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Preface 

DESPITE THE CHALLENGES TO AND CHANGES IN traditional philosophy of 
science, one of its primary tasks continues to be to explain, if not also to 
justify, scientific methodologies for learning about the world. To logical 
empiricist philosophers (Carnap, Reichenbach) the task was to show 
that science proceeds by objective rules for appraising hypotheses. To 
that end many attempted to set out formal rules termed inductive log­
ics and confirmation theories. Alongside these stood Popper's method 
of appraisal based on falsification: evidence was to be used to falsify 
claims deductively rather than to build up inductive support. Both in­
ductivist and falsificationist approaches were plagued with numerous, 
often identical, philosophical problems and paradoxes. Moreover, the 
entire view that science follows impartial algorithms or logics was chal­
lenged by Kuhn (1962) and others. What methodological rules there 
are often conflict and are sufficiently vague as to "justify" rival hypoth­
eses. Actual scientific debates often last for several decades and appear 
to require, for their adjudication, a variety of other factors left out of 
philosophers' accounts. The challenge, if one is not to abandon the 
view that science is characterized by rational methods of hypothesis 
appraisal, is either to develop more adequate models of inductive infer­
ence, or else to find some new account of scientific rationality. 

This was the problem situation in philosophy of science when, as 
a graduate student, I grew interested in these issues. With my back­
ground in logic and mathematics, and challenged by the problems for­
mulated by Kyburg, Salmon, and others, I was led to pursue the first 
option-attempt to develop a more adequate account of inductive in­
ference .. 

I might never have sauntered into that first class on mathematical 
statistics had the Department of Statistics not been situated so closely 
to the Department of Philosophy at the University of Pennsylvania. 
There I discovered, expressed in the language of statistics, the very 
problems of induction and confirmation that were so much in the 
minds of the philosophers of science nearby. The more I learned, the 
more I suspected that understanding how these statistical methods 
worked would offer up solutions to the vexing problem of how we 
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x PREFACE 

learn about the world in the face of error. But the similarity of the 
goals of philosophy of science and statistics, any more than the physical 
proximity of their departments on that campus, did not diminish the 
large gulf that existed between philosophical work on induction and 
the methods and models of standard statistical practice. 

While logical-empiricist systems of inductive logic, despite a few 
holdouts, were largely being abandoned, most philosophers of statistics 
viewed the role of statistics as that of furnishing a set of formal rules 
or "logic" relating given evidence to hypotheses. The dominant ex­
ample of such an approach on the contemporary philosophical scene 
is based on one or another Bayesian measure of support or confirma­
tion. With the Bayesian approach, what we have learned about a hy­
pothesis H from evidence e is measured by the conditional probability 
of H given e using Bayes's theorem. The cornerstone of the Bayesian 
approach is the use of prior probability assignments to hypotheses, 
generally interpreted as an agent's subjective degrees of belief. In con­
trast, the methods and models of classical and Neyman-Pearson statis­
tics (e.g., statistical significance tests, confidence interval methods) that 
seemed so promising to me eschewed the use of prior probabilities 
where these could not be based on objective frequencies. Probability 
enters instead as a way of characterizing the experimental or testing 
process itself: to express how reliably it discriminates between alterna­
tive hypotheses and how well it facilitates learning from error. These 
probabilistic properties of experimental procedures are error probabil­
ities. 

Not only was there the controversy raging between Bayesians and 
error statisticians, but philosophers of statistics of all stripes were also 
full of criticisms of Neyman-Pearson error statistics and had erected a 
store of counterintuitive inferences apparently licensed by those meth­
ods. Before I could hope to utilize error statistical ideas in grappling 
with the problems of the rationality of science, clearly these criticisms 
would have to be confronted. Some proved recalcitrant to an easy dis­
missal, and this became the task of my doctoral dissertation. This" de­
tour," fascinating in its own right, was a main focus for the next few 
years. 

The result of grappling with these problems was a reformulation 
of standard Neyman-Pearson statistics that avoided the common mis­
interpretations and seemed to reflect the way these methods are used 
in practice. By the time that attempt grew into the experimental testing 
account of this book, the picture had diverged sufficiently from the 
Neyman-Pearson model to warrant some new name. Since it retains 
the centerpiece of standard Neyman-Pearson methods-the funda-
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PREFACE xi 

mental use of error probabilities-error-probability statistics, or just 
error statistics, seems about right. 

My initial attempt to reformulate Neyman-Pearson statistics, how­
ever relevant to the controversy being played out within the confines 
of philosophy of statistics, was not obviously so for those who had 
largely abandoned that way of erecting an account of science, or so I 
was to learn, thanks to a question or challenge put forth by Larry Lau­
dan in 1984. 

In the new "theory change" movement that Laudan promoted, 
theory testing does not occur apart from appraising an entire paradigm 
(Kuhn), research program (Lakatos), or tradition (Laudan). In striking 
contrast to logical empiricist models and their contemporary (Bayes­
ian) variants, the rational theory change models doubt that the techni­
cal machinery of inductive logic and statistical inference can shed 
much light on the problems of scientific rationality. It was perhaps Lau­
dan's skepticism that drove me to pursue explidtly the task that had 
led me to philosophy of statistics in the first place-to utilize an ade­
quate account of statistical inference in grappling with philosophical 
problems about evidence and inference. More than that, it was his per­
sistent call to test our accounts against the historical record of science 
that led me to investigate a set of experimental episodes in science. I 
found, however, that little is learned from merely regarding historical 
episodes as instances or counterinstances of one or another philosophi­
cal thesis about science. That sort of historical approach fails to go deep 
enough to uncover the treasures often buried within historical cases. 

What proved to be a gold mine for me was studying the nitty-gritty 
details of the data collection and analysis from experimental episodes. 
Here one can unearth a handful of standard or "canonical" strategies 
by which a host of noisy raw data may be turned into far more reliable 
modeled data. These investigations afforded me several shortcuts for 
how to relate statistical methods to full-bodied scientific inquiries. The 
rationale of statistical methods and models is found in their capacity to 
systematize strategies for learning from data, and thereby for further­
ing the growth of experimental knowledge. 

In contrast to the global inductive approaches-a rule for any 
given data and hypothesis-so attractive to philosophers, I favor a 
model of experimental learning that is more of a piecemeal approach, 
whereby one question may be asked at a time in carrying out, model­
ing, and interpreting experiments-even to determine what "the data" 
are. The idea of viewing experimental inquiry in terms of a series of 
distinct models was influenced by experience with statistics as well as 
by early exposure to a seminal paper by Patrick Suppes (1969). By 
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xii PREFACE 

insisting on a global measure of evidential-relationship, philosophers 
have overlooked the value of piecemeal error-statistical tools for filling 
out a series of models that link data to experiments. But how are the 
pieces intertwined so that the result is genuinely ampliative? Unlocking 
this puzzle occupied me for some time. One way to describe how statis­
tical methods function, I came to see, is that they enable us, quite liter­
ally, to learn from error. A main task of this book is to develop this 
view. 

The view that we learn from error, while commonplace, has been 
little explored in philosophy of science. When philosophers of science 
do speak of learning from error-most notably in the work of Pop­
per-they generally mean simply that when a hypothesis is put to the 
test of experiment and fails, we reject it and attempt to replace it with 
another. Little is said about what the different types of errors are, what 
specifically is learned when an error is recognized, how we locate pre­
cisely what is at fault, how our ability to detect and correct errors 
grows, and how this growth is related to the growth of scientific 
knowledge. In what follows, I shall explore the possibility that ad­
dressing these questions provides a fresh perspective for understanding 
how we learn about the world through experiment. 

Readers who wish to read the concluding overview in advance 
may turn to chapter 13. 

Recent trends in philosophy of science lead me to think that the 
time is ripe for renewing the debate between Bayesian and error statis­
tical epistemologies of experiment. Two main trends I have in mind are 
(I) the effort to link philosophies of science to actual scientific practice 
and scrutinize methodologies of science empirically or naturalistically, 
and (2) the growing interest in experiment by philosophers, historians, 
and sociologists of science. 

Although methods and models from error statistics continue to 
dominate among experimental practitioners who use statistics, the 
Bayesian Way has increasingly been regarded as the model of choice 
among philosophers looking to statistical methodology. Given the cur­
rent climate in philosophy of science, readers unfamiliar with philos­
ophy of statistics may be surprised to find philosophers (still) declaring 
invalid a widely used set of experimental methods, rather than trying 
to explain why scientists evidently (still) find them so useful. This has 
much less to do with any sweeping criticisms of the standard approach 
than with the fact that the Bayesian view strikes a resonant chord with 
the logical-empiricist gene inherited from early work in confirmation 
and induction. In any event, it is time to remedy this situation. A genu­
inely adequate philosophy of experiment will only emerge if it is not 
at odds with statistical practice in science. 
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PREFACE xiii 

More than any other philosophical field of which I am aware, the 
probability and statistics debates tend to have the vehemence usually 
restricted to political or religious debates. I do not hope to bring hard­
core Bayesians around to my view, but I do hope to convince the large 
pool of tempered, disgruntled, and fallen Bayesians that a viable non­
Bayesian alternative exists. Most important, I aim to promote a general 
change of focus in the debates so that statistical accounts are scruti­
nized according to how well they serve specific ends. I focus on three 
chief tasks to which statistical accounts can and have been put in phi­
losophy of science: (1) modeling scientific inference, (2) solving prob­
lems about evidence and inference, and (3) performing a critique of 
methodological rules. 

The new emphasis on experiment is of special relevance in making 
progress on this debate. Experiments, as Ian Hacking taught us, live 
lives of their own, apart from high level theorizing. Actual experimen­
tal inquiries, the new experimentalists show, focus on manifold local 
tasks: checking instruments, ruling out extraneous factors, getting ac­
curacy estimates, distinguishing real effect from artifact, and estimating 
the effects of background factors. The error-statistical account offers a 
tool kit of methods that are most apt for performing the local tasks of 
designing, modeling, and learning from experimental data. At the 
same time, the already well worked out methods and models from 
error statistics supply something still absent: a systematic framework 
for making progress with the goals of the new experimentalist work. 

This book is intended for a wide-ranging audience of readers inter­
ested in the philosophy and methodology of science: for practitioners 
and philosophers of experiment and science, and for those interested 
in interdisciplinary work in science and technology studies. My hope 
is to strengthen existing bridges and create some new bridges between 
these fields. I regard the book as nontechnical and open to readers 
without backgrounds in statistics or probability. This does not mean 
that it contaim; no formal statistical ideas, but rather that the same 
ideas will also be presented in semiformal and informal ways. Readers 
can therefore feel free to put off (temporarily or permanently) statisti­
cal discussions without worrying that they will miss the main argu­
ments or the working of this approach. So, for example, the reader 
hungry for a full-blown illustration of the approach can jump to chap­
ter 7 after wading through the first two sections of chapter 5. 

I have attempted to design the book so that an idea not caught in 
one place will likely be caught in another. This attempt, I will confess, 
required me to diverge from a more usual linear approach wherein 
one defines the formal concepts needed, articulates an approach and 
then contrasts it with others, and so on. My critique of the Bayesian 
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xiv PREFACE 

Way-one key aim of the book-is woven through the book, which 
simultaneously addresses two interrelated aims: developing the alter­
native error statistical approach and tackling a number of philosophical 
problems about evidence and inference. In addition to this cyclical or 
"braided" approach, some may fault me for overlooking certain techni­
cal qualifications or for failing to mention so-and-so's recent result. 
Again, I admit my guilt, but this seemed a necessary trade-off to bring 
these ideas into the mainstream where they belong. 

My intention is to take readers on a journey that lets them get a 
feel for the error probability way of thinking, links it to our day-to-day 
strategies for finding things out, and points to the direction in which a 
new philosophy of experiment might move. I want to identify for the 
reader the style of inference and argument involved-it is of a sort we 
perform every day in learning from errors. Once this is grasped, I be­
lieve, the appropriate way to use and interpret the formal statistical 
tools will then follow naturally. If anything like a full-blown philos­
ophy of experiment is to be developed, it will depend as much on hav­
ing an intuitive understanding of standard or "canonical" arguments 
from error as on being able to relate them to statistical models. 

I began writing this book while I was a visitor at the Center for 
Philosophy of Science at the University of Pittsburgh in the fall of 1989. 
I am grateful for the stimulating environment and for conversations 
on aspects of this work with John Earman, Clark Glymour, Adolf 
Grunbaum, Nicholas Rescher, and Wesley Salmon. 

My ideas were importantly shaped by Ronald Giere's defenses of 
Neyman-Pearson statistics in the 1970s, and he has been a wonderful 
resource over many years. Without his encouragement and help, espe­
cially early on, I might never have found the path or had the nerve to 
pursue this approach. I have benefited enormously from his scrupu­
lous reading of earlier drafts of this manuscript and from his uncanny 
ability to distill, in a few elegant phrases, just what I am trying to say. 

I am deeply grateful to Henry Kyburg, in whose (1984) NEH sum­
mer seminar on induction and probability many of my ideas on statisti­
cal inference crystallized. He has given me generous help with the revi­
sions to early drafts and, more than anyone else, is to be credited with 
having provoked me to a bolder, clearer, and more direct exposition of 
my account; although he would have preferred that I perform even 
greater liposuction on the manuscript. 

lowe the largest debt of gratitude to Wesley Salmon. My debt is 
both to his work, which has had a strong influence, as well as to his 
massive help throughout the course of this project. In countless con­
versations and commentaries, though I proffered only the roughest of 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:10:19.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



PREFACE xv 

drafts, he gave me the benefit of his unparalleled mastery of the prob­
lems with which I was grappling. I thank him for letting me tryout my 
views on him, for his steadfast confidence and support, and for rescu­
ing me time and again from being stalled by one or another obstacle. 

