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 TESTING PRECISE HYPOTHESES 345

 First we will discuss types of precise null hypotheses

 and suggest that the type considered by Berger and
 Delampady is not common. Then we will make some
 comments regarding interval null hypotheses.

 In Section 5, they describe two types of precise

 hypotheses. They point out that their results only
 apply to the second type. But they have ignored a
 third type, the type that describes the most common
 usage of point null tests. Consider the following three
 types; (1) and (2) were the two mentioned by Berger
 and Delampady.

 (1) Precise hypotheses that are just stated for con-
 venience and have no special prior believability.

 (2) Precise hypotheses that do correspond to a con-
 centration of prior belief.

 (3) Precise hypotheses that describe a unique, in-
 teresting feature of the population but that have no
 special prior believability.

 We will discuss each of these types.
 As an example of type (1), Berger and Delampady

 seem to suggest a situation in which a one-sided test
 is appropriate, but a two-sided point null test is used.
 Another example might be a one-sided problem in
 which Ho: 0 = 0 rather than the appropriate
 Ho: 0 c 00 is used. (Casella and Berger (1987) point
 out that this convenient restatement creates a bias
 toward Ho in a Bayesian analysis.) In either case the
 hypotheses have not been properly formulated. Our
 concern should not be to analyze these misspecified
 problems, but to educate the user so that the hy-
 potheses are properly formulated. So although, as
 Berger and Delampady admit, the P-value might be a
 reasonable measure of evidence in this type of prob-
 lem, we should be more concerned with ensuring that
 these convenient hypotheses are not tested.

 Type (2) hypotheses are the type considered
 in Berger and Delampady. In fact, in their tables
 (Tables 1, 4, 5, 6, 7 and 8) in which P-values and
 P(Ho I x) are compared, wo = 1/2 is used. Most research-
 ers would not put a 50% prior probability on Ho. The
 purpose of an experiment is often to disprove Ho and
 researchers are not performing experiments that they
 believe, a priori, will fail half the time! We would be
 surprised if most researchers would place even a 10%
 prior probability on Ho. We hope that the casual reader
 of Berger and Delampady realizes that the big discrep-
 ancies between P-values and P(Ho I x) that are re-
 ported in the tables are due to a large extent to the
 large value of w0 = 1/2 that was used. Statements of
 Berger and Delampady, such as "when testing precise
 hypotheses, formal use of P-values should be aban-
 doned," must be qualified to apply only to type (2)
 hypotheses with unusually large values of or0.

 We believe that most point null hypotheses that are
 tested are of type (3). If Ho were true, then the popu-
 lation would have some unique, interesting feature.

 But the researcher does not believe, a priori, that this
 feature exists and, in fact, probably expects to show

 that Ho is not true. The following two examples, we
 believe, encompass many point null tests that
 are done. In neither example is the researcher

 likely to believe that Ho is true. In the first example,

 o = A - 12, the difference between two population
 means and Ho: 0 = 0 is tested with a paired difference
 or independent samples test. It would be a very inter-
 esting situation if gl were to equal g2, but the re-
 searcher does not typically believe that this is even
 approximately true, much less exactly true. In the

 second example, Ho: i3i = 0 is tested where fli is a
 regression coefficient. Again, it would be an important
 feature of the population if Ho were true. It would
 indicate that the independent variable xi has no effect
 on the response variable. But the researcher does not

 place a high prior probability on Ho. Indeed, xi, prob-
 ably would not have been included in the experiment
 if the researcher thought that it was highly likely that
 xi, was unrelated to the response variable. We believe
 that these examples typify the common usages of point
 null tests and, as Berger and Delampady admit in
 Section 5, P-values are reasonable measures of evi-
 dence when there is no a priori concentration of belief

 about Ho.
 Much of their paper concerns testing an interval

 null, Ho: I 0 - 0o I < E, rather than testing a point null.
 There are two points regarding interval nulls on which
 we would like to elaborate. These are: (a) The Baye-
 sian test of a point null, with ro = 1/2, cannot be
 approximated by a test of an interval null hypothesis
 in problems unless there is a high concentration of
 prior belief about the point null. (b) Bayesian posterior
 probabilities of interval null hypotheses are quite close
 to P-values when the prior probability of Ho is reason-
 ably small.

