

Need to Reformulate Tests: P-values Don't Give an Effect Size

Severity function: SEV(Test T, data x, claim C)

- Tests are reformulated in terms of a discrepancy γ from H₀
- Instead of a binary cut-off (significant or not) the particular outcome is used to infer discrepancies that are or are not warranted

An Example of SEV (3.2 SIST)

1-sided normal testing

$$H_0$$
: $\mu \le 150$ vs. H_1 : $\mu > 150$ (Let $\sigma = 10$, $n = 100$)

let significance level $\alpha = .025$

Reject H_0 whenever $M \ge 2\sigma/\sqrt{n}$: $M \ge 152$

M is the sample mean, its value is M_0 . 1SE = σ/\sqrt{n} = 1

Rejection rules:

Reject iff M > 150 + 2SE (N-P)

In terms of the P-value:

Reject iff P-value ≤ .025 (Fisher)

(P-value a distance measure, but inverted)

Let M = 152, so I reject H_0 .

PRACTICE WITH P-VALUES Let M = 152

$$Z = (152 - 150)/1 = 2$$

The P-value is Pr(Z > 2) = .025

PRACTICE WITH P-VALUES Let M = 151

$$Z = (151 - 150)/1 = 1$$

The P-value is Pr(Z > 1) = .16

SEV (
$$\mu > 150$$
) = .84 = 1 – P-value

PRACTICE WITH P-VALUES Let M = 150.5

$$Z = (150.5 - 150)/1 = .5$$

The P-value is Pr(Z > .5) = .3

PRACTICE WITH P-VALUES Let M = 150

$$Z = (150 - 150)/1 = 0$$

The P-value is Pr(Z > 0) = .5

Frequentist Evidential Principle: FEV

FEV (i). x is evidence against H_0 (i.e., evidence of discrepancy from H_0), if and only if the P-value $Pr(d > d_0; H_0)$ is very low (equivalently, $Pr(d < d_0; H_0) = 1 - P$ is very high).

Contraposing FEV(i) we get our minimal priniciple

FEV (ia) \mathbf{x} are poor evidence against H_0 (poor evidence of discrepancy from H_0), if there's a high probability the test would yield a more discordant result, if H_0 is correct.

Note the one-directional 'if' claim in FEV (1a) (i) is not the only way **x** can be BENT.

$$H_0$$
: $\mu \le 150$ vs. H_1 : $\mu > 150$ (Let $\sigma = 10$, $n = 100$)

The usual test infers there's an indication of *some* positive discrepancy from 150 because

$$Pr(M < 152: H_0) = .97$$

Not very informative

Are we warranted in inferring $\mu > 153$ say?

- Recall the complaint of the Likelihoodist (p. 36)
- For them, inferring H_1 : μ > 150 means every value in the alternative is more likely than 150
- Our inferences are not to point values, but we block inferences to discrepancies beyond those warranted with severity.

0

Consider: How severely has $\mu > 153$ passed the test? SEV($\mu > 153$) (p. 143)

M = 152, as before, claim $C: \mu > 153$

The data "accord with C" but there needs to be a reasonable probability of a worse fit with C, if C is false

Pr("a worse fit"; C is false)

 $Pr(M \le 152; \mu \le 153)$

Evaluate at μ = 153, as the prob is greater for μ < 153.

Consider: How severely has $\mu > 153$ passed the test?

To get Pr(M
$$\leq$$
 152: μ = 153), standardize: $Z = \sqrt{100} (152-153)/1 = -1$

Pr(Z < -1) = .16 Terrible evidence

Consider: How severely has $\mu > 150$ passed the test?

To get Pr(M
$$\leq$$
 152: μ = 150), standardize: $Z = \sqrt{100} (152-150)/1 = 2$

$$Pr(Z < 2) = .97$$

Notice it's 1 – P-value

Now consider SEV($\mu > 150.5$) (still with M = 152)

Pr (A worse fit with C; claim is false) = .97

 $Pr(M < 152; \mu = 150.5)$

Z = (152 - 150.5)/1 = 1.5

Pr (Z < 1.5)= .93 Fairly good indication μ > 150.5

Table 3.1 Reject in test T+: H_0 : $\mu \le 150$ vs. H_1 : $\mu > 150$ with $\overline{x} = 152$

	Claim	Severity
μ > 150.5	$\mu > \mu_1$	$\Pr(\overline{X} \leq 152; \mu = \mu_1)$
	$\mu > 149$	0.999
	$\mu > 150$	0.97
	$\mu > 151$	0.84
	$\mu > 152$	0.5
	$\mu > 153$	0.16

FOR PRACTICE:

Now consider SEV($\mu > 151$) (still with M = 152)

Pr (A worse fit with C; claim is false) = ____

 $Pr(M < 152; \mu = 151)$

$$Z = (152 - 151)/1 = 1$$

$$Pr(Z < 1) = .84$$

MORE PRACTICE:

Now consider SEV($\mu > 152$) (still with M = 152)

Pr (A worse fit with C; claim is false) = ___

 $Pr(M < 152; \mu = 152)$

Z = 0

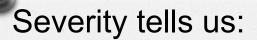
Pr(Z < 0) = .5—important benchmark

Terrible evidence that $\mu > 152$

Table 3.2 has exs with M = 153.