I would like to acknowledge a number of individuals to whom I 
owe special thanks for substantive help with particular pieces of this 
book. I am indebted to Larry Laudan for lengthy discussions about my 
reworking of Kuhnian normal science in chapter 2, and I benefited 
greatly from Teddy Seidenfeld's recommendations and criticisms of the 
statistical ideas in chapters 3, 5, and 10. I thank Clark Glymour for help 
in clarifying his position in chapter 9. For insights on an early draft of 
chapter lIon Peirce, I am grateful to Isaac Levi. An older debt recalled 
in developing the key concept of severe tests is to Alan Musgrave. My 
understanding of the views on novel predictions and my coming to 
relate them to severe tests (in chapters 6 and 8) grew directly out of 
numerous conversations with him while he was a visitor at Virginia 
Tech in 1986. I am grateful to communication with Karl Popper around 
that time, which freed me, in chapter 6, to clearly distinguish my se­
verity concept from his. 

Larry Laudan's influence, far more than the citations indicate, can 
be traced throughout most of the chapters; I benefited much from hav­
ing him as a colleague from 1983 to 1987. 

The epistemology of experiment developed in this book is broadly 
Peirce an and I would like to acknowledge my debt to the scholarship 
of C. S. Peirce. Through the quandaries of virtually every chapter, his 
work served much like a brilliant colleague and a kindred spirit. 

A portion of the rewriting took place while I was a visiting profes­
sor at the Center for Logic and Philosophy of Science at the University 
of Leuven, Belgium, in 1994, and I learned much from the different 
perspectives of colleagues there. I want to thank especially Herman 
Roelants, chair of the Department of Philosophy, for valuable com­
ments on this work. 

Many others gave helpful comments and criticisms on portions of 
this work: Richard Burian, George Barnard, George Chatfield, Norman 
Gilinsky, I. J. Good, Marjorie Grene, Ian Hacking, Gary Hardcastle, Val­
erie Hardcastle, Paul Hoyningen-Huene, William Hendricks, Joseph 
Pitt, J. D. Trout, and Ronald Workman. 

At different times, I was greatly facilitated in the research and writ­
ing for this book by the support I received from an NEH fellowship for 
college teachers, an NEH summer stipend, and an NSF grant (Studies 
in Science, Technology, and Society Scholars Award). I am grateful to 
Virginia Tech and to Joseph Pitt, chair of the philosophy department, 
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xvi PREFACE 

for helping to accommodate my leaves and for endorsing this project. 
Portions of chapters 3, 8, 11, and 12 have appeared in previously 

published articles; I thank the publishers for permission to use some 
of this material: "The New Experimentalism, Topical Hypotheses, and 
Learning From Error," in PSA 1994, vol. 1, edited by D. Hull, M. Forbes, 
and R. Burian (East Lansing, Mich.: Philosophy of Science Association, 
1994), 270-79; "Novel Evidence and Severe Tests," Philosophy of Science 
58 (1991): 523-52; "Did Pearson Reject the Neyman-Pearson Philoso­
phy of Statistic~7" Synthese 90 (1992): 233-62; and "The Test of Experi­
ment: C. S. Peirce and E. S. Pearson," in Charles S. Peirce and the Philoso­
phy of Science: Papers from the 1989 Harvard Conference, edited by E. Moore 
(Tuscaloosa, Ala.: University of Alabama Press, 1983), 161-74. 

lowe special thanks to Susan Abrams and the University of Chi­
cago Press for supporting this project even when it existed only as a 
ten-page summary, and for considerable help throughout. I thank Da­
vid Hull for his careful and instructive review of this manuscript, Mad­
eleine Avirov for superb copyediting, and Stacia Kozlowski for a good 
deal of assistance with the manuscript preparation. 
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CHAPTER ONE 

Learning from Error 

The essays and lectures of which this book is composed are varia­
tions upon one very simple theme-the thesis that we can learn 
from our mistakes. 

Karl Popper, Conjectures and Refutations, p. vii 

WE LEARN FROM OUR MISTAKES. Few would take issue with this dictum. 
If it is more than merely a cliche, then it would seem of interest to 
epistemologists to inquire how knowledge is obtained from mistakes 
or from error. But epistemologists have not explored, in any serious 
way, the basis behind this truism-the different kinds of mistakes that 
seem to matter, or the role of error in learning about the world. Karl 
Popper's epistemology of science takes learning from error as its linch­
pin, as the opening to his Conjectures and Refutations announces. In his 
deductive model the main types of error from which scientists learn 
are clashes between a hypothesis and some experimental outcome in 
testing. Nevertheless, Popper says little about what positive informa­
tion is acquired through error other than just that we learn an error 
has somewhere been made. Since a great many current approaches 
take Popper's problems as their starting place, and since I too make 
learning from error fundamental, I begin by pursuing this criticism of 
Popper. 

1.1 POPPERIAN LEARNING THROUGH FALSIFICATION 

For the logical empiricists, learning from experiment was a matter of 
using observations to arrive at inductive support for hypotheses. Ex­
perimental observations were viewed as a relatively unproblematic 
empirical basis; the task for philosophers was to build inductive logics 
for assigning degrees of evidential support to hypotheses on the basis 
of given statements of the evidence. Popper questioned the supposition 
that experimental data were unproblematic and denied that learning 
is a matter of building up inductive support through confirming in-
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2 CHAPTER ONE 

stances of hypotheses. For Popper, learning is a matter of deductive 
falsification. In a nutshell, hypothesis H is deductively falsified if H en­
tails experimental outcome 0, while in fact the outcome is -0. What is 
learned is that H is false. 

Several familiar problems stand in the way of such learning. Out­
come 0, itself open to error, is "theory-laden" and derived only with 
the help of auxiliary hypotheses. The anomaly cannot be taken as 
teaching us that H is false because it might actually be due to some 
error in the observations or one of the auxiliary hypotheses needed to 
derive o. By means of the modus tollens, Popper remarks, "we falsify the 
whole system (the theory as well as the initial conditions) which was 
required for the deduction of [the prediction], Le., of the falsified state­
ment" (Popper 1959, 76). We cannot know, however, which of several 
auxiliary hypotheses is to blame, which needs altering. Often H entails, 
not a specific observation, but a claim about the probability of an out­
come. With such a statistical hypothesis H, the nonoccurrence of an 
outcome does not contradict H, even if there are no problems with the 
auxiliaries or the observation. 

As such, for a Popperian falsification to get off the ground, addi­
tional information is needed to determine (1) what counts as obser­
vational (and to decide which observations to accept in a particular 
experiment), (2) whether auxiliary hypotheses are acceptable and al­
ternatives are ruled out, and (3) when to reject statistical hypotheses. 
Only with (1) and (2) does an anomalous observation 0 falsify hypoth­
esis H, and only with (3) can statistical hypotheses be falsifiable. Be­
cause each determination is fallible, Popper and, later, Imre Lakatos 
regard their acceptance as decisions, driven more by conventions than 
by experimental evidence. 

Lakatos sets out to improve Popper by making these (and other) 
decisions explicit, yielding "sophisticated methodological falsifica­
tionism." Nevertheless, Lakatos finds the decisions required by a Pop­
perian falsificationist too risky, claiming that "the risks are daring to 
the point of recklessness" (Lakatos 1978, 28), particularly decision 2, 
to rule out any factors that would threaten auxiliary hypotheses. Says 
Lakatos: "When he tests a theory together with a ceteris paribus clause 
and finds that this conjunction has been refuted, he must decide 
whether to take the refutation also as a refutation of the specific the­
ory .... Yet the decision to 'accept' a ceteris paribus clause is a very risky 
one because of the grave consequences it implies" (ibid., 110). Once 
the decision is made to reject alternative auxiliary factors, a mere 
anomaly becomes a genuine falsifier of the theory itself. 

Lakatos regards such a decision as too arbitrary. Accepting what is 
often referred to as the Duhem-Quine thesis, that "no experimental 
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LEARNING FROM ERROR 3 

result can ever kill a theory: any theory can be saved from counter­
instances either by some auxiliary hypothesis or by a suitable reinter­
pretation of its terms" (Lakatos 1978, 32), Lakatos believes that an ap­
peal procedure by which to avoid directing the modus tollens against a 
theory is always available. 

Moreover, Lakatos, like Thomas Kuhn, finds Popper's picture of 
conjecture and refutation too removed from actual science, which of­
ten lives with anomalies and contains not just falsifications but also 
confirmations. Attempting to save something of Popper while accom­
modating Kuhn, Lakatos erects his "methodology of scientific research 
programmes." Lakatos suggests that there is a hard core against which 
modus tollens is not to be directed. In the face of inconsistency or anom­
aly, we may try to replace any auxiliaries outside this core (the "protec­
tive belt"), so long as the result is progressive, that is, predicts some 
novel phenomena. Determining the progressiveness of the theory 
change requires us to look not at an isolated theory, but at a series of 
theories-a research program. However, this holistic move does not re­
ally solve Popper's problem: as Lakatos recognizes, it enables any the­
ory or research program to be saved-with sufficient genius it may 
be defended progressively, even if it is false (Lakatos 1978, Ill). The 
cornerstone of the Popperian doctrine against saving theories from fal­
sification is overturned. While Lakatos, like Popper, had hoped to avoid 
conventionalism, his solution results in making the growth of knowl­
edge even more a matter of convention than did Popper's decisions. It 
is the unquestioned authority of the conventionally designated hard 
core, and not "the universe of facts," that decides where to direct the 
arrow of modus tollens. In Lakatos's view: 

The direction of science is determined primarily by human creative 
imagination and not by the universe of facts which surrounds us. Cre­
ative imagination is likely to find corroborating novel evidence even 
for the most "absurd" programme, if the search has sufficient 
drive .... A brilliant school of scholars (backed by a rich society to 
finance a few well-planned tests) might succeed in pushing any fan­
tastic programme ahead, or, alternatively, if so inclined, in overthrow­
ing any arbitrarily chosen pillar of "established knowledge." (Lakatos 
1978, 99-100) 

But let us pull back and recall the problems that set Lakatos off 
in the first place. Affirming experimental data? Ruling out alternative 
auxiliaries? Falsifying statistical claims? Why not see if there may not 
be perfectly good grounds for warranting the information that these 
tasks require without resorting to conventional decisions in the first 
place. This is where my project begins. 
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4 CHAPTER ONE 

The key is to erect a genuine account of learning from error-one 
that is far more aggressive than the Popperian detection of logical in­
consistencies. Although Popper's work is full of exhortations to put 
hypotheses through the wringer, to make them "suffer in our stead in 
the struggle for the survival of the fittest" (Popper 1962, 52), the tests 
Popper sets out are white-glove affairs of logical analysis. If anomalies 
are approached with white gloves, it is little wonder that they seem to 
tell us only that there is an error somewhere and that they are silent 
about its source. We have to become shrewd inquisitors of errors, in­
teract with them, simulate them (with models and computers), amplify 
them: we have to learn to make them talk. A genuine account of learn­
ing from error shows where and how to justify Popper's "risky deci­
sions." The result, let me be clear, is not a filling-in of the Popperian 
(or the Lakatosian) framework, but a wholly different picture of learn­
ing from error, and with it a different program for explaining the 
growth of scientific knowledge. 

l.2 DAY-TO-DAY LEARNING FROM MISTAKES 

The problem of learning from error in the sense of Popperian falsifica­
tion' say Lakatos and others, is that learning from error itself is fraught 
with too much risk of error. But what grounds are there for thinking 
that such possible errors are actually problematic? How do scientists 
actually cope with them? It is not enough that mistakes are logically 
possible, since we are not limited to logic. Unless one is radically skepti­
cal of anything short of certainty, specific grounds are needed for hold­
ing that errors actually occur in inquiries, that they go unnoticed, and 
that they create genuine obstacles to finding things out. No such 
grounds have been given. If we just ask ourselves about the specific 
types of mistakes we can and do make, and how we discover and avoid 
them-in short, how we learn from error-we would find that we 
have already taken several steps beyond the models of both Popper 
and Lakatos. Let me try to paint with broad brush strokes the kinds of 
answers that I think arise in asking this question, with a promise to fill 
in the details as we proceed. 

1. After-trial checking (correcting myself). By "after-trial" I mean after 
the data or evidence to be used in some inference is at hand. A tenta­
tive conclusion may be considered, and we want to check if it is correct. 
Having made mistakes in reaching a type of inference in the past, we 
often learn techniques that can be applied the next time to check if we 
are committing the same error. For example, I have often discovered I 
was mistaken to think that A caused B when I found that B occurs 
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LEARNING FROM ERROR 5 

even without A. In a subsequent inference about the effect of some 
factor F, I may deliberately consider what occurs without F in order to 
check this mistake. Other familiar after-trial checks are the techniques 
we develop for checking complex arithmetic operations or for balanc­
ing checkbooks. 

In addition to techniques for catching ourselves in error are tech­
niques for correcting errors. Especially important error-correcting tech­
niques are those designed to go from less accurate to more accurate 
results, such as taking several measurements, say, of the length of 
wood or fabric, and averaging them. 

2. Before-trial planning. Knowledge of past mistakes gives rise to 
efforts to avoid' the errors ahead of time, before running an experi­
ment or obtaining data. For example, teachers who suspect that 
knowing the author of a paper may influence their grading may go 
out of their way to ensure anonymity before starting to grade. This is 
an informal analogue to techniques of astute experimental design, 
such as the use of control groups, double blinding, and large sample 
size. 

3. An error repertoire. The history of mistakes made in a type of in­
quiry gives rise to a list of mistakes that we would either work to avoid 
(before-trial planning) or check if committed (after-trial checking), for 
example, a list of the familiar mistakes when inferring a cause of a 
correlation: Is the correlation spurious? Is it due to an extraneous fac­
tor? Am I confusing cause and effect? More homely examples are fa­
miliar from past efforts at fixing a car or a computer, at cooking, and 
the like. 

4. The effects of mistakes. Through the study of mistakes we learn 
about the kind and extent of the effect attributable to different errors 
or factors. This information is then utilized in subsequent inquiries or 
criticisms. One such use is to rule out certain errors as responsible for 
an effect. Perhaps putting in too much water causes the rice to be softer 
but not saltier. 

