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LETTERS TO THE EDITOR

Response to the ASA’s Statement on p-Values: Context, Process, and Purpose

Edward L. lonides?, Alexander Giessing?, Yaacov Ritov?, and Scott E. PageP

2Department of Statistics, University of Michigan, Ann Arbor, MI; PDepartments of Complex Systems, Political Science and Economics, University of

Michigan, Ann Arbor, MI

The ASA’s statement on p-values: context, process, and purpose
(Wasserstein and Lazar 2016) makes several reasonable practical
points on the use of p-values in empirical scientific inquiry. The
statement then goes beyond this mandate, and in opposition to
mainstream views on the foundations of scientific reasoning, to
advocate that researchers should move away from the practice
of frequentist statistical inference and deductive science. Mixed
with the sensible advice on how to use p-values comes a message
that is being interpreted across academia, the business world,
and policy communities, as, “Avoid p-values. They don't tell you
what you want to know.” We support the idea of an activist ASA
that reminds the statistical community of the proper use of sta-
tistical tools. However, any tool that is as widely used as the p-
value will also often be misused and misinterpreted. The ASAs
statement, while warning statistical practitioners against these
abuses, simultaneously warns practitioners away from legitimate
use of the frequentist approach to statistical inference.

In particular, the ASA’s statement ends by suggesting that
other approaches, such as Bayesian inference and Bayes factors,
should be used to solve the problems of using and interpreting
p-values. Many committed advocates of the Bayesian paradigm
were involved in writing the ASA’s statement, so perhaps this
conclusion should not surprise the alert reader. Other applied
statisticians feel that adding priors to the model often does more
to obfuscate the challenges of data analysis than to solve them. It
is formally true that difficulties in carrying out frequentist infer-
ence can be avoided by following the Bayesian paradigm, since
the challenges of properly assessing and interpreting the size
and power for a statistical procedure disappear if one does not
attempt to calculate them. However, avoiding frequentist infer-
ence is not a constructive approach to carrying out better fre-
quentist inference.

On closer inspection, the key issue is a fundamental position
of the ASA’s statement on the scientific method, related to but
formally distinct from the differences between Bayesian and
frequentist inference. Let us focus on a critical paragraph from
the ASA’s statement: “In view of the prevalent misuses of and
misconceptions concerning p-values, some statisticians prefer
to supplement or even replace p-values with other approaches.
These include methods that emphasize estimation over test-
ing, such as confidence, credibility, or prediction intervals;
Bayesian methods; alternative measures of evidence, such as
likelihood ratios or Bayes factors; and other approaches such
as decision-theoretical modeling and false discovery rates. All

these measures and approaches rely on further assumptions,
but they may more directly address the size of an effect (and its
associated uncertainty) or whether the hypothesis is correct”

Some people may want to think about whether it makes sci-
entific sense to “directly address whether the hypothesis is cor-
rect” Some people may have already concluded that usually it
does not, and be surprised that a statement on hypothesis test-
ing that is at odds with mainstream scientific thought is appar-
ently being advocated by the ASA leadership. Albert Einstein’s
views on the scientific method are paraphrased by the assertion
that, “No amount of experimentation can ever prove me right;
a single experiment can prove me wrong” (Calaprice 2005).
This approach to the logic of scientific progress, that data can
serve to falsify scientific hypotheses but not to demonstrate their
truth, was developed by Popper (1959) and has broad accep-
tance within the scientific community. In the words of Popper
(1963), “It is easy to obtain confirmations, or verifications, for
nearly every theory, while, “Every genuine test of a theory is
an attempt to falsify it, or to refute it. Testability is falsifiability”
The ASA’s statement appears to be contradicting the scientific
method described by Einstein and Popper. In case the interpre-
tation of this paragraph is unclear, the position of the ASA’s state-
ment is clarified in their Principle 2: “p-values do not measure
the probability that the studied hypothesis is true, or the prob-
ability that the data were produced by random chance alone.
Researchers often wish to turn a p-value into a statement about
the truth of a null hypothesis, or about the probability that ran-
dom chance produced the observed data. The p-value is neither”
Here, the ASA’s statement misleads through omission: a more
accurate end of the paragraph would read, “The p-value is nei-
ther. Nor is any other statistical test used as part of a deductive
argument.” It is implicit in the way the authors have stated this
principle that they believe alternative scientific methods may be
appropriate to assess more directly the truth of the null hypoth-
esis. Many readers will infer the ASA to imply the inferiority of
deductive frequentist methods for scientific reasoning. The ASA
statement, in its current form, will therefore make it harder for
scientists to defend a choice of frequentist statistical methods
during peer review. Frequentist articles will become more dif-
ficult to publish, which will create a cascade of effects on data
collection, research design, and even research agendas.