Using Severity to Avoid Fallacies: Fallacy of Rejection: Large *n* problem

- Fixing the P-value, increasing sample size n, the cut-off gets smaller
- Get to a point where x is closer to the null than various alternatives
- Many would lower the P-value requirement as n increases-can always avoid inferring a discrepancy beyond what's warranted:



- an α -significant difference indicates *less* of a discrepancy from the null if it results from larger (n_1) rather than a smaller (n_2) sample size $(n_1 > n_2)$
- What's more indicative of a large effect (fire), a fire alarm that goes off with burnt toast or one that doesn't go off unless the house is fully ablaze?

 [The larger sample size is like the one that goes off with burnt toast]

(looks ahead) Compare *n* = 100 with *n* = 10,000

$$H_0$$
: $\mu \le 150$ vs. H_1 : $\mu > 150$ (Let $\sigma = 10$, $n = 10,000$)

Reject H_0 whenever M \geq 2SE: M \geq 150.2 M is the sample mean (significance level = .025)

$$1SE = \sigma/\sqrt{n} = 10/\sqrt{10,000} = .1$$

Let M = 150.2, so I reject H_0 .

Comparing n = 100 with n = 10,000Reject H_0 whenever $M \ge 2SE$: $M \ge 150.2$

$$SEV_{10.000}(\mu > 150.5) = 0.001$$

$$Z = (150.2 - 150.5) / .1 = -.3 / .1 = -3$$

P(Z < -3) = .001

Corresponding 95% CI: [0, 150.4]

A .025 result is terrible indication μ > 150.5 When reached with n = 10,000

While
$$SEV_{100}(\mu > 150.5) = 0.93$$

Non-rejection. Let M = 151, the test does not reject H_0 .

The standard formulation of N-P (as well as Fisherian) tests stops there.

We want to be alert to a fallacious interpretation of a "negative" result: inferring there's no positive discrepancy from $\mu = 150$.

Is there evidence of compliance? $\mu \le 150$? The data "accord with" H_0 , but what if the test had little capacity to have alerted us to discrepancies from 150?

No evidence against H_0 is not evidence for it.

Condition (S-2) requires us to consider Pr(X > 151; 150), which is only .16.

P-value "moderate"

FEV(ii): A moderate p value is evidence of the absence of a discrepancy γ from H_0 , only if there is a high probability the test would have given a worse fit with H_0 (i.e., smaller P- value) were a discrepancy γ to exist.

For a Fisherian like Cox, a test's power only has relevance pre-data, they can measure "sensitivity".

In the Neyman-Pearson theory of tests, the sensitivity of a test is assessed by the notion of *power*, defined as the probability of reaching a preset level of significance ...for various alternative hypotheses. In the approach adopted here the assessment is via the distribution of the random variable *P*, again considered for various alternatives (Cox 2006, p. 25)

Computation for SEV(T, M = 151, C:
$$\mu \le 150$$
)
Z = (151 – 150)/1 = 1

$$Pr(Z > 1) = .16$$

SEV(
$$C$$
: $\mu \le 150$) = low (.16).

• So there's poor indication of H_0

Can they say M = 151 is a good indication that $\mu \le 150.5$?

No, SEV(T, M = 151, C:
$$\mu \le 150.5$$
) = ~.3. [Z = 151 - 150.5 = .5]

But M = 151 is a good indication that $\mu \le 152$ [Z = 151 - 152 = -1; Pr (Z > -1) = .84] SEV($\mu \le 152$) = .84

It's an even better indication $\mu \le 153$ (Table 3.3, p. 145) [Z = 151 - 153 = -2; Pr(Z > -2) = .97]

$\Pi(\gamma)$: "sensitivity function"

Computing $\Pi(\gamma)$ views the P-value as a statistic. $\Pi(\gamma) = \Pr(P < p_{obs}; \mu_0 + \gamma)$.

The alternative $\mu_1 = \mu_0 + \gamma$.

Given that P-value inverts the distance, it is less confusing to write $\Pi(\gamma)$

$$\Pi(\gamma) = \Pr(d > d_0; \mu_0 + \gamma).$$

Compare to the power of a test:

POW(
$$\gamma$$
) = Pr(d > c_{α} ; μ_0 + γ) the N-P cut-off c_{α} .

FEV(ii) in terms of $\Pi(\gamma)$

P-value is modest (not small): Since the data accord with the null hypothesis, FEV directs us to examine the probability of observing a result more discordant from H_0 if $\mu = \mu_0 + \gamma$:

If $\Pi(\gamma) = \Pr(d > d_0; \mu_0 + \gamma)$ is very high, the data indicate that $\mu < \mu_0 + \gamma$.

Here $\Pi(\gamma)$ gives the severity with which the test has probed the discrepancy γ .

FEV (ia) in terms of $\Pi(\gamma)$

If $\Pi(\gamma) = \Pr(d > do; \mu_0 + \gamma) = \text{moderately high (greater than .3, .4, .5), then there's poor grounds for inferring <math>\mu > \mu_0 + \gamma$.

This is equivalent to saying the SEV($\mu > \mu_0 + \gamma$) is poor.

FEV/SEV (for Excur 3 Tour III)

Test T+: Normal testing: H_0 : $\mu \le \mu_0$ vs. H_1 : $\mu > \mu_0$ σ known

(FEV/SEV): If d(x) is statistically significant (P- value very small), then test T+ passes $\mu > M_0 - k_\epsilon \sigma / \sqrt{n}$ with severity $(1 - \epsilon)$.

(FEV/SEV): If d(x) is *not* statistically significant (P- value moderate), then test T+ passes $\mu < M_0 + k_\epsilon \sigma / \sqrt{n}$ with severity (1 – ϵ),

where $P(d(X) > k_{\epsilon}) = \epsilon$.