Knowledge of the effects of mistakes is also exploited to "subtract 
out" their influences after the trial. If the effects of different factors can 
be sufficiently distinguished or subtracted out later, then the inferences 
are not threatened by a failure to control for them. Thus knowing the 
effects of mistakes is often the key to justifying inferences. In chapter 
7 we will see how Jean Perrin debunked an allegation that his results 
on Brownian motion were due to temperature variations in his experi­
ment. Such variations, he showed, only caused a kind of current easily 
distinguishable from Brownian motion. 
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6 CHAPrERONE 

5. Simulating errors. An important way to glean information about 
the effects of mistakes is by utilizing techniques (real or artificial) to 
display what it would be like if a given error were committed or a given 
factor were operative. Observing an antibiotic capsule in a glass of wa­
ter over several days revealed, by the condition of the coating, how an 
ulceration likely occurred when its coating stuck in my throat. In the 
same vein, we find scientists appealing to familiar chance mechanisms 
(e.g., coin tossing) to simulate what would be expected if a result were 
due to experimental artifacts. 

6. Amplifying and listening to error patterns. One way of learning from 
error is through techniques for magnifying their effects. I can detect a 
tiny systematic error in my odometer by driving far enough to a place 
of known distance. I can learn of a slight movement across my thresh­
old with a sensitive motion detector. Likewise, a pattern may be 
gleaned from "noisy" data by introducing a known standard and study­
ing the deviations from that standard. By studying the pattern of dis­
crepancy and by magnifying the effects of distortions, the nature of 
residuals, and so forth, such deviations can be made to speak volumes. 

7. Robustness. From the information discussed above, we also learn 
when violating certain recommendations or background assumptions 
does not pose any problem, does not vitiate specific inferences. Such 
outcomes or inferences are said to be robust against such mistakes. 
These are the kinds of considerations that may be appealed to in an­
swering challenges to an inference. In some cases we can argue that 
the possibility of such violations actually strengthens the inference. 
(For example, if my assumptions err in specific ways, then this result 
is even more impressive.) An example might be inferring that a new 
teaching technique is more effective than a standard one on the basis 
of higher test scores among a group of students taught with the new 
technique (the treated group) compared with a group of students 
taught with the old (the control group). Whereas an assumption of the 
study might have been that the two groups had about equal ability, 
discovering that the treated group was actually less able than the con­
trol group before being taught with the new technique only strength­
ens the inference. 

An important strategy that may be placed under this rubric is that 
of deliberately varying the assumptions and seeing whether the result 
or argument still holds. This often allows for the argument that the 
inference is sound, despite violations, that inaccuracies in underlying 
factors cannot be responsible for a result. For, were they responsible 
we would not have been able to consistently obtain the same results 
despite variations. 
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LEARNING FROM ERROR 7 

8. Severely probing error. Points I through 7 form the basis of learn­
ing to detect errors. We can put together so potent an arsenal for un­
earthing a given error that when we fail to find it we have excellent 
grounds for concluding that the error is absent. Having failed to detect 
a given infection with several extremely reliable blood tests, my physi­
cian infers that it is absent. The'" error" inferred to be absent here is 
declaring that there is no infection when there is one. 

The same kind of reasoning is at the heart of experimental testing. 
I shall call it arguing from error. After learning enough about certain 
types of mistakes, we may construct (often from other tests) a testing 
procedure with an overwhelmingly good chance of revealing the pres­
ence of a specific error, if it exists-but not otherwise. Such a testing 
procedure may be called a severe (or reliable) test, or a severe error probe. 
If a hypothesized error is not detected by a test that has an overwhelm­
ingly high chance of detecting it, if instead the test yields a result that 
accords well with no error, then there are grounds for the claim that 
the error is absent. We can infer something positive, that the particular 
error is absent (or is no greater than a certain amount). Equivalently, 
we have grounds for rejecting the hypothesis, H', that the error is pres­
ent, and affirming H, that it is absent. When we have such information, 
we say that H has passed a severe test. Alternatively, we can say that 
the test result is a good indication that H is correct. 

Is it possible for such humdrum observations to provide a fresh 
perspective from which to address problems that still stand in the way 
of a satisfactory epistemology of science? I propose that they can, and 
that is the underlying thesis of this book. 

To turn the humdrum observations into tools for experimental 
learning, they need to be amplified, generalized, and systematized. As 
I see it, this is the chief task of an adequate epistemology of experi­
ment. I understand "experiment," I should be clear at the outset, far 
more broadly than those who take it to require literal control or ma­
nipulation. Any planned inquiry in which there is a deliberate and 
reliable argument from error may be said to be experimental. 

How can these day-to-day techniques for learning from error take 
us beyond Popper's deductive falsification model? 

1.3 ACCENTUATE THE POSITIVE, ELIMINATE THE NEGATIVE 

I endorse many of Popper's slogans. Like Popper's, the present ap­
proach views the growth of knowledge as resulting from severe criti­
cism-from deliberately trying to find errors and mistakes in hypothe­
ses. It likewise endorses his idea that learning about a hypothesis is 
based on finding out whether it can withstand severe tests. Each of 
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8 CHAPTER ONE 

these slogans, however, is turned into a position where something pos­
itive is extracted from the severe criticism; for us, the focus is on con­
structive criticism, on learning from criticizing. It seems incumbent upon 
anyone mounting such an approach to dispel the ghosts of Popper's 
negativism right away, or at least sketch how they will be dispelled. 

The most devastating criticism of Popper's approach is this: having 
rejected the notion that learning is a matter of building up probability 
in a hypothesis, Popper seems to lack any meaningful way of saying 
why passing severe tests counts in favor of a hypothesis. I Popper's ac­
count seems utterly incapable of saying anything positive. There are 
two variants to this criticism, which I shall take up in turn. 

a. Why Should Passing Severe Tests Count in Favor of Hypotheses? 

If the refuted hypothesis is rejected for one that passes the test it 
failed, that new hypothesis, Popper says, is preferable. But why should 
it be preferred? What is it that makes it better? The most Popper can 
say on its behalf is that it did better in passing the test the previous 
hypothesis failed and that "it will also have to be regarded as possibly 
true, since at the time t it has not been shown to be false" (Popper 
1979, 14). Popper concedes that there are infinitely many other hy­
potheses that would also pass the tests that our current favorite has: 

By this method of elimination, we may hit upon a true theory. But in 
no case can the method establish its truth, even if it is true; for the 
number of possibly true theories remains infinite. (Popper 1979,15) 

Popper sees this as a way of stating Hume's problem of induction. 
Again, 

in my view, all that can possibly be "positive" in our scientific knowl­
edge is positive only in so far as certain theories are, at a certain 
moment of time, preferred to others in the light of ... attempted 
refutations. (P. 20) 

For Popper, we should not rely on any hypothesis, at most we should 
prefer one. But why should we prefer best-tested hypotheses? It is alto­
gether unsatisfactory for Popper to reply as he does that he simply does 
"not know of anything more 'rational' than a well-conducted critical 
discussion" (p. 22). 

1, too, argue that hypotheses that pass genuinely severe tests gain 
merit thereby. How do I avoid Popper's problem? Popper's problem 

1. It has been raised, for example, by Wesley Salmon (1966), Adolf Griinbaum 
(1978), and Alan Musgrave (1978). 
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LEARNING FROM ERROR 9 

here is that the grounds for the badge of "best-tested hypothesis of the 
moment" would also be grounds for giving the badge to an infinite 
number of (not yet even thought of) hypotheses, had they been the 
ones considered for testing. If a nonfalsified hypothesis H passes the 
tests failed by all the existing rivals, then H is best-tested, H gets 
the badge. Any other hypothesis that would also pass the existing tests 
would have to be said to do as well as H-by Popper's criteria for judg­
ing tests. But this is not the case for the test criteria I shall be setting 
out. These test criteria will be based on the idea of severity sketched 
above. A hypothesis H that passes the test failed by rival hypothesis H' 
(and by other alternative hypotheses considered) has passed a severe 
test for Popper-but not for me. Why not? Because for H to pass a 
severe test in my sense, it must have passed a test that is highly capable 
of probing the ways in which H can err. And the test that alternative 
hypothesis H' failed need not be probative in the least so far as the 
errors of H go. So long as two different hypotheses can err in different 
ways, different tests are needed to probe them severely. This point is 
the key to worries about underdetermination (to be discussed in chap­
ter 6). 

b. Corroboration Does Not Yield Reliability 

There is a second variant of the objection that passing a severe test 
in Popper's sense fails to count in favor of a hypothesis. It is that saying 
a hypothesis is well tested for Popper says nothing about how success­
ful it can be expected to be in the future. 

According to Popper, the more severe the test a hypothesis has 
passed, the higher its corroboration. Popper regards the degree of cor­
roboration of a hypothesis as "its degree of testability; the severity of 
tests it has undergone; and the way it has stood up to these tests" (Pop­
per 1979, 18). Not only does Popper deny that we are entitled to con­
sider well-corroborated claims as true, but we are not even to consider 
them as reliable. Reliability deals with future performance, and corrob­
oration, according to Popper, is only a "report of past performance. Like 
preference, it is essentially comparative .... But it says nothing whatever 
about future performance, or about the 'reliability' of a theory" (p. 18). (Nor 
would this point be affected, Popper adds, by the finding of a quantita­
tive measure of corroboration.) 

At least part of the reason for this criticism, as well as for Popper's 
admission, is the prevalence of the view that induction or ampliative 
inference requires some assignment of probability, credibility, or other 
evidential measure to hypotheses. This view is shared by the majority 
of Popper's critics, and it is one Popper plainly rejects. The present view 
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10 CHAPTER ONE 

of experimental learning, like Popper's, will not be in terms of as­
signing a degree of probability, credibility, or the like to any hypothesis 
or theory. But quite unlike Popper's view, this does not preclude our 
inferring a hypothesis reliably or obtaining reliable knowledge. The 
needed reliability assignment, I shall argue, is not only obtainable but 
is more in line with what is wanted in science. 

Except in very special cases, the probability of hypotheses can only 
be construed as subjective degrees of belief, and I will argue that these 
yield an unsatisfactory account of scientific inference. As C. S. Peirce 
urged in anticipation of modern frequentists, what we really want to 
know is not the probability of hypotheses, but the probability with 
which certain outcomes would occur given that a specified experiment 
is performed. It was the genius of classical statisticians, R. A. Fisher, 
Jerzy Neyman, Egon Pearson, and others, to have developed ap­
proaches to experimental learning that did not depend on prior proba­
bilities and where probability refers only to relative frequencies of 
types of outcomes or events. These relative frequency distributions, 
which may be called experimental distributions, model actual experimen­
tal processes. 

Learning that hypothesis H is reliable, I propose, means learning 
that what H says about certain experimental results will often be close 
to the results actually produced-that H will or would often succeed 
in specified experimental applications. (The notions of "closeness" and 
"success" must and can be made rigorous.) This knowledge, I argue, 
results from procedures (e.g., severe tests) whose reliability is of pre­
cisely the same variety. My aim will be to show how passing a severe 
test teaches about experimental distributions or processes, and how 
this, in turn, grounds experimental knowledge. 

The Emerging View of Experimental Knowledge 

In summary, let me say a bit more about the view of experimental 
knowledge that emerges in my approach. I agree with Popper's critics 
that Popper fails to explain why corroboration counts in favor of a 
hypothesis-but not because such credit counts only in favor of a hy­
pothesis if it adds to its credibility, support, probability, or the like. The 
problem stems from two related flaws in Popper's account: First, wear­
ing the badge "best-tested so far" does not distinguish a hypothesis 
from infinitely many others. Second, there are no grounds for relying 
on hypotheses that are well corroborated in Popper's sense. I have also 
sketched how I will be getting around each flaw. 

Popper says that passing a severe test (Le., corroboration) counts 
in favor of a hypothesis simply because it may be true, while those that 
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LEARNING FROM ERROR 11 

failed the tests are false. In the present view, passing a severe test 
counts because of the experimental knowledge revealed by passing. 
Indeed, my reason for promoting the concept of severity in the first 
place is that it is a test characteristic that is relevant as regards some­
thing that has passed the test. To figure out what an experiment re­
veals, one has to figure out what, if anything, has passed a severe test. 
The experimental inference that is licensed, in other words, is what 
has passed a severe test. What is learned thereby can be made out in 
terms of the presence or absence of an error. Even if the test cannot be 
regarded as having severely tested any claim, that fact alone is likely 
to be relevant. 

Since the severe test that a hypothesis H passes is at the same time 
a test that fails some alternative hypothesis (Le., H's denial), the 
knowledge gained from passing can also be expressed as learning from 
failing a hypothesis. (For example, passing H: the disease is present, is 
to fail H': the disease is absent.) So in failing as well as passing, the 
present account accentuates the positive. 

The centerpiece of my account is the notion of severity involved. 
Unlike accounts that begin with evidence e and hypothesis H and then 
seek to define an evidential relationship between them, severity refers 
to a method or procedure of testing, and cannot be assessed without 
considering how the data were generated, modeled, and analyzed to 
obtain relevant evidence in the first place. I propose to capture this by 
saying that assessing severity always refers to a framework of experi­
mental inquiry. 

In my account of experimental testing, experimental inquiry is 
viewed in terms of a series of models, each with different questions, 
stretching from low-level theories of data and experiment to higher 
level hypotheses and theories of interest. (I will elaborate in detail in 
chapter 5.) Whether it is passing or failing, however, what is learned 
will always be in terms of a specific question in a given model of ex­
perimental inquiry. Later we will see how such bits of learning are 
pieced together. 

By Popper's own admission (e.g., Popper 1979, 19), corroboration 
fails to be an indicator of how a hypothesis would perform in experi­
ments other than the ones already observed. Yet I want to claim for 
my own account that through severely testing hypotheses we can learn 
about the (actual or hypothetical) future performance of experimental 
processes-that is, about outcomes that would occur with specified 
probability if certain experiments were carried out. This is experimental 
knowledge. In using this special phrase, I mean to identify knowledge 
of experimental effects (that which would be reliably produced by car-
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12 CHAPTER ONE 

rying out an appropriate experiment)-whether or not they are part 
of any scientific theory. The intent may be seen as providing a home 
for what may be very low-level knowledge of how to reliably bring 
about certain experimental results. To paraphrase Ian Hacking, it may 
be seen as a home in which experiment "lives a life of its own" apart 
from high-level theorizing. But it is to be a real home, not a life in the 
street; it has its own models, parameters, and theories, albeit experi­
mental ones. And this is so whether the experimental effects are "in 
nature," whether they are deliberately constructed, or even whether 
they exist only "on paper" or on computers. 