Gelman and Shalizi (2013) provided a relevant discussion of
the distinction between deductive reasoning (based on deduc-
ing conclusions from a hypothesis and checking whether they
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can be falsified, permitting data to argue against a scientific
hypothesis but not directly for it) and inductive reasoning
(which permits generalization, and therefore allows data to pro-
vide direct evidence for the truth of a scientific hypothesis). It
is held widely, though less than universally, that only deduc-
tive reasoning is appropriate for generating scientific knowl-
edge. Usually, frequentist statistical analysis is associated with
deductive reasoning and Bayesian analysis is associated with
inductive reasoning. Gelman and Shalizi (2013) argued that it
is possible to use Bayesian analysis to support deductive rea-
soning, though that is not currently the mainstream approach
in the Bayesian community. Bayesian deductive reasoning may
involve, for example, refusing to use Bayes factors to support sci-
entific conclusions. The Bayesian deductive methodology pro-
posed by Gelman and Shalizi (2013) is a close cousin to frequen-
tist reasoning, and in particular emphasizes the use of Bayesian
p-values.

The ASA probably did not intend to make a philosophical
statement on the possibility of acquiring scientific knowledge by
inductive reasoning. However, it ended up doing so, by making
repeated assertions implying, directly and indirectly, the legit-
imacy and desirability of using data to directly assess the cor-
rectness of a hypothesis. This philosophical aspect of the ASA
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statement is far from irrelevant for statistical practice, since the
ASA position encourages the use of statistical arguments that
might be considered inappropriate.

A judgment against the validity of inductive reasoning for
generating scientific knowledge does not rule out its utility for
other purposes. For example, the demonstrated utility of stan-
dard inductive Bayesian reasoning for some engineering appli-
cations is outside the scope of our current discussion. This
amounts to the distinction Popper (1959) made between “com-
mon sense knowledge” and “scientific knowledge”
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Average Entropy Does Not Measure Uncertainty

Kittaneh et al. (2016) proposed a new quantity, the average
entropy, to serve as an alternative measure of uncertainty. They
demonstrated that the average entropy preserves several desir-
able properties of Shannon entropy (1948), even when applied
to continuous probability density functions (pdfs).

However, in the process of satisfying these properties, the
average entropy fails to meet the most fundamental require-
ment of all, namely, measuring uncertainty: The more spread
out the outcome probabilities, the greater the uncertainty, and
hence the greater the entropy should be. For example, in the
case of k possible outcomes and equal probabilities p; = i,
the entropy is a monotonic increasing function of k (Shannon
1948). But the average entropy does not satisfy this require-
ment in general. I illustrate first with a discrete random variable
(geometric), then with two continuous ones (exponential and
normal).

The authors define the average entropy as A(X) =
—E[log-L%) ], or
OBEFO1 1 ©

A(X) = H +log E[f(X)], 1

where H is the Shannon entropy, H = —E[log f(X)]. For the
geometric pdf f(y) = p(1 — p)~' = pg’~!, defined on y =
1,2,..., calculate
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Insert (2) and (3) into (1):
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The geometric entropy should approach infinity for small p,
when probability is spread out across many values of y (illus-
trated forp = 0.1 in Figure 1(a)), and zero as p approaches 1,
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Figure 1. Geometric pdf as a function of y. (a) p = 0.1. (b) p = 0.9.

Geomatric :

Figure 2. Shannon entropy (H) and average entropy (AvgEnt) as functions of param-
eter p in geometric pdf.

when all the probability is concentrated near y =0 (p = 0.9
in Figure 1(b)). Indeed, the Shannon entropy in (2) behaves in
exactly this way (solid curve in Figure 2). However, the average
entropy in (4) is practically flat as a function of p (dashed curve
in Figure 2), capturing nothing of the extent of uncertainty in
the geometric distribution.

The exponential function, f(y) = Ae™*’, represents a con-
tinuous analog to the geometric, and its average entropy is actu-
ally constant with respect to the parameter A: H =1 — log A,
log E[f(Y)] = log%, and thus average entropy = 1 — log2.
(This quantity, 1 — log2, also equals the limit as p — 0 of the

Geometnc pdfforp=09

average entropy in Figure 2.) Similarly, the normal function,
(x—p)*

f0) = s=exp(—555
with respect to the parameter o> H = 0.5[log(270?) + 1],
log E[f(Y)] = logw;”?, and average entropy = 1_12°g2, that is,
one-half the constant value for the exponential pdf. Since the
average entropy is not a function of parameters for these two
pdfs, it cannot give any information about how spread out the
probabilities is as a function of the parameters.

There do exist some pdfs for which the average entropy
reflects the spread of probabilities. However, as these examples
show, the average entropy cannot function as a general measure
of uncertainty.

}, also has constant average entropy
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Reply

The letter directs some comments and criticisms regarding
Kittaneh et al. (2016). Unfortunately, the author(s) reject the
average entropy (A) as a measure of uncertainty because it has
different behavior and properties from the well-known Shannon
entropy (H).

— The author(s) mention that the more spread out the out-
come probability, the greater the value of the entropy
should be:

Which entropy is meant here? Shannon entropy is one mem-
ber of a big family of entropies. For example, the well-known
Tsallis entropy (1988) is not in general increasing function of k,
if we have k outcomes with equal probabilities p; = 1.

In fact entropy measures quantify to some extent the dis-
tance between probability distribution and the uniform distri-
bution (the noninformative distribution or the state of complete
ignorance). In particular, Shannon entropy attains its maximum
when the distribution is uniform, however, average entropy is
minimum (zero) for uniform distributions.

- It is also mentioned that the entropy of the geometric

distribution

fO)y=pl—pyY ' y=1.2,.. (1)

should go to infinity as p goes to zero.

Actually, this is applicable to some entropy measures like
Shannon entropy but not all; again, we can check that Tsallis
entropy of degree 2 goes to one as p goes to zero. So can we
say that Tsallis entropy does not measure uncertainty because of
this. Actually, each entropy measure quantifies the uncertainty
in different way.

— The author(s) point out that the average entropy is constant
and equal to 1-log2 for the exponential distribution, and
this value is also the limit of the average entropy for the
geometric distribution with parameter p as p goes to zero.

It is a well-known fact that the geometric distribution is the
discrete analog of the exponential distribution. In particular,
X~Geom(p = 1/n) converges asymptotically to Y~Exp(1/n).
In this case, Shannon entropy for X and Y are, respectively,
equal to H(X) =logn+ (n—1)log(l —1/n) and H(Y) =
1 + logn. Also the average entropy for X and Y are, respec-
tively, equal to A(X) = (n— 1)log(1 — 1/n) —log(2 — 1/n)
and A(Y) = 1 — log2. Note that both H(X) and H(Y) go to the
same value (infinity), and both A(X) and A(Y) go to the same
value(l — log2), as n goes infinity. Both results are acceptable
(consistent). However, if we start with an exponential distribu-

tion Z ~ Exp(A) with PDF f(z) = Ae **,z € [0, 00),and divide
its support into bins of equal lengthA, then the corresponding
empirical distribution say Z* has PMF

k+DA
P@%uw=/ s,
kA

=1 —e*Me* = Af(z), k=0,1,2,..

()
which is exactly a geometric PMF with parameter p=1 —
e 2, but with different support from that of the geomet-
ric distribution. The support here is the set of values say
20, 21, Z2, . . . chosen from each subinterval [kA, (k + 1)A) for
k=0,1,2,...Itcanbeeasily checked that H(Z) = 1 — log X <
oo and H(Z%) — oo as A — 0. How can this be interpreted
from a statistical point of view?

On the other hand, for the average entropy, A(Z%) —
A(Z) =1 —log2. This is exactly the meaning of consistency for
the average entropy, which is proved in general in Theorem 3.1
in Kittaneh et al. (2016).

— Finally, the author(s) indicate that the average entropy is

constant for particular distributions.

In fact, many entropies (including Shannon entropy) are
free of the distribution’s parameters for some probability dis-
tributions. Consider the following triangular distribution with
parameter (0 < ¢ < 2)

O<x<c
c<x<?2’

x/c,

ﬂ”:{e—mmbw»

and zero otherwise.

It can be checked that Shannon entropy is equal to 1/2, which
does not depend on the parameter c. At the end I would like
to say that information theoreticians always look at uncertainty
through the window of Shannon entropy. Whereas, consider-
ing entropy as a statistical measure requires its validity for both
discrete and continuous distributions, in addition to the consis-
tency when moving between the two spaces.
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