 They show that the Bayesian measures of evidence
 are about the same if one tests Ho: I 0 - 0 I E e or if
 one tests Ho: 0 = 00 if E is sufficiently small. In both
 cases the prior probability assigned to Ho is -ro. They
 say that this refutes the claim that the discrepancies
 between P-values and P(Ho I x) are caused by assign-
 ment of mass to a single point. But we do not believe
 that assignment of a large probability, say lro = 1/2, to
 a tiny interval is much more realistic than assignment
 of lro to the point 0 = 00. In the above example, not
 only does the researcher typically not assign probabil-
 ity 1/2 to the hypothesis ,g = ,2but also does not assign
 probability 1/2 to the interval I t1- A2 I C E where e is
 small. The point is the same as above. The hypothesis
 l1 = g2 iS of interest not because there is high prior
 probability concentrated about it but because of the
 interesting feature of the populations it describes. We
 see the Berger and Delampady results mainly of inter-
 est to the Bayesian hypothesis tester who assigns
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 probability lro to Ho: I 0 --Oo I c E and who can simplify
 his calculations by approximating this problem with

 the problem in which probability lro is assigned to the
 point null 0 = 00. To see how small this interval
 must be for the approximation to be valid, note
 that if n = 25 and E* = .4 (a medium value from

 Table 3 of Berger and Delampady) then E must be
 less than .80o.

 If the Bayesian assigns prior probability lro to Ho:

 I 0 - O0 I < co then ec should not (indeed, cannot)
 depend on n, the sample size. We believe the relevant
 calculation in this case is the one done by Berger and
 Delampady in Section 2.3, where they show that

 P(Ho I in) -o a as n -o oo where the P-value associated
 with in is a. So the Bayesian can use the P-value as
 an approximate posterior probability for large n, re-
 gardless of the value of -ro.

 In the typical case in which the prior probability

 assigned to Ho: I 0 - 0o I < e is small, this hypothesis
 may still be of interest. It says that the population is
 "close" to having the unique feature associated with

 0 = 00. But in this case the P-value and P (Ho I x) do
 not display the wide discrepancies that occur
 when the prior probability assigned to Ho is large.
 Consider the following comparison of P-values and
 P( I 0 I c e I x), which can be thought of as an amend-
 ment to Table 2 of Berger and Delampady. Here, e* is
 taken from their Table 2 and the probabilities are
 calculated according to X I 0 - n(0, 1), 0 - n(O, 22).

 Table 1 shows that the Bayesian interval measure
 is quite close to the P-value, which supports our point
 (b). In Table 1, e = e* was just chosen as a typical
 small interval. In fact, for a range of values of ?, and
 a range of values of x, this phenomenon persists. The
 P-value and P ( I 0 I c e I x) are relatively close to-
 gether, although P (0 0 I x) is far from both of them.
 This is illustrated in Figure 1.

 The combination of our belief that the testing of a
 point null or a smhall interval null does not usually
 imply a high prior probability concentrated at Ho and
 our numerical calculations to support our point (b)
 lead us to conclude that the fault is not with the P-
 value, but with the Bayesian point-mass calculation.
 The agreement between P-values and interval null
 probabilities is not restricted to the normal case, but
 also occurs in the binomial case. Consider Table 2, an
 amendment to Table 7 of Berger and Delampady. In
 Table 2, X I 0 binomial (n, 0), and the first five

 TABLE 1

 Comparison of P-values and P( I 0f I e I x)

 x 1.645 1.96 2.576 2.807 3.29 3.89
 P-value .10 .05 .01 .005 .001 .0001
 e=e* .257 .221 .173 .160 .138 .117

 P(1 O1ce1x) .079 .043 .011 .006 .002 .0003

 1-

 p-value

 .8-

 .6 - \ P(0=Ox)

 .4-

 .2

 0 X
 1 2 3 4

 PO6I ej?x)

 FIG. 1. For XI 0- n(0, 1), P-value is the two-sided P-value.
 P(0 = 0 1 x) is calculated using a point mass of 1/2 at 0 = 0, and
 n(O, 22) prior elsewhere. P( I 0 1 e I x) uses only the n(O, 22) prior
 and is shown for e = .1, .2,.3,.4, 5. The curves are increasing in c.

 TABLE 2

 Interval posterior probabilities for the binomial

 a n x 0 P P P P Oe I)I

 .0090 50 11 .40 .0981 .030

 .0100 20 9 .20 .1771 .053

 .0101 20 14 .40 .1064 .025

 .0118 20 4 .50 .0858 .021

 .0120 45 10 .10 .2211 .145

 .0493 50 16 .20 .3313 .170

 .0505 15 1 .30 .1956 .055

 .0507 25 3 .30 .2414 .069

 .0541 40 10 .40 .3016 .102

 .0556 15 4 .10 .4223 .214

 .0960 15 6 .20 .4123 .159

 .0980 25 5 .10 .4779 .341

 .0987 30 20 .50 .3565 .117

 .1000 35 15 .30 .4328 .200

 .1011 10 7 .40 .3458 .095

 .1094 10 2 .50 .3163 .084

 columns are the same as Table 7 of Berger and Delam-
 pady. The interval posterior probability is calculated
 using a beta [cOo, c(1 - O0)] prior, with c = 5. The value
 of e was .05.