Popper's problems are insurmountable when hypothesis appraisal 
is considered as a matter of some formal or logical relationship between 
evidence or evidence statements and hypotheses; but the situation is 
not improved by appealing to larger units such as Lakatosian research 
programs. Appealing to an experimental framework and correspond­
ing experimental strategies, I will argue, offers a fresh perspective and 
fresh tools for solving these problems. 

The idea that focusing on experiment might offer new and largely 
untapped tools for grappling with problems regarding scientific infer­
ence is not new; it underlies a good deal of work in the philosophy of 
science of the last decade. As promising as this new experimentalist 
movement has been, it is not clear that the new attention to experi­
ment has paid off in advancing solutions to these problems. Nor is it 
clear that those working in this movement have demarcated a program 
for developing a philosophy or epistemology of experiment. For sure, 
they have given us an important start: their experimental narratives 
are rich in illustrations of the role of experimentation and instrumen­
tation in scientific inference. But something more general and more 
systematic seems to be needed to show how this grounds experimental 
knowledge and how this knowledge gets us around the problems of 
evidence and inference. Where we should look, I will argue, is to the 
already well worked out methods and models for designing and ana­
lyzing experiments that are offered in standard statistical practice. 

Experimental knowledge, as I understand it, may be construed in 
a formal or informal mode. In its formal mode, experimental knowl­
edge is knowledge of the probabilities of specified outcomes in some 
actual or hypothetical series of experiments. Its formal statement may 
be given by an experimental distribution (a list of outcomes and their 
associated probabilities), or by a standard "random" process such as 
a coin-tossing mechanism. Typically, the interest is only in some key 
characteristic of this distribution-a parameter-such as its arithmetic 
mean. In its informal mode, the one the practitioner is generally en-
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LEARNING FROM ERROR 13 

gaged in, experimental knowledge is knowledge of the presence or ab­
sence of errors. (For example, a coin-tossing model or its correspond­
ing Binomial distribution might serve as a formal model of an informal 
claim about a spurious correlation.) I will stress the informal mode. 

As we proceed, we will come to see the considerable scope of what 
can be learned from answers to questions about experimental pro­
cesses and effects. How far experimentaJ knowledge can take us in un­
derstanding theoretical entities and processes is not something that 
should be decided before exploring this approach much further, fur­
ther even than I can go in this book. So, for example, I will not argue 
for or against different realist views. What I will argue is that experi­
mental knowledge is sufficient and, indeed, that it is the key to answer­
ing the main philosophical challenges to the objectivity and rationality 
of science. 

1.4 REVISITING THE THREE DECISIONS 

The Popperian problems of the last section emanate from the concern 
with which we began: the three (risky) decisions required to get a Pop­
perian test off the ground. By the various techniques of learning from 
error, I said, we can substantiate the information needed. This necessi­
tates an approach to experimental learning radically different from 
Popper's. Nevertheless, it may be of interest to see how the three con­
cerns translate into arguments for checking one or more experimental 
mistakes. The connections are these: 

• The acceptance of observation or basic statements (decision 1) is 
addressed by arguments justifying the assumptions of the experimen­
tal data. 

• The elimination of auxiliary factors (decision 2) is addressed by 
arguments that the experiment is sufficiently controlled. 

• Ihe falsification of statistical claims (decision 3) is accomplished 
by standard statistical tests. 

The first two involve justifying assumptions about a specific testing 
context. In both cases the justifications will take the form either of 
showing that the assumptions are sufficiently well met for the experi­
mental learning of interest or showing that violations of the assump­
tions do not prevent specific types of information from being obtained 
from the experiment. As important as it is to avoid error, the center­
piece of the approach I recommend is its emphasis on procedures that 
permit a justification of the second type-learning despite errors, or 
robustness. I will champion a third sort of justificatory argument: even 
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14 CHAPTER ONE 

if a mistake goes undetected, we will, with high probability, be able to 
find this out. 

"The Empirical Basis" Becomes the Assumptions of the 
Experimental Data 

To arrive at the basic (or test) statements for Popper, two decisions 
are required. The first is to decide which theories to deem "observa­
tional," which for Popper means not that they are literally observa­
tional, but rather that they may be deemed unproblematic background 
knowledge for the sake of the test. Such information is often based on 
well-understood theories of instruments, for example, on theories of 
microscopes. The second is to decide which particular statements to 
accept-for example, that the instrument reads such and such.2 Popper 
claims that although we can never accept a basic statement with cer­
tainty, we "must stop at some basic statement or other which we decide 
to accept." Otherwise the test leads nowhere. "[W]e arrive in this way 
at a procedure according to which we stop only at a kind of statement 
that is especially easy to test. ... at statements about whose acceptance 
or rejection the various investigators are likely to reach agreement" 
(Popper 1959, 104). Nevertheless, for Popper, we can no more rely on 
these than on other corroborated hypotheses. They, too, are merely 
conjectures, if at a lower level and easier to test. They are not literally 
basic statements, but more like "piles driven into a swamp." 

But even these singular observation statements are not enough 
to get a Popperian falsification off the ground. We need, not singular 
observations, but observational knowledge; the data must warrant a 
hypothesis about a real or reproducible effect: 

We say that a theory is falsified only if we have accepted basic state­
ments which contradict it .... This condition is necessary, but not suf­
ficient; for we have seen that non-reproducible single occurrences 
are of no significance to science. Thus a few stray basic statements 
contradicting a theory will hardly induce us to reject it as falsified. 
We shall take it as falsified only if we discover a reproducible effect 
which refutes the theory. In other words, we only accept the falsifi­
cation if a low-level empirical hypothesis which describes such an 
effect is proposed and corroborated. (Popper 1959, 86) 

He calls this low-level hypothesis a falsifying hypothesis (p. 87). 
Here Popper is recognizing what is often overlooked: the empirical 

data enter hypothesis appraisal in science as a hypothesis about the 

2. Basic statements are "statements asserting that an observable event is oc­
curring in a certain individual region of space and time" (Popper 1959, 103). As an 
example he gives "This clock reads 30 minutes past 3" (Popper 1962, 388). 
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LEARNING FROM ERROR 15 

data. Accounts of hypothesis appraisal that start with evidence e as 
given vastly oversimplify experimental learning. This recognition, 
however, only means trouble for Popper. In order for the acceptance 
of a falsifying hypothesis to be more than a conventional decision, 
there need to be grounds for inferring a reliable effect-the very thing 
Popper says we cannot have. We cannot rely on hypotheses about real 
or reproducible effects for Popper, because they are based on lower­
level (singular) observation statements that may themselves be mis­
taken. "[A]nd should we try to establish anything with our tests, we 
should be involved in an infinite regress" (Popper 1962, 388). 

Herein lies a presupposition commonly harbored by philosophers: 
namely, that empirical claims are only as reliable as the data from 
which they are inferred. The fact is that we can often arrive at rather 
accurate claims from far less accurate ones. Scattered measurements, 
for example, are not of much use, but with a little data massaging (e.g., 
averaging) we can obtain a value of a quantity of interest that is far 
more accurate than individual measurements. Our day-to-day learners 
from error know this fact but, to my knowledge, the only philosopher 
to attach deep significance to this self-correcting ability is C. S. Peirce. 

The present approach rejects both the justificationist image of 
building on a firm foundation (e.g., protocol statements) and the Pop­
perian image of building on piles driven into a swamp. Instead, the 
image is one of shrewd experimental strategies that permit detecting 
errors and squeezing reliable effects out of noisy data. What we rely 
on, I will urge, are not so much scientific theories but methods for pro­
ducing experimental effects. 

Ruling Out Auxiliaries as Arguing for Experimental Control 

The need to rule out alternative auxiliary factors (decision 2) gives 
Popper the most trouble. In order for an effect (e.g., an anomaly or 
failed predictIon) to be attributed to some flaw in a hypothesis H, it is 
required to affirm a ceteris paribus claim, that it is not due to some 
other possible factor. As Lakatos notes, one can test a ceteris paribus 
clause severely by assuming that there are other influencing factors, 
specifying them, and testing these assumptions. "If many of them are 
refuted, the ceteris paribus clause will be regarded as well-corroborated" 
(Lakatos 1978,26). Lakatos found this too risky. 

Ruling out auxiliaries is thought to be so problematic because it is 
assumed that there are always infinitely many causes for which we 
have not controlled. What is overlooked is the way in which experi­
ments may be designed to deliberately isolate the effect of interest so 
that only a manageable number of causal factors (or types of factors) 
may produce the particular experimental outcome. Most important, 
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16 CHAPTER ONE 

literal control is not needed: one need only find ways of arguing so as 
to avoid the erroneous assignment of the cause of a given effect or 
anomaly. Several ways were discussed in section 1.2. Another example 
(under pretrial planning) would be to mimic the strategy of random­
ized treatment-control studies. The myriad of possible other causes­
even without knowing what they are-are allowed to influence the 
treated and the control groups equally. In other cases, substantive al­
ternative causes cannot be subtracted out in this manner. Then severe 
tests against hypotheses that these causes are responsible for the given 
experimental effect must be carried out separately. 

In the present approach, ruling out alternative auxiliaries is tanta­
mount to justifying the assumption either that the experiment is suffi­
ciently well controlled or that the experiment allows arguing as if it 
were sufficiently controlled for the purpose of the question of pri­
mary interest. 

With effective before- and after-trial planning and checking, learn­
ing that an anomaly cannot be due to specific background factors may 
finally show some primary hypothesis to be at fault. Even this rejection 
has an affirmative side. Precisely because the background checks have 
been required to be severe, such a rejection pinpoints a genuine effect 
that n~eds explaining or that calls for a specific revision. One literally 
learns from the error or anomaly. Note that no alternative hypothesis 
to the one rejected is needed in this testing model. 

Falsifying Statistical Claims by Statistical Hypothesis Testing 

My approach takes as the norm the need to deal with the rejection 
of statistical hypotheses-decision 3. Even where the primary theory 
or hypothesis of interest is nonstatistical, a variety of approximations, 
inaccuracies, and uncertainties results in the entry of statistical consid­
erations in linking experimental data to hypotheses. A hierarchy of 
models of experimental inquiry will be outlined in chapter 5. 

In an interesting footnote, Lakatos remarks that statistical rejection 
rules constitute "the philosophical basis of some of the most interesting 
developments in modern statistics. The Neyman-Pearson approach 
rests completely on methodological falsificationism" (Lakatos 1978,25, 
n. 6). Still, neither he nor Popper attempts to use the Neyman-Pearson 
methods in his approach. By contrast, I shall make fundamental use of 
this approach, albeit reinterpreted, as well as of cognate methods (e.g., 
Fisherian tests). My use of these methods, I believe, reflects their actual 
uses in science and frees them from the confines of the particular phi­
losophies of statistics often associated with them. Thus freed, these 
methods make up what I call (standard) error statistics. 

Although Popper makes no explicit attempt to appeal to error sta-
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LEARNING FROM ERROR 17 

tistical methods, his discussion of decision 3 gets to the heart of a fun­
damental type of error statistical test. While extremely rare events may 
occur, Popper notes, "such occurrences would not be physical effects, 
because, on account of their immense improbability, they are not repro-
ducible at will . ... If, however, we find reproducible deviations from a 
macro effect ... deduced from a probability estimate ... then we must 
assume that the probability estimate isfalsifted" (Popper 1959, 203). 

The basic idea is this: A hypothesis may entail only that deviations 
of a certain magnitude are rare, so that an observed deviation from 
what is predicted does not strictly speaking contradict the prediction. 
A statistical test allows learning that a deviation is not rare but is repro­
ducible at will-that is, can be brought about very frequently. If we 
learn this, then we have found a real physical effect that is denied by 
and so, in this sense, contradicts the statistical hypothesis. Rather than 
viewing this as a conventional decision, it will be seen to rest on solid 
epistemological grounds. These grounds may be cashed out in two 
ways: (1) To construe such reproducible effects as unsystematic will 
very often be mistaken. So unreliable a method would be an obstacle 
to using data to distinguish real from spurious effects-it would be an 
obstacle to learning from error. (2) It is extremely improbable that one 
would be able to regularly reproduce an effect if in fact it was acciden­
tal. The hypothesis asserting that it is a "real effect" passes a severe test. 

1.5 PIECEMEAL LEARNING FROM ERRORS 

My account of the growth of experimental knowledge is a result of 
having explored the consequences of the thesis that we learn from 
our mistakes. It is not an attempt to reconstruct after-the-fact scientific 
inferences or theory changes, but to give an account of forward­
looking methods for learning. These methods revolve around tests of 
low-level or local hypotheses. These hypotheses have their home in 
experimental models and theories. While experimental hypotheses 
may be identical to substantive scientific claims, they may also simply 
be claims about experimental patterns, real or constructed, actual or 
hypothetical. Local experimental inquiries enable complex scientific 
problems to be broken down into more manageable pieces-pieces 
that admit of severe tests. Even when large-scale theories are being 
investigated or tested, these piecemeal tests are central to the growth 
of experimental knowledge. 3 

3. Popper puts the burden on the hypothesis to have high information content 
and so be the most testable. The present approach puts the burden on the experi­
mental test-it is the test that should be severe. The basis for tests with appropri­
ately high severity is the desire to learn the most. 
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18 CHAPTER ONE 

I propose that the piecemeal questions into which experimental 
inquiries are broken down may be seen to refer to standard types of 
errors. Strategies for investigating these errors often run to type. 
Roughly, four such standard or canonical types are 

a. mistaking experimental artifacts for real effects; mistaking chance 
effects for genuine correlations or regularities; 

b. mistakes about a quantity or value of a parameter; 
c. mistakes about a causal factor; 
d. mistakes about the assumptions of experimental data. 

These types of mistakes are not exclusive (for example, checking d may 
involve checking the others), nor do they even seem to be on a par 
with each other. Nevertheless, they often seem to correspond to dis­
tinct and canonical types of experimental arguments and strategies. 

I suggest that methodological rules should be seen as strategies for 
conducting reliable inquiries into these standard or "canonical" types 
of errors. Examples of methodological rules are the use of controlled 
experiments in testing causal hypotheses, the use of randomization, 
the preference for novel facts and the avoidance of "ad hoc" hypothe­
ses, the strategy of varying the evidence as much as possible, and the 
use of double-blind techniques in experimenting on human subjects. 

The overarching picture, then, is of a substantive inquiry being 
broken down into inquiries about one or more canonical errors in such 
a way that methodological strategies and tools can be applied in in­
vestigating those errors. One example (to be fleshed out later) is an 
inquiry into whether a treatment causes an increased risk of some sort. 
It might be broken down into two canonical inquiries: first, to establish 
a real as opposed to a spurious correlation between the treatment and 
the effect; second, to test quantitatively the extent of the effect, if there 
is one. One possible methodological strategy would be a treatment­
control experiment and an analysis by way of statistical significance 
tests. 

Normative Naturalism in Experimental Methodology 

The present model for an epistemology of experiment is both 
normative and naturalistic. I have in mind this picture of experimental 
methodology: methodological rules for experimental learning are 
strategies that enable learning from common types of experimental 
mistakes. The rules systematize the day-to-day learning from mistakes 
delineated above. From the history of mistakes made in reaching a 
type of inference, a repertoire of errors arises; methodological rules 
are techniques for circumventing and uncovering them. Some refer to 
before-trial experimental planning, others to after-trial analysis of the 
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LEARNING FROM ERIROR 19 

data-or, more generally, learning from the data. The former includes 
rules about how specific errors are likely to be avoided or circum­
vented, the latter, rules about checking the extent to which given er­
rors are committed or avoided in specific contexts. 

Methodological rules do not rest on a priori intuitions, nor are they 
matters to be decided by conventions (e.g., about what counts as sci­
ence or knowledge or rational). They are empirical claims or hypothe­
ses about how to find out certain things by arguing from experiments. 
Accordingly, these hypotheses are open to an empirical appraisal: their 
truth depends upon what is actually the case in experimental inquiries. 
Hence, the account I propose is naturalistic. At the same time it is 
normative, in that the strategies are claims about how to actually pro­
ceed in given contexts to learn from experiments. 

Since the rules are claims about strategies for avoiding mistakes 
and learning from errors, their appraisal turns on understanding how 
methods enable avoidance of specific errors. One has to examine the 
methods themselves, their roles, and their functions in experimental 
inquiry. A methodological rule is not empirically validated by de­
termining whether its past use correlates with "successful" theories.4 

Rather, the value of a methodological rule is determined by under­
standing how its applications allow us to avoid particular experimental 
mistakes, to amplify differences between expected and actual experi­
mental results, and to build up our tool kit of techniques of learning 
from error to determine how successful they have been in past applica­
tions. 

No assignments of degrees of probability to hypotheses are re­
quired or desired in the present account of ampliative inference. In­
stead, passing a severe test yields positive experimental knowledge by 
corresponding to a strong argument from error. Accordingly, progress 
is not in terms of increasing or revising probability assignments but in 
terms of the growth of experimental knowledge, including advances 
in techniques for sustaining experimental arguments. Such features of 
my account stand in marked contrast to the popular Bayesian Way in 
the philosophy of science. 

Next Step 

The response to Popper's problems, which of course are not just 
Popper's, has generally been to "go bigger," to view theory testing in 
terms of larger units-whole paradigms, research programs, and a va­
riety of other holisms. What I have just proposed instead is that the 

4. This is essentially Larry Laudan's (1987, 1990b, 1996) normative naturalism. 
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20 CHAPTER ONE 

lesson from Popper's problems is to go not bigger but smaller. More­
over, I propose that this lesson is, in a sense, also Thomas Kuhn's, de­
spite his being a major leader of the holistic movement. Let us there­
fore begin our project by turning to some Kuhnian reflections on 
Popper. 
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CHAPTER TWO 

Ducks, Rabbits, and Normal Science: 
Recasting the Kuhn's-Eye View of Popper 

SHORTLY AFTER the publication of his enormously influential book The 
Structure of Scientific Revolutions, Thomas Kuhn offered "a disciplined 
comparison" of his and Popper's views of science in the paper "Logic 
of Discovery or Psychology of Research?" It begins with these lines: 

My object in these pages is to juxtapose the view of scientific develop­
ment outlined in my book [Structure], with the better known views 
of our chairman, Sir Karl Popper. Ordinarily I should decline such an 
undertaking, for I am not so sanguine as Sir Karl about the utility of 
confrontations .... Even before my book was published two and a 
half years ago, I had begun to discover special and often puzzling 
characteristics of the relation between my views and his. That relation 
and the divergent reactions I have encountered to it suggest that a 
disciplined comparison of the two may produce peculiar enlighten­
ment. (Kuhn 1970, 1) 

"Peculiar enlightenment" is an apt description of what may be found 
in going back to Kuhn's early comparison with Popper and the re­
sponses it engendered. What makes my recasting of Kuhn peculiar is 
that while it justifies the very theses by which Kuhn effects the contrast 
with Popper, the picture that results is decidedly un-Kuhnian. As such 
I do not doubt that my recasting differs from the "peculiar enlighten­
ment" Kuhn intended, but my task is not a faithful explication of what 
Kuhn saw himself as doing. Rather it is an attempt, at times deliber­
ately un-Kuhnian, to see what philosophical mileage can be gotten 
from exploring the Kuhnian contrast with Popper. This exercise will 
serve as a springboard for the picture of experimental knowledge that 
I want to develop in this book. 

Kuhn begins by listing the similarities between himself and Popper 
that place them "in the same minority" among philosophers of science 
of the day (Kuhn 1970, 2). Both accept theory-Iadenness of observa­
tion, hold some version of realism (at least as a proper aim of science), 
and reject the view of progress "by accretion," emphasizing instead 
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22 CHAPTER Two 

"the revolutionary process by which an older theory is rejected and 
replaced by an incompatible new one" (ibid., 2). 

Despite these agreements Kuhn finds that he and Popper are sepa­
rated by a "gestalt switch." Popper views the overthrowing and re­
placement of scientific theories as the main engine of scientific growth. 
Scientific knowledge, Popper declares, "grows by a more revolutionary 
method than accumulation-by a method which destroys, changes, 
and alters the whole thing" (Popper 1962, 129). Kuhn views such rev­
olutionary changes as extraordinary events radically different from the 
"normal" scientific tasks of "puzzle solving" -extending, applying, and 
articulating theories. Moreover, the growth of scientific knowledge, for 
Kuhn, is to be found in nonrevolutionary or normal science. Although, 
in Kuhn's view, "normal science" constitutes the bulk of science, what 
has intrigued most philosophers of science is Kuhnian revolutionary 
science-with its big changes, gestalt switches, conversion experi­
ences, incommensurabilities, and the challenges thereby posed to the 
rationality of theory change. Although there are several chapters on 
normal science in Structure, the excitement engendered by these revo­
lutionary challenges has seemed to drown out the quieter insights that 
those chapters provide. Kuhn's description of normal science, when 
discussed at all, is generally dismissed as relegating day-to-day science 
to an unadventurous working out of "solvable puzzles" and "mopping­
up" activities. In the view of Kuhn's critics, as Alan Musgrave (1980) 
puts it, normal science is either "a bad thing which fortunately does 
not exist, or a bad thing which unfortunately does exist" (pp. 41-42). 

In this vein, Popper (1970) responds to Kuhn in "Normal Science 
and Its Dangers." Popper was aghast at Kuhnian normal science with 
its apparent call to "abandon critical discourse" and embrace unques­
tioning allegiance to a single accepted paradigm, encompassing theo­
ries as well as standards and values for their appraisal. Kuhnian normal 
science, were it actually to exist, Popper declares, would be pathetic or 
downright dangerous: 

In my view the "normal" scientist, as Kuhn describes him, is a person 
one ought to be sorry for .... The "normal" scientist, as described by 
Kuhn, has been badly taught. He has been taught in a dogmatic spirit: 
he is a victim of indoctrination. (Popper 1970, 52-53) 

Most troubling for Popper is the alleged inability of normal scientists 
to break out of the prison of their paradigm or framework to subject it 
to (revolutionary) tests, and, correspondingly, Kuhn's likening theory 
change to a religious conversion rather than to a rational empirical ap­
praisal. 
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DUCKS, RABBITS, AND NORMAL SCIENCE 23 

Finding much to dislike about normal science, philosophers find 
little use for it when it comes to solving these challenges to the ratio­
nality of theory change. The big problems enter in revolutionary, not 
normal, science, and that is where those who would solve these prob­
lems focus their attention. I find Kuhnian normal science to be far 
more fruitful. It is here that one may discover the elements of Kuhn's 
story that are most "bang on," most true to scientific practice; and the 
enlightenment offered by the Kuhn-Popper comparison suggests a 
new way of developing those elements. Far from being the uncritical 
affair Popper fears, normal science, thus developed, turns out to offer 
an effective basis for severe testing. This, in turn, provides the key to 
getting around the big problems alleged to arise in revolutionary sci­
ence, or large-scale theory change. 

Let us pursue a bit further the contrasts Kuhn draws between his 
and Popper's philosophies of science. Except where noted, all refer­
ences are to Kuhn 1970. 

2.1 TURNING POPPER ON HIS HEAD 

Kuhn asks, "How am I to persuade Sir Karl, who knows everything I 
know about scientific development and who has somewhere or other 
said it, that what he calls a duck can be seen as a rabbit? How am I to show 
him what it would be like to wear my spectacles?" (p. 3; emphasis 
added). 

Kuhn's tactic is to take the linchpins of Popper's philosophy and 
show how, wearing Kuhnian glasses, they appear topsy turvy. While 
in Popper's view, what sets science apart from other practices is its will­
ingness to continually subject its theories to severe and crucial tests, to 
the Kuhnian eye "it is normal science, in which Sir Karl's sort of testing 
does not occur, rather than extraordinary science which most nearly 
distinguishes science from other enterprises. If a demarcation criterion 
exists (we must not, I think, seek a sharp or decisive one), it may lie 
just in that part of science which Sir Karl ignores" (p. 6). But because 
normal science, for Kuhn, does not involve Popperian-style testing, 
Kuhn provocatively declares, "In a sense, to turn Sir Karl's view on its 
head, it is precisely the abandonment of critical discourse that marks the transi­
tion to a science" (p. 6; emphasis added). 

If only we would view the highlights of the Popperian landscape 
through his spectacles, Kuhn proposes, we would see how Popper's 
view gets turned on its head. Specifically, we would see why, where 
Popper sees a fundamental theory failing a severe test, Kuhn sees a 
paradigm failing in its "puzzle solving ability" (crisis), and why, where 
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24 CHAPTER Two 

Popper sees a lack of testability, Kuhn sees a lack of puzzle solving. In 
so doing, Kuhn assures us, we would begin to see the sense in which 
"seveJity of test-criteria is simply one side of the coin whose other face 
is a puzzle-solving tradition," and with this, Kuhn proclaims, "Sir Karl's 
duck may at last become my rabbit" (p. 7). 

I propose that we look at the high points of the Popperian land­
scape that the Kuhn's-eye view brings into focus. Why? First, I think 
that in identifying these points of contrast Kuhn makes a number of 
well-founded descriptive claims about scientific practice. Second, I 
think these claims have important normative epistemological under­
pinnings that have gone unnoticed. The highlights that interest me 
underlie the following portions of the above passages: 

• "It is normal science, in which Sir Karl's sort of testing does not 
occur, rather than extraordinary science which most nearly distin­
guishes science from other enterprises." (P. 6) 

• "It is precisely the abandonment of critical discourse that marks 
the transition to a science." (P. 6) 

• "Severity of test-criteria is simply one side of the coin whose 
other face is a puzzle-solving tradition." (P. 7) 

To extract the epistemological lessons I am after, however, it is not 
enough to turn our gaze toward the Kuhn's-eye view of Popper; spec­
tacles capable of seeing the normative dimension are required. 

Except for some tantalizing clues, Kuhn fails to bring out this 
normative dimension. This is not surprising given his view on what 
doing so would require. What more is there to say, Kuhn seems to ask, 
once one is done describing the behavior of practitioners trained in a 
certain way? Explaining the success or progress of science for Kuhn 
just is a matter of "examining the nature of the scientific group, dis­
covering what it values, what it tolerates, and what it disdains. That 
position is intrinsically sociological" (p. 238). 

Stopping with this kind of descriptive account has several short­
comings. First, it is not known which of the many features scientific 
communities share are actually responsible for scientific success, And 
even where we can correctly identify these features, there is an episte­
mological question that needs answering: why does following these 
practices yield reliable knowledge? Correlatively, why do enterprises 
not characterized by these practices turn out to be less successful sci­
ences or not sciences at all? 

Of Kuhn's key observations of normal scientific practice, I will ask: 
What is so valuable about normal science (as Kuhn describes it)? Why 
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DUCKS, RABBITS, AND NORMAL SCIENCE 25 

does the lack of a normal "puzzle-solving tradition" seem to go hand 
in hand with ineffective sciences or nonsciences? The bulk of my in­
quiry will be directed toward identifying the constraints and methods 
that enable what is learned in normal science to do what Kuhn rightly 
says it does: it extends, articulates, and revises theories, identifies gen­
uine anomalies, functions creatively in developing alternative theories, 
and allows communication between paradigms (however partial). 

2.2 POPPER IN LIGHT OF KUHN: J. O. WISDOM 

J. O. Wisdom (1974), responding to Kuhn's "Logic or Psychology, " of­
fers an insightful way of assimilating Popper and Kuhn. He goes so 
far as to suggest that "Kuhn's theory and (when correctly interpreted) 
Popper's (when developed) are identical" (p. 839). In Wisdom's read­
ing, the difference between Kuhn's picture of revolutionary science as 
something that occurs only after periods of normal science followed by 
crisis and Popper's emphasis on testing and falsifying theories is only 
apparent. (He is far less sanguine about accommodating Kuhn's "soci­
ology of acceptance.") 

How does Wisdom manage to convert Kuhn's rabbit into a Poppe­
rian duck? As we saw in chapter 1, Popper himself is well aware that 
for a theory genuinely to fail a test it is not enough that one of its 
consequences turns out wrong. Even for Popper, Wisdom rightly notes, 
before a failed prediction is taken as falsifying a theory, "a whole crop 
of loopholes have to be investigated: checking mathematics, accidental 
disturbances, instruments in working order, bungling, unsuspected 
misconceptions about the nature of the instruments, adequate articu­
lation of the fundamental theory" (ibid., 838), and such investigations 
are the sorts of things done in normal science. Normal science is called 
upon, in effect, to pinpoint blame. First it is needed to determine if a 
genuine anomaly is at hand, to obtain a Popperian "falsifying hypothe­
sis." Even then the anomaly may be due to other errors: faulty under­
lying assumptions or faulty initial conditions. With enough anomalies, 
however, a (Kuhnian) crisis arises, and as it becomes more and more 
unlikely that initial conditions are to blame for each and every anom­
aly, there are finally grounds for pinning the blame on the funda­
mental theory. Out of Kuhnian crises spring forth Popperian severe 
tests I 

Wisdom's insightful analysis is in my view completely correct as 
far as it goes. But it goes only so far as to show how Kuhnian normal 
science can serve as a handmaiden to Popperian testing. By starting 
from the Popperian point of view of what the task is and utilizing Kuh-
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26 CHAPTER Two 

nian ideas to fill out that task, he gets the order wrong and misses 
most of the uses of normal science. Normal science is needed to get 
extraordinary science off the ground all right, but starting with the 
latter as primary fails to do justice to Kuhn's main point of contrast 
with Popper. 

Kuhn is quite clear about the main point of contrast (e.g., in his 
"Reflections"). He says, "my single genuine disagreement with Sir Karl 
about normal science" is in holding that when a full-bodied theory is at 
hand "the time for steady criticism and theory proliferation has passed" 
(Kuhn 1970, 246). Scientists can instead apply their talents to the puz­
zles of normal science. "[Sir Karl] and his group argue that the scientist 
should try at all times to be a critic and a proliferator of alternate theo­
ries. I urge the desirability of an alternate strategy which reserves such 
behaviour for special occasions" (p. 243). 

Evaluating Kuhn's alternative research strategy requires us to re­
analyze the aims of normal science. The result will neither be to turn 
Kuhn's rabbit into Popper's duck (as Wisdom has), nor to turn Popper's 
duck into Kuhn's rabbit (as in Lakatos's rational reconstruction of 
Kuhn), but to convert Kuhn's sociological description of normal sci­
ence to a normative epistemology of testing. 

2.3 NORMAL SCIENCE AS NORMAL TESTING 

Let us begin by asking what is involved when practitioners turn their 
attention and apply their talents to the tasks of normal science. Kuhn 
identifies three classes of problems. "These three classes of problems­
determination of significant fact, matching of facts with theory, and 
articulation of theory-exhaust, I think, the literature of normal sci­
ence, both empirical and theoretical" (Kuhn 1962, 33). Kuhn elabo­
rates on each: 

1. Determination of significant fact. This concerns "that class of facts 
that the paradigm has shown to be particularly revealing of the nature 
of things" (Kuhn 1962, 25). Examples include stellar position and mag­
nitude, the specific gravities of materials, wave lengths, electrical con­
ductivities, boiling points, acidity of solutions. A good deal of work 
goes into the goal of increasing the accuracy and scope with which 
such facts are known. 

2. Matching of facts with theory. This concerns arriving at data that 
"can be compared directly with predictions from the paradigm theory" 
(ibid., 26). Typically, theoretical and instrumental approximations limit 
the expected agreement, and it is of interest to improve upon it. Find-
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DUCKS, RABBITS, AND NORMAL SCIENCE 27 

ing new methods and instruments to demonstrate agreement con­
stantly challenges experimentalists. 

3. Articulating the paradigm theory. This has three parts: 
• Determining physical constants (e.g., gravitational constant, 

Avogadro's number, Joule's coefficient, the electronic charge) . 
• Determining quantitative laws. Kuhn's examples include de­

termining Boyle's law relating gas pressure to volume, Coulomb's law 
of electrical attraction, and Joule's formula relating heat to electrical 
resistance and current. 

• Conducting experiments to "choose among the alternative ways 
of applying the paradigm" (ibid., 29) to some closely related area. Each 
of these three classes of experiment has an analogous theoretical task. 

In each class, Kuhn stresses, some current background theory or 
paradigm is needed to define the normal problem and provide means 
for determining if it is solved. Conjectured solutions to each problem 
may be viewed as hypotheses within a larger-scale background theory. 
Clearly, finding and evaluating hypotheses of these sorts is not a matter 
of uncreative hack science, nor does Kuhn suggest otherwise. What 
normal science does require, for Kuhn, are shared criteria for de­
termining if problems are solved: 

No puzzle-solving enterprise can exist unless its practitioners share 
criteria which, for that group and for that time, determine when a 
particular puzzle has been solved. The same criteria necessarily deter­
mine failure to achieve a solution, and anyone who chooses may 
view that failure as the failure of a theory to pass a test. (Kuhn 
1970,7) 

I do. But to emphasize that these are tests of the hypotheses of 
Kuhnian normal science, I will refer (in this chapter) to such testing 
as normal testing. Kuhn observes that "Tests of this sort are a standard 
component of what I have elsewhere labeled 'normal science' ... an 
enterprise which accounts for the overwhelming majority of the work 
done in basic science" (ibid., 4). For reasons that will later become 
clear, I think that all experimental testing, if construed broadly, is based 
on normal testing. From experimental tests we acquire experimental 
knowledge (as characterized in chapter 1). 

To digress about my terminology: The appellation "normal testing" 
of course stems from Kuhn's normal science, with which it correlates. 
Later, when it is more developed and the deviations from Kuhn are 
clarified, I will call it "standard testing." But Kuhn sees normal science 
in contrast to nonnormal science, whereas I shall reject the idea that 
there are two kinds of science. If all science is normal (or even stan-
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28 CHAPTER Two 

dard), is it not peculiar to use such an adjective altogether? No. In logic 
we talk about normal systems and corresponding standard models, 
and, while various nonnormal systems and nonstandard models exist, 
one may debate whether the latter are needed for some purpose, for 
example, the logic of arithmetic. Likewise, various nonstandard ac­
counts of testing exist. My position is that for scientific reasoning they 
are either not needed or offer inadequate models. 

Normal Hypothesis Testing: The Test of Experiment 

Perhaps to achieve a stark contrast with Popperian tests, Kuhn calls 
normal problems "puzzles," where the loser when a conjectured solu­
tion fails is not the fundamental theory but the practitioner who was 
not brilliant enough. But since "blaming the practitioner," even for 
Kuhn, means only that the practitioner's conjectured solution fails to 
hold up to testing, it is less misleading to talk in terms of testing conjec­
tured solutions to normal problems. I Kuhn supports this reading: 

There is one sort of "statement" or "hypothesis" that scientists do re­
peatedly subject to systematic test. I have in mind statements of an 
individual's best guesses about the proper way to connect his own 
research problem with the corpus of accepted scientific knowledge. 
He may, for example, conjecture that a given chemical unknown con­
tains the salt of a rare earth, that the obesity of his experimental rats is 
due to a specified component in their diet, or that a newly discovered 
spectral pattern is to be understood as an effect of nuclear spin. (P. 4) 

These are certainly the kinds of substantive hypotheses that philos­
ophers of science want a theory of testing to address, something that 
tends to be lost in calling them "puzzles." The next steps, the test of 
experiment, have a hypothetico-deductive flavor: 

The next steps ... are intended to tryout or test the conjecture or 
hypothesis. If it passes enough or stringent enough tests, the scientist 
has made a discovery or has at least resolved the puzzle he had been 
set. If not, he must either abandon the puzzle entirely or attempt to 
solve it with the aid of some other hypothesis. (P. 4) 

1. Hilary Putnam (1981) proposes that Kuhn's puzzles follow the form of an 
explanatory scheme that he calls Schema II in contrast to the pattern of a test based 
on a prediction (Schema I). In Schema II, both a theory and a fact are taken as 
given, and the problem is to find data to explain the fact on the basis of the theory. 
I agree with Putnam that Schema II captures the form of many normal problems, 
and concur that this normal task has been too little noticed by philosophers of 
sdence. Still, the task of checking or arguing for a conjectured explanation falls 
under what I would term a normal test. 
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DUCKS. RABBITS. AND NORMAL SCIENCE 29 

Further, Kuhn finds it "unproblematic" to call successful conjectured 
solutions "true": 

Members of a given scientific community will generally agree which 
consequences of a shared theory sustain the test of experiment and 
are therefore true, which are false as theory is currently applied, and 
which are as yet untested. (P. 264) 

So, as I read Kuhn, to infer that a hypothesis sustains the test of experi­
ment it must have passed "enough or stringent enough tests," and, 
correspondingly, to regard a normal hypothesis as true is to accept it 
as correctly solving the associated normal problem. 

Several characteristics of normal tests emerge from these passages. 
The tests are directed at a specific normal hypothesis, say, H. The test 
criteria determine whether H passes or fails (further divisions could be 
added). If H passes "enough or stringent enough tests," then H is taken 
to solve the puzzle, that is, to be correct or true. If H fails, it is con­
cluded that H does not solve the puzzle (that H is incorrect or false). 
Blaming the background theory is tantamount to changing the puzzle 
and is disallowed. Indeed, in my reading, the main purpose of calling 
a normal problem a "puzzle" is to call attention to the fundamental 
restriction on what counts as an admissible solution: if a conjectured 
solution fails the test, only the conjecture and "not the corpus of cur­
rent science is impugned" by the failure (p. 5). 

Kuhn cites, as an example, how some eighteenth-century scien­
tists, finding anomalies between the observed motions of the moon 
and Newton's laws, "suggested replacing the inverse square law with 
a law that deviated from it at small distances. To do that, however, 
would have been to change the paradigm, to define a new puzzle, and 
not to solve the old one" (Kuhn 1962, 39). This solution was not ad­
missible. The normal scientist must face the music. 

These are useful clues, but not quite enough. After alL a commu­
nity could agree on any number of rules or criteria to pass or fail 
hypotheses, to call a test stringent, and so on. Frustratingly, Kuhn does 
not spell out what more is required for normal test criteria to pass mus­
ter, leading some to suppose that community consensus is enough for 
him. Yet a careful look at the demands Kuhn sets for normal tests sug­
gests how to flesh out the earlier clues. 

Underlying the stringency demand, I propose, is the implied re­
quirement that before a hypothesis is taken to solve a problem it must 
have stood up to scrutiny: it must be very unlikely that the hypothesis 
really does not solve the problem. This reliability (or severity) require­
ment, discussed in chapter 1, will be developed as we proceed. For now, 
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to avoid prematurely saddling Kuhn with my notion, the "reliability" 
of a test will be interchangeable with its "severity." That a test is reli­
able, for me, describes a characteristic of a procedure of testing, or of 
test criteria.2 It does not say that the test never errs in declaring a prob­
lem solved or not, but that it does so infrequently. In other words, 
the normal scientist declares a problem solved only if the conjectured 
solution has withstood a scrutiny that it would very likely have failed, 
were it not correct. 

It is only by some such reliability or severity requirement, I main­
tain, that Kuhn is right to locate the growth of knowledge in normal 
science. We can simultaneously unpack this requirement and motivate 
it on Kuhnian grounds by continuing our normative questioning. 

Justifying the Pursuit of Normal Science 

Kuhn observes that the bulk of scientific practice is directed at nor­
mal testing, rather than at Popperian testing, where Kuhn construes 
Popperian testing as criticizing fundamental theories. What interests 
me is whether there is an epistemological rationale for this focus on 
one sort of activity rather than another. The answer, I propose, is that 
one learns much more this way. Focusing on normal testing is a better 
research strategy. 3 

To bring the answer into focus we first must ask, Why, in the face 
of a rich enough theory to "support a puzzle-solving tradition," is it 
fruitful to concentrate on normal problems? (No answer precludes 
there also being something to be gained by seeking alternative theo­
ries.) When I look at Kuhn while wearing my spectacles, I discern this 
reply: if one has an interesting theory, one with predictions, sugges­
tions for improvement, challenging puzzles, and so on, then taking up 
its challenges will teach us a great deal, and a portion of what is learned will 
remain despite changes in theory. With respect to the solved problems in 
normal research, Kuhn says that "at least part of that achievement al­
ways proves to be permanent" (Kuhn 1962, 25). To ignore its chal­
lenges is to forfeit this knowledge. 

One can go further. Pursuing normal problems is a good strategy 
because, if there are anomalies that call for changes in theory, doing so 
will reveal them as well as help point to the adjustments indicated. 

In the developed sciences ... it is technical puzzles that provide the 
usual occasion and often the concrete methods for revolution .... Be-

2. The reliability of a test procedure must be distinguished from the reliability 
of any particular hypothesis that passes the test, as that is generally understood. 

3. Kuhn (1970, p. 243) identifies the key difference between himself and Pop­
per as one of research strategy. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:11:04.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



DUCKS, RABBITS, AND NORMAL SCIENCE 

cause they can ordinarily take current theory for granted, exploiting 
rather than criticizing it, the practitioners of mature sciences are freed 
to explore nature to an esoteric depth and detail otherwise unimagin­
able. Because that exploration will ultimately isolate severe trouble 
spots, they can be confident that the pursuit of normal science will inform 
them when and where they can most usefully become Popperian critics. 
(Kuhn 1970, 247; emphasis added) 

31 

The rationale for pursuing normal problems is that (if done right) 
some positive payoff is assured. If normal science yields problem so­
lutions, then new knowledge is brought forth. If normal testing 
determines that an anomalous result is real-that "it will not go 
away"-then there is knowledge of a real experimental effect (Le., ex­
perimental knowledge). Further normal testing will indicate whether 
adjustments and revisions are called for. If, alternatively, the effect is a 
genuine anomaly for the underlying theory, normal science will let 
this be found out by means of gross or repeated failures (Kuhnian cri­
sis). Even such crises, Kuhn notices, serve a creative function in devel­
oping alternative theories. Finally, normal science is the source of the 
most effective and severe tests of fundamental or basic theory: 

and 

Though testing of basic commitments occurs only in extraordinary 
science, it is normal science that discloses both the points to test and 
the manner of testing. (P. 6) 

Because the [theory] test arose from a puzzle and thus carried settled 
criteria of solution, it proves both more severe and harder to evade than the 
tests available within a tradition whose normal mode is critical discourse 
rather than puzzle solving. (P. 7; emphasis added) 

This last sentence gets to the heart of why, from the Kuhn's-eye 
point of view, "severity is the flip side of puzzle solving," and why 
one finds the most severe tests of theories, just what Popper seeks, in 
practices that have been engaged in the puzzle solving of normal sci­
ence (normal testing). There is a clear epistemological ground for this, 
and a bit more spadework will uncover it. The last part of the quotation 
points the way. We have to ask what is wrong with "a tradition whose 
normal mode is critical discourse rather than puzzle solving"? 

2.4 THE KUHN'S-EYE VIEW OF DEMARCATION 

It is important to keep in mind that the critical discourse Kuhn is dis­
paraging is the special kind of criticism that he imagines Popper to be 
championing: a relentless attack on fundamentals. It helps, in grasping 
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32 CHAPTER Two 

Kuhn here, if each time we read "critical discourse," we tack on the 
phrase "rather than puzzle solving." For Kuhn, finding a practice 
whose normal mode is critical discourse rather than puzzle solving is 
the surest tip-off that its scientific status is questionable. Hence Kuhn's 
provocative claim that a demarcation criterion may be found in the 
portion of science badly obscured by Popperian spectacles (normal sci­
ence). Nevertheless, as Kuhn remarks (p. 7), Popper's demarcation line 
and his often coincide, despite the fact that they are identifying very 
different processes. 

On the face of it, their two demarcation criteria are nearly oppo­
site. For Popper, the hallmark of science is criticism and testability, 
whereas Kuhn, in deliberate contrast, declares that "it is precisely the 
abandonment of critical discourse that marks the transition to a sci­
ence" (p. 6). To call what goes on in good normal testing an abandon­
ment of critical discourse is highly misleading, because normal science 
itself is based on severe and critical normal tests. However, on my read­
ing, what Kuhn takes good sciences to abandon is not normal testing­
where all the fruitful learning really takes place-but rather "critical­
discourse-rather-than-puzzle-solving." Good sciences do not and 
should not do what Kuhn takes Popper to be championing: relentlessly 
attacking fundamental theories, looking always for rival theories, and 
doing so to the exclusion of the positive learning of normal science. 
Although I do not endorse this provocative, idiosyncratic usage of "crit­
ical discourse," for the purposes of this chapter it helps us to construe 
Kuhn's demarcation criterion plausibly. 

Astrology 

To illustrate his contrast with Popper, Kuhn chooses astrology, out 
of a wish to avoid controversial areas like psychoanalysis (p. 7). His 
focus, he says, is on the centuries during which astrology was intellec­
tually respectable. The example functions not only to make out his 
demarcation but also to show "that of the two criteria, testing and puz­
zle solving, the latter is at once the less equivocal and the more funda­
mental" (p. 7). Astrology was unscientific, says Kuhn, not because it 
failed to be falsifiable, nor even because of how practitioners of astrol­
ogy explained failure. The problem is that astrologers had no puzzles, 
they could not or did not engage in normal science. 

Engaging in normal science requires a series of puzzles and strict 
criteria that virtually all practitioners agree to use to tell whether the 
puzzles are solved. But a practice does not automatically become scien­
tific by erecting such a series of puzzles and rules to pronounce them 
solved or not. Becoming a genuine science is not something that can 
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DUCKS, RABBITS, AND NORMAL SCIENCE 33 

occur by community decree, nor does Kuhn think it is,4 Kuhn balks at 
those who would find in him recipes for becoming scientific, appar­
ently unaware of how he invites this reading by failing to articulate 
the kinds of tests needed to carry out normal science legitimately and 
why only these tests qualify. Still, in several places Kuhn hints at the 
criteria normal testing requires (reliability or stringency). The most 
telling of all, I find, is his critique of astrology. 

With astrology, Kuhn observes, not only are the predictions statis­
ticaL but there is a tremendous amount of "noise" from background 
uncertainties. 

Astrologers pointed out, for example, that ... the forecast of an indi­
vidual's future was an immensely complex task, demanding the ut­
most skill, and extremely sensitive to minor errors in relevant data. 
The configuration of the stars and eight planets was constantly chang­
ing; the astronomical tables used to compute the configuration at an 
individual's birth were notoriously imperfect; few men knew the in­
stant of their birth with the requisite precision. No wonder, then, that 
forecasts often failed. (P, 8) 

Kuhn's point seems to be this: astrology, during the centuries when it 
was reputable, did not fail to be scientific because it was not testable 
nor because practitioners did not take failures as grounds to overthrow 
astrology. Plenty of perfectly good sciences act similarly. The reason the 
practice of astrology was unscientific is that practitioners did not or could 
not learn from failed predictions. 5 And they could not learn from them 
because too many justifiable ways of explaining failure lay at hand. 
They could not use failures or anomalies constructively. 

The occurrence of failures could be explained, but particular failures 
did not give rise to research puzzles, for no man, however skilled, 
could make use of them in a constructive attempt to revise the astro­
logical tradition. There were too many possible sources of difficulty, 
most of them beyond the astrologer's knowledge, control, or respon­
sibility. Individual failures were correspondingly uninformative, (P. 9) 

The above passage is the most revealing of all. For failed predic-
tions to "give rise to research puzzles," a failure must give rise to a 
fairly well defined problem; specifically, the problem of how to explain 
it. It must be possible, in other words, to set up a reliable inquiry to 

4. This is stressed by Hoyningen -Huene (1993) in his analysis of Kuhn's Struc­
ture of Scientific Revolutions. (See, for example, p, 193,) 

5. My reading is not affected by the fact that Kuhn thinks it wrongheaded to 
call failed solutions "mistakes", and that he limits mistakes to errors in applying 
some rule, e.g" mistakes in addition, 
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34 CHAPfERTwo 

determine its cause and/or the modifications called for. This is the kind 
of information normal tests can provide. 

Compare the situations of the astronomer and the astrologer. If an 
astronomer's prediction failed and his calculations checked, he could 
hope to set the situation right. Perhaps the data were at fault .... Or 
perhaps theory needed adjustment. . . . The astrologer, by contrast, 
had no such puzzles. (P. 9) 

To "set the situation right" one needs to be able to discriminate be­
tween proposed explanations of the failure. Unless one can set up a 
stringent enough test of a hypothesized explanation, so that its passing 
can reliably be attributed to its being correct, that failed prediction will 
be unconstructive or uninformative. 

By the same token, so long as there is no way to cut down these 
alternative explanations of failure, there is no ground for arguing that 
the failures should have been attributed to the falsity of astrology as a 
whole. In other words, if failed predictions do not give rise to research 
puzzles (reliable inquiries into their cause), then one cannot come to 
learn whether and, if so, how they can be explained within the global 
background theory. Thus, they cannot warrant discrediting the whole 
theory; they cannot warrant (Popperian) critical discourse. 

It becomes clear, then, that mere critical discourse is not enough 
for genuine science. In fact, Kuhn must see the case of astrology as one 
in which the normal day-to-day practice is critical discourse (Le., criti­
cal discourse rather than puzzle solving). Constructive criticism, one 
might say, requires at least being able to embark on an inquiry toward 
solving the Duhemian problems that will arise. 

Unwarranted Critical Discourse 
The practitioners of astrology, Kuhn notes, "like practitioners of 

philosophy and some social sciences ... belonged to a variety of differ­
ent schools, and the inter-school strife was sometimes bitter. But these 
debates ordinarily revolved about the implausibility of the particular 
theory employed by one or another school. Failures of individual pre­
dictions played very little role" (p. 9, n. 2). Practitioners were happy to 
criticize the basic commitments of competing astrological schools, 
Kuhn tells us; rival schools were constantly having their basic presup­
positions challenged. What they lacked was that very special kind of 
criticism that allows genuine learning-the kind where a failed predic­
tion can be pinned on a specific hypothesis. Their criticism was not 
constructive: a failure did not genuinely indicate a specific improvement, 
adjustment, or falsification. 
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DUCKS. RABBITS. AND NORMAL SCIENCE 35 

Thus, I propose to construe the real force of Kuhn's disparaging 
practices "whose normal mode is critical discourse" as disparaging 
those practices that engage in criticism even where the criticism fails to 
be driven by the constrained tests that exemplify good normal science.6 

What is being disparaged, and rightly so, is unwarranted and uncon­
structive criticism. When the day-to-day practice is criticism that is not 
the result of the stringent constraints of normal testing, then that criti­
cism is of the unwarranted or unconstructive variety. It is mere critical 
discourse. Nonsciences engage in mere critical discourse, not genuine 
criticism that allows learning from empirical tests. 

Learning from tests requires being able to learn not only from 
failed predictions but also from successful ones. For practitioners of 
astrology, both failed and successful predictions were uninformative. 
They could not learn from successful predictions because they would 
not provide a warrant for crediting any astrological theory. Credit does 
not go back to any astrological theory because there were no grounds 
for attributing a successful prediction to some astrological cause, for 
example, to the stars and planets being in particular positions. Success­
ful astrological predictions are likely, even if astrology is false: the tests 
are not s~vere. We will later see how to make this notion of severity 
concrete. 

Astrology exemplifies an extreme situation in which severe tests 
are precluded. The situation might be described in modern statistical 
terms as having too much uncontrolled variability, or as lacking a way 
to distinguish the "signal" from the noise. The situation, Kuhn notes, 
is typical of practices that one might call "crafts," some of which even­
tually make the transition to sciences (e.g., medicine). (Current theo­
ries of the stock market might be said to be crafts.) 

The transition from craft to science, Kuhn observes, correlates with 
supporting normal science or normal testing. However, Kuhn's demar­
cation slogan makes him appear to be saying that the transition comes 
about by "abandoning critical discourse." Kuhn fails to identify the 
kind of abandonment of criticism that is actually conducive to making 
a practice more scientific. It is unwarranted and unconstructive criti­
cism that should be abandoned and replaced by the warranted criticism 
of normal testing. 

Let us go back to a practice that, unlike astrology, is sufficiently 
developed to support normal testing (puzzle solving). If a hypothesized 

6. This should be qualified to refer only to enterprises for predicting, control­
ling, or understanding the physical world, in short, to intended sciences. It would 
not be a disparagement, say, of art. 
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36 CHAPTER Two 

solution to a normal problem fails a test. it could, theoretically, be ac­
counted for by alleging a fundamental flaw in the underlying theory­
but such a criticism would very likely be unwarranted (at least if just 
from this one failure). Thus, to regularly proceed this way would very 
often be in error, thereby violating the reliability requirement of nor­
mal testing. On these grounds normal science calls for abandoning this 
type of criticism. For the same reason it admonishes the practice of 
dealing with a failed solution (failed hypothesis) by changing the prob­
lem it was supposed to solve. An enterprise that regularly allowed such 
a cavalier attitude toward failure would often be misled. Likewise, in 
the case where a hypothesis passes a test: if there is too much leeway 
allowed in explaining away failures, passing results teach little if any­
thing. 

Changing the problem, blaming one's testing tools or the back­
ground theory where these are unwarranted, is the kind of criticism that 
should be disallowed. Only then can the practice of hypothesis ap­
praisal be sufficiently constrained to identify correctly genuine effects, 
gain experimental knowledge-or more generally, to accomplish the 
tasks of normal science reliably.7 Thus recast, Kuhn's demarcation crite­
rion intends to pick out those practices that afford experimental learn­
ing. I suggest we view such a demarcation criterion as indicating when 
particular inquiries, rather than whole practices, are scientific. It be­
comes, roughly: 

Demarcating scientific inquiry: What makes an empirical inquiry scien­
tific is that it can and does allow learning from normal tests, that it 
accomplishes one or more tasks of normal testing reliably.8 

This criterion becomes more specific when particular types of nor­
mal testing results are substituted. For example, an important type of 
normal test result is a failed prediction. The difference between a scien­
tific and an unscientific treatment of a failed prediction is the extent to 

7. Popper makes it clear that he allows the critical method to refer to the minor 
tests that Kuhn counts as puzzles. Popper (1974) addresses this point with an ex­
ample. The heating engineer needing to figure out how to install a central heating 
system under unusual conditions may have to throwaway the rule book of normal 
practice to find the solution. "When he works by trial and the elimination of error, 
and when he eliminates the error by a critical survey of tentative solutions, then he 
does not work in this routine manner; which for me makes him a scientist. But 
Kuhn ... should either say that he was not a scientist, or an extraordinary one" 
(Popper 1974, 1147). 

8. I am assuming that the empirical inquiry is aiming to find out about the 
world. 
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DUCKS, RABBITS, AND NORMAL SCIENCE 37 

which it is used to learn (about its cause, about needed modifications, 
and so on). 

So far our analysis has brought us to the following recasting of the 
Kuhnian observations with which we began: To understand the nature 
of the growth of scientific knowledge, one should look to tests of local 
hypotheses (normal experimental testing). An adequate account of 
normal testing should serve each of the functions Kuhn accords it, with 
the additional proviso that it do so reliably and with warrant. From our 
vantage point, what distinguishes Kuhn's demarcation from Popper's is 
that for Kuhn the aim is not mere criticism but constructive criticism.9 

2.5 PARADIGMATIC MODELS OF ERROR 

The Kuhnian picture of the role of background paradigms in normal 
science provides a useful framework for pursuing these ideas about 
experimental testing. While I would deny that a practitioner needs to 
work within a single paradigm, it will do no harm to see a given in­
quiry as within a single paradigm and it will make it easier to gain 
access to Kuhn's story. By the time the story is completed, delineating 
paradigms will not matter anyhow. 

Kuhn's notion of paradigm is notoriously equivocal. lO We may 
allow that a Kuhnian paradigm includes theories, specific hypotheses, 
and an ontology, as well as research aims and methods both for direct­
ing normal research and testing hypotheses. (In "Reflections on My 
Critics," p. 271, Kuhn says he would prefer to use the term "disciplin­
ary matrix. ") For Kuhn, sharing a paradigm is what accounts for "rela­
tive unanimity in problem-choice and in the evaluation of problem­
solutions" (p. 271). However, we must carefully distinguish what 
Kuhn runs together here. What goes into choosing a problem is quite 
different from what goes into criticizing proposed solutions. We need, 
in short, to distinguish the paradigm's role in providing research 
guides-a source of problems and guides for solving problems or puz­
zles-from experimental testing models-tools for testing hypothesized 
solutions or for normal hypothesis testing. The second category in­
cludes tools for criticizing such tests. These two categories of tasks may 
overlap, but no matter. The point of the distinction is to see why 

9. I hope it is clear that my use of the term "constructive criticism" differs 
radically from Lakatos in his attempt to revise Popper in light of Kuhn. For Lakatos, 
constructive criticism means replacing large-scale theories (progressively). For me, 
it means obtaining experimental knowledge by local arguments from error. 

10. See, for example, M. Masterman 1970 and D. Shapere 1984, chaps. 3 
and 4. 
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changing one's research program is not the same as changing one's 
experimental testing tools. 

Paradigm as Research Guide 

Let us begin with the role of a paradigm in providing a set of re­
search guides. Its role is to supply the questions that need answering 
and suggest the kinds of answers afforded by given instruments, exper­
iments, and tests. For Kuhn, a paradigm also creates a situation that 
fosters exploring subjects in esoteric depth and satisfies the psychologi­
cal and practical requirements for sustaining such exploration. 

This activity requires researchers to "accept" the program, but only 
in the sense that they choose to work on its problems and utilize the 
tools it offers for doing so. In Larry Laudan's terminology, they choose 
"to pursue it"; and, as he rightly urges, it is important to distinguish 
acceptance in this sense from taking an epistemological stance toward 
the theory. 

Kuhn, in contrast, often suggests that the paradigm must have a 
grip on the minds of those scientists working within (i.e., accepting) it, 
allowing them to perceive the world through the paradigm. Is it true 
that working on a research program demands total immersion in the 
paradigm? Kuhn is right to insist that solving the problems of normal 
science requires creative brilliance (it is not hack science by any 
means), and perhaps total immersion is the most effective way to at­
tain solutions. This could probably be investigated. Nevertheless, the 
results of such an investigation would be irrelevant to the questions 
about the epistemological warrant a theory might be required or en­
titled to have. 

The factors that enter into choosing to take up a research program, 
pledging allegiance to it, living in its world-all the things Kuhn associ­
ates with accepting a global theory or paradigm-include psychologi­
cal, sociological, pragmatic, and aesthetic values. Only by assuming 
these to be inextricably entwined with theory testing does Kuhn per­
ceive the latter to turn on these values as well. Before considering 
global theory testing we need to focus on the second role of the global 
background theory or paradigm: its role in normal testing. 

Experimental Testing Models: Error Paradigms 

Significantly, Kuhn remarks that he was originally led to the con­
cept of a "paradigm" in thinking of the concrete problem solutions or 
exemplars that practitioners share and that enable them to agree 
whether a problem is solved (p. 272). This is the role I propose to give 
to certain experimental testing models or testing exemplars. At one level, 
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DUCKS, RABBITS, AND NORMAL SCIENCE 39 

I am saying precisely what Kuhn says here about the role of shared 
exemplars. Through them one gains the ability to see a number of ex­
perimental problems or contexts in the same way, permitting the appli­
cation of similar techniques. One grasps standard ways to ask questions 
to arrive at experimentally determinable answers, and one learns what 
does and does not count as a satisfactory solution, an adequate fit, and 
a "good approximation." Nevertheless, I depart from Kuhn in several 
important ways. While this results in a view of normal science very 
different from Kuhn's official position, it is in keeping with my norma­
tive recasting of Kuhn. The main differences (to be discussed more 
fully in later chapters) are these: 

1. Normal tests are not algorithms or routines. If one unearths what 
actually goes on in normal testing, one sees that even sharing experi­
mental test examples does not secure the relatively unproblematic 
means of testing normal hypotheses that Kuhn imagines. Uncertainties 
about experimental assumptions, significance levels, the appropriate­
ness of analogies, and so on have to be confronted. As a result, there 
is often much disagreement about the results of normal testing, and 
there is plenty of opportunity for biases, conscious and unconscious, 
to enter. Where consensus is reached, it is not because of anything like 
a shared algorithm. It is because, in good scientific practices, the very 
problems of interpreting tests, critiquing experiments and such, them­
selves "give rise to research puzzles" in the sense we have discussed. 
Nor do these mechanisms for reliable tests in the face of threats from 
biases become inoperative in large-scale theory appraisal. 

2. Normal testing exemplars correspond to canonical experimental models. 
In my view, standard examples or normal testing exemplars are not a 
set of tools available only to those working within a given global theory 
or paradigm. Instead they consist of any models and methods relevant 
for testing solutions of normal problems, and these come from various 
background theories, from mathematics and statistics, and from theo­
ries of instruments and experiments. 

It is no objection to this idea of a pool of shared models that in a 
particular paradigm the model comes dressed in the special clothing 
of that paradigm. What is shared is the corresponding bare-bones or 
canonical version of the model. For example, a particular instrument 
used to test a predicted quantity may be characterized as having a spe­
cific Normal distribution of errors, and the rule for declaring the predic­
tion "successful" might be that the result be within two standard error 
units. The corresponding bare-bones or canonical model would be the 
mathematical family of Normal distributions and the corresponding 
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statistical rules for declaring a difference "statistically significant." That 
canonical model, once articulated sufficiently, is available for use for a 
host of experimental inquiries-it is not paradigm specificY It is like a 
standard instrument; indeed, a physical instrument is often at the heart 
of a canonical model. 

3. The use of exemplars in normal testing is open to objective scrutiny. Par­
adigmatic experimental examples are exemplary because they exem­
plify cases where the kinds of errors known to be possible or problem­
atic in the given type of investigation are handled well-that is, ruled 
out. Include also examples of infamous mistaken cases, especially 
those thought to have surmounted key problems. Kuhn's use of astrol­
ogy is an excellent example of what I have in mind; it is a classic case 
of a nonscience. As we proceed, other examples will arise. 

The use of paradigmatic exemplars is open to a paradigm­
independent scrutiny, that is, a scrutiny that is not relative to the back­
ground theory within which their use takes place. Although they may 
be applied in a routine manner, their appropriateness typically as­
sumed, the exemplars are used in arguments appraising hypotheses, 
and these arguments have or fail to have certain properties (e.g., re­
liability, severity). For example, the rule for determining whether 
agreement with a certain kind of parameter (with a certain distribution 
of error) is "good enough" may be the two-standard-deviation rule. 
Normal practitioners can and do criticize such rules as appropriate or 
not for a given purpose. 12 

Interestingly, Kuhn's attitude toward the exemplars of normal tests 
is analogous to Popper's treating the decisions required for testing as 
mere conventions. They simply report the standards the discipline de­
cides to use to declare a problem solved or not. 13 By Kuhn's own lights, 
however, before normal practitioners may take a puzzle as solved the 
hypothesized solution must have passed stringent enough tests. The 
arsenal needed for normal testing, then, is a host of tools for detecting 

11. It does not follow that scientists will recognize that the canonical model is 
appropriate to a given problem. As we will see (e.g., in chapter 7), important mis­
takes could have been avoided in Brownian motion tests if the applicability of cer­
tain statistical models had been noticed. 

12. Kuhn's use of the examples of astrology and astronomy is a good case in 
point. Suppose he had used the latter to exemplify a practice lacking a puzzle­
solving tradition. Such a use would be criticized as allowing erroneous characteriza­
tions of good scientific practices. 

13. Laudan (1996) makes this point in "The Sins of the Fathers." Kuhn's rela­
tivism about standards, Laudan says, is the exact counterpart of Popper's method­
ological conventionalism or Carnap's principle of tolerance. 
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whether and how conjectured hypotheses (of a given type) can fail. 
They call for methods capable not only of determining whether a hy­
pothesis correctly solves a problem, but also of doing so reliably. Ap­
praising the use of exemplars in normal testing turns on how well they 
promote these aims-the very aims we extricated in our normative 
recasting of Kuhn. 

In this connection one might note how Kuhn, while claiming that 
a gestalt switch separates him from Popper, is able to criticize Popper's 
research strategy on the grounds that one does not learn much 
through critical discourse rather than puzzle solving. 

2.6 GETTING SMALLER-A CONSEQUENCE OF SEVERITY 

AND INFORMATIVENESS 

The most valuable idea that comes out of the testing-within-a­
paradigm concept at the same time gets to the heart of Kuhn's contrast 
with Bopper. The idea is that testing a hypothesis, if the test is to be 
informative, is not to test everything all at once but to test piecemeal. 
The necessity of proceeding piecemeal follows from the desiderata of 
normal tests: that they be reliable (severe) and informative (construc­
tive). This requires two things of tests: a hypothesis H is taken to solve 
a problem only if it passes sufficiently stringent or severe tests, and 
some hypothesis (or other) is likely to be taken to solve the problem if 
it actually does so (at least approximately). 

A major flaw in Popper's account (recall chapter 1) arises because 
he supplies no grounds for thinking that a hypothesis H very probably 
would not have been corroborated if it were false. rNot-H" included 
all other hypotheses that were not yet considered.) Satisfying the aims 
of good normal testing, in contrast, directs one to select for testing the 
hypothesis where "H is false" (not-H) does not' refer to all other 
hypotheses in the domain in question. Rather it refers to a specific 
way in which a conjectured solution, H, could be wrong-could be 
erroneously taken as actually solving the problem. (For example, H 
might assert that an effect is systematic, not an artifact, and not-H that 
it is an artifact.) I will elaborate on this in chapter 6. 

The twin desiderata of normal tests, which we can express as "be 
stringent, but learn something," compel a localization of inquiry in an­
other sense, one that David Hull (1988) precisely puts his finger on. In 
the section "Summa Contra Kuhn," Hull explains that "scientists are 
willing to accept certain problems as solved and proceed to new prob­
lem areas" even on the basis of an apparently small number of tests 
"because they are confident that error ramifies. If the hypotheses that 
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42 CHAPTER Two 

they are accepting in order to attack new problems are mistaken, the 
results of related, though partially independent, research are likely to 
signal that something is wrong" (p. 496; emphasis added). 

Later I will have much more to say about the points of the last 
two paragraphs. Here my main concern is how my reading of Kuhn 
substantiates his contrast with Popper. The aims of normal testing give 
an entirely new impetus to a slew of microinquiries that from behind 
Popperian spectacles l4 might appear unexciting, without risk. 

Far from desiring boldness in Popper's sense, Kuhn observes how 
normal practitioners often set out to achieve an outcome that is already 
anticipated or seek to redetermine a known result-bolstering the im­
pression of normal science as lacking novelty. A very different impres­
sion arises if it is seen that a central aim of normal science is to improve 
on its own tools. It is not so much the new information about the 
scientific domain that is wanted but new ways of minimizing or getting 
around errors, and techniques for ensuring Hull's point, that important 
errors "ramify rapidly." 

As Kuhn puts it, "Though its outcome can be anticipated ... the 
way to achieve that outcome remains very much in doubt" (Kuhn 
1962, 36). A good deal about method is likely to be learned by finding 
out how to achieve the expected outcome. Consider, for example, the 
continued interest in using eclipse results to estimate the deflection of 
light. As will be seen in chapter 8, a main problem was finding im­
proved instrumental and analytical techniques. Seeking alternate ways 
to elicit a known solution is often an excellent route to discovering a 
new and clever mode of interacting with nature. One of the most effec­
tive ways to test and learn from such interaction is through quantita­
tively determined effects. 

Quantitative Anomalies 

If we continue to look at Kuhn with normative glasses, we see that 
he has put his finger on the rationale of normal tests. They provide 
experimental constraints that allow learning from tests-both to 
ground the three types of normal hypotheses needed to extend and 
flesh out theories (section 2.3), as well as to substantiate a crisis. 

A crisis emerges when anomalies repeatedly fail to disappear. Cri­
ses, while heralding troubling times, as Kuhn stresses, also have an 
important positive role to play: "[T]hough a crisis or an 'abnormal situ­
ation' is only one of the routes to discovery in the natural sciences, it is 
prerequisite to fundamental inventions of theory" (Kuhn 1977, 208). 

14. Perhaps I should say wearing what Kuhn takes to be Popper's spectacles. 
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While "prerequisite" is probably too strong, crises have an especially 
creative function because of the knowledge they embody, Examining 
Kuhn's views on crises, however exceptional and rare he feels them to 
be, reveals a lot about the kind of knowledge that normal science is 
capable of bringing forth. 

True, when Kuhn turns his gaze to crisis and theory change, he 
sees the problem as calling for a sociopsychological solution. It calls for, 
he thinks, a study of what scientists consider an unevadable anomaly and 
"what scientists will and will not give up" to gain other advantages 
(Kuhn 1977, 212). The problem, put this way, Kuhn says, "has scarcely 
even been stated before." For philosophers of science, the problem 
would usually be posed as asking after the nature and warrant of dis­
crediting and testing theories. Nevertheless, what emerges from 
Kuhn's point of view is relevant for the more usual problem (which is, 
of course, the problem that interests me), provided we keep on our 
normative-epistemological spectacles. 

What emerges from Kuhn's descriptive inquiry is that quantitative 
measurement and knowledge of quantitative effects are of key impor­
tance for both crisis and testing. This is particularly clear in Kuhn 1977. 
What makes an anomaly so "persistently obtrusive" and unevadable 
as to precipitate a crisis, Kuhn stresses, is that it be quantitatively deter­
mined: 

No crisis is, however, so hard to suppress as one that derives from a 
quantitative anomaly that has resisted all the usual efforts at reconcil­
iation, ... Qualitative anomalies usually suggest ad hoc modifications 
of theory that will disguise them, and ... there is little way of telling 
whether they are "good enough." An established quantