tests: the CI contains the parameter values that would not be rejected by the

given test at the specified level of significance (Neyman [1937]). It follows that

the (1 � a) one-sided interval corresponding to test T(a) is:

m > ðX � casxÞ:

In particular, the 97.5% CI estimator corresponding to test T(a) is:

m > ðX � 1:96sxÞ:

Similarly, the 95% CI for m corresponding to the two-sided test, T(0.05) is:

ðX � 1:96sxÞ < m < ðX þ 1:96sxÞ:

A well known fallacy is to construe (1 � a) as the degree of probability to

be assigned the particular interval estimate formed, once X is instantiated

with �xx. Once the estimate is formed, either the true parameter is or is not

contained in it. One can say only that the particular estimate arose from a

procedure which, with high probability, (1 � a), would contain the true value

of the parameter, whatever it is.26 Bayesian intervals introduce prior degrees

of belief to get ‘credibility intervals’, introducing the problem of how to

justify the prior from a frequentist, rather than from either a degree of belief

or a priori standpoint.

6.2 Avoiding shortcomings of confidence intervals

Although CI’s can be used in this way as surrogates for tests, the result is still

too dichotomous to get around fallacies: it is still just a matter of whether

a parameter value is inside the interval (in which case we accept it) or outside

it (in which case we reject it). Consider how this is avoided by the severe

testing concept.

The assertion:

m > �xx � casxð Þ

is the observed one-sided (1 � a) interval corresponding to the test T(a), and

indeed, for the particular value m1 ¼ �xx � casxð Þ, the severity with which the

inference m � m1 passes is (1 � a). However, this form of inference is of

interest only in the case of evaluating severity when x0 results in

26 Although it is correct that P X � casx

� �
< m

� �
¼ ð1 � aÞ, this probabilistic assertion no

longer holds once we replace the random variable X with its observed value �xx.

Neyman–Pearson Philosophy of Induction 347



‘Reject H0’. In the case where x0 results in ‘Accept H0’, the inference whose

severity we wish to evaluate will rather be of the form:

m � �xx þ casxð Þ:

Moreover, even in the case of ‘Reject H0’, the CI will be importantly

different from a severity assessment, although we can only discuss this here

in part.

A (1 � a) CI, we said, corresponds to the set of null hypotheses that would

not be rejected with an a-level test. But as we saw in discussing severity in

the case of ‘Accept H0’, the mere fact that x0 fails to reject a parameter value

does not imply that x0 is evidence for that value. True, �xx is not sufficiently

greater than any of the values in the CI to reject them at the a-level, but this

does not imply �xx is good evidence for each of the values in the interval: many

values in the interval pass test T(a) with very low severity with x0.

Recall the kind of question we employed severity to answer in interpreting

a statistically significant result, say d(x0) ¼ 2.0 (equivalently, �xx ¼ 12:4):

Does x ¼ 12:4 provide good evidence for m > 12.5?

The answer, one sees in Figure 3, is No, since the severity is only 0.309.

However, the CI that would be formed using d(x0) would be: m > 12. Since

this interval includes 12.5, how can it be said to convey the ‘No’ answer, i.e.,

that the result is poor evidence for inferring m > 12.5? All values of the

parameter in the CI are treated on a par, as it were. Nor does using the

two-sided 95% CI cure this problem.27 By contrast, for each value of m1 in

the CI, there would be a different answer to the question: how severely does

m � m1 pass with x0? The CI estimation procedure sets out a fixed (1 � a);

whereas, the severity analysis naturally leads to a sequence of inferences that

are and are not warranted at different severity evaluation levels.

7 Beyond the N–P paradigm: pure significance,
and misspecification tests

The concept of severe testing has been put forward elsewhere as a general

account of evidence (Mayo [1996], [2004a], [2004b]); it is intended to hold in

cases where severity is assessed entirely qualitatively, as in a familiar qualit-

ative assessment of the difficulty of an exam, or quantitatively as in N–P

tests—or in cases in between. Even in statistical testing, scrutinizing a N–P

test from the severity perspective involves a use of background considerations

(e.g., the particular error of interest as well as errors already ruled out in other

studies) that is not purely formal; hence, our calling it ‘meta-statistical’. Tests

27 For x ¼ 12:4 the two-sided observed interval is (12 < m < 12.8). Even allowing that one might

entertain the inference, 12.5 < m < 12.8, the CI procedure scarcely warns that evidence for this

inference is poor. Note that using � for these intervals makes no difference.
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that have given rise to philosophical controversy will turn out, upon such a

scrutiny, to serve poorly for the severity goal. This enables a severity scrutiny

to provide a clear rationale for regarding as counterintuitive certain tests even

if strictly licensed by N–P principles (e.g., certain mixed tests). Calling

attention to the particular error in inference that needs to be probed before

a claim is warranted with severity bears direct fruits for the knotty problems

of determining which long-run is appropriate for the relevant context—a

version of the philosopher’s ‘reference class problem’ (Mayo and Kruse

[2001]).

Conversely tests that do not include all the features of N–P tests may

acquire a home in the severity paradigm. For example, even though a

‘pure’ (Fisher-type) significance test lacks an explicit alternative, it requires

‘some idea of the type of departure from the null hypothesis which it is

required to test’ (Cox and Hinkley [1974], p. 65) which suffices to develop

corresponding assessments of its ability to probe such departures (Mayo and

Cox [2006]).

Consider the important category of tests to check the validity of statistical

assumptions on which formal error probability assessments depend: checks

for model validation or misspecification tests. Whereas N–P statistical tests

take place within a specified (or assumed) model M, when we put M’s

assumptions to the test, we probe outside M, as it were; see Spanos ([1999]).

For example, in validating the model for test T(a), a misspecification test

might have as its null hypothesis that the data constitute a realization of a

random (IID) sample, and the alternative could cover all the ways these

assumptions could fail. One can leave the alternative implicit in this manner,

so long as unwarranted inferences are avoided. Rejecting the IID assumption

may allow inferring, with severity, that the model is misspecified in some

way or other, but it would not allow inferring, with severity, a particular

alternative to IID (e.g. the presence of a particular type of dependency, say

Markov). In this way, applying the severity criterion pinpoints a common

fallacy in M-S testing (an instance of a fallacy of rejection of the type

discussed in 5.2—see Mayo and Spanos [2004]). On the other hand, if a

model’s assumptions stand up to stringent probing for violations, the

model may be accepted (with severity!) as adequate for the purposes of

severely probing the original statistical hypotheses.

8. Concluding comments: have we shown severity to be a basic
concept in a N–P philosophy of induction?

While practitioners do not see themselves as using N–P rules of behavior, the

key concepts of that paradigm—type I and II errors, significance levels,

power, confidence levels—are ubiquitous throughout statistical analysis.
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Our goal, therefore, has been to trace out an inferential interpretation of tests

which is consistent and in keeping with the philosophy of error statistics. Such

an interpretation, we argued, would need to (i) avoid the coarseness of the

strict model of N–P tests, wherein the same test output results regardless of

where in the acceptance or rejection region x0 lies; (ii) prevent classic fallacies

of acceptance and rejection, and (iii) answer the charge that it is too behavi-

oristic and insufficiently inferential.

We have offered answers to these challenges that adhere to the key features

that set tests from the error probability paradigm apart from alternative

accounts: their ability to control and make use of error probabilities of

tests. The key was to extend the pre-data error probabilities, significance

level and power, to a ‘customized’, post-data assessment of the severity with

which specific inferences pass the resulting test. A hypotheses H has severely

passed a test to the extent that H would not have passed the test, or passed so

well, were H false. The data-specificity of the severity evaluation quantifies

the extent of the discrepancy (g) from the null that is (or is not) indicated

rather than quantifying a degree of confirmation accorded a given hypothesis.

Since the interpretations are sensitive to the actual outcome, the limitations of

just accepting or rejecting hypotheses are avoided. Fallacies of acceptance

and rejection have also been explicitly dealt with.

Charge (iii) demands countering allegations that setting error probabilities

are relevant only in contexts where we care about how often we can ‘afford’

to be wrong. From the severity perspective, the choice of the probabilities are

no longer foreign to an inferential context. Pre-data, the choices for the type I

and II errors reflect the goal of ensuring the test is capable of licensing given

inferences severely. We set the ‘worst case’ values accordingly: small a

ensures, minimally, that ‘Reject H0’ licenses inferring some discrepancy

from H0; and high power against discrepancy g ensures that failing to reject

H0 warrants m < m0 þ g. So, while we favor reporting actual severity evalu-

ations, even the predesignated N–P error probabilities attain a new, inferen-

tial justification.28

We identified some of Neyman’s articles wherein he hints at such a post-data

use of power; although they appear to be isolated cases. John Pratt lamented

that: ‘power plays virtually no role at the inference stage, and philosophies of

inference in which it figures importantly are futuristic, to say the least.’ (Pratt

[1976], p. 781) We hope that the future is now.

28 The challenge in (iii) may include others taken up elsewhere. Most notably, it has been charged

the severity criterion conflicts with other post-data inferential criteria, e.g., likelihoods, pos-

terior probabilities (Howson, [1995], [1997]; Achinstein [2003]). Our answer, in a nutshell, is

this: the criterion leading to conflict differs from the severity criterion, and thus performs less

well for the error statistician’s goals (Mayo [1996], [2003b], [2005]; Mayo and Kruse [2001].)
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Egon Pearson often emphasized that both he and Neyman regarded ‘the

ideal statistical procedure as one in which preliminary planning and sub-

sequent interpretation were closely linked together—formed part of a single

whole’ (see Pearson [1962], p. 396). Critics fail to appreciate how crucial a role

this entanglement plays in determining the capacity of the test procedure

actually carried out. The post-data severity assessments are still based on

error probabilities, but they are evaluated relative to the observed value of

the test statistic. Admittedly, the N–P theory fails to articulate the principles

by which to arrive at a N–P philosophy of induction. That is what the severe

testing concept achieves. Viewing N–P tests from the severe testing perspect-

ive, we see that in scientific contexts the real value of being able to control

error probabilities at small values is not the desire to have a good track record

in the long run—although such a long-run justification is still available (and

in several contexts may be perfectly apt). It is, rather, because of how this lets

us severely probe, and thereby understand correctly, the process underlying

the data now under consideration.
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