 In summary, we have, at the very least, demon-
 strated that there exist legitimate criticisms of the
 Bayesian point null calculations, and dismissing
 P-values based on a lack of agreement with the
 point null calculations is unjustified. Moreover,
 there is agreement between P-values and Bayesian
 interval null calculations in the more typical situation
 in which small prior probability is assigned to Ho. So
 the very argument that Berger and Delampady use
 to dismiss P-values can be turned around to argue
 for P-values. The recommendation of Berger and
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 TESTING PRECISE HYPOTHESES 347

 Delampady, that "formal use of P-values should be
 abandoned" (Section 5) is based on a faulty premise,
 the premise that the Bayesian point null calculation

 with large iro is infallible and appropriate in all point
 null testing problems. Because this is far from the
 case, the use of P-values should not be abandoned.
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 Comment
 Joseph B. Kadane

 Testing precise hypotheses played a large role in my
 statistical education at Stanford. When I left Stanford
 to teach at Yale in 1966, the book I regarded as
 fundamental to statistical theory, the one I most
 wanted to teach, was Lehmann's (1959) on hypothesis
 testing. My view was that learning about the simplest
 decision case, where there are only two decisions,
 would be useful to developing a deeper understanding
 of more complex decision problems.

 Two surprises occurred at Yale. The first was that
 I met Jimmie Savage and started to learn about Baye-
 sian statistics. The second was that when I tried to
 use my favorite statistical method on data, trouble
 ensued. In some joint work with a sociologist, Kadane,
 Lewis and Ramage (1969), we were examining whether
 a certain theory predicting frequency of participation
 in group discussions fit the data. The difference was
 significant at the .05 level, the .01 level and in fact the
 10-6 level. I had to think about whether I would be
 more impressed if it were significant at the 1013 level,
 and had to conclude that I would not. Ultimately, we
 found a way to plot the theory and the data together
 and found the theory to be reasonable but not terribly
 impressive as a summary of the data. The problem, of
 course, was that we had too much data, so the statis-
 tical significance test was uninformative.

 A second difficulty occurred later when I was on the
 staff of the Center for Naval Analyses. A machine had
 been developed and tested extensively in a laboratory.
 It was then tested in the field, and the draft of the
 results said that the machine was not working differ-
 ently in the field than it was in the laboratory.
 However, there were only five observations, each cost-
 ing a million dollars to collect. The machine was

 Joseph B. Kadane is the Leonard J. Savage Professor
 of Statistics and Social Sciences, Carnegie Mellon Uni-
 versity, Pittsburgh, Pennsylvania 15213. These com-
 ments were written while the author was on sabbatical
 leave at the Center for Advanced Study in the Behav-
 ioral Sciences, Stanford, California.

 working about 75% as well in the field as it did in the
 laboratory.

 In thinking about these two examples, it became
 clear to me that what drove the significance test is
 the sample size: with a large data set everything is
 significant, but with a small data set, nothing is
 significant. Having less complex measures of sample
 size, the usefulness of significance testing was in
 serious doubt.

 Of course, in neither case did the null hypothesis
 have any special claim on my belief. Because I did not
 believe the null hypothesis anyway, the calculation of
 the probability that some statistic would be this or
 more extreme were the null hypothesis true, is not
 informative to me. Estimating anything reasonable-
 like the distance of the data from the theory in the
 group discussion problem or the degree of degradation
 in the field in the Navy problem-seems much more
 sensible.

 For the last 15 or so years I have been looking for
 applied cases in which I might have some serious belief
 in a null hypothesis. In that time I found only one.
 An astrologer of my acquaintance believed she could
 predict on the basis of people's birthdates who is likely
 to have a drug problem. I arranged for the obtaining
 of birthdates of persons who were in a Veterans Ad-
 ministration drug treatment program, and of persons
 under the care of a physician and known by him not
 to have drug problems. The dates were shuffled up
 and sent to the astrologer. She rated each person on
 a one to nine scale of the likelihood of having a drug
 problem. The data were analyzed using the Mann-
 Whitney statistic as an estimate, and showed that a
 randomly chosen Veterans Administration patient
 had a 48.5% probability of being rated more likely to
 have a drug problem that a randomly chosen drug-
 free patient. Thus the astrologer was predicting
 slightly worse than chance. Even in this case I find
 the estimate, 48.5%, more meaningful than I would a
 test of a null hypothesis (should it be one-tailed or
 two-tailed?).

 My conclusion now from these experiences is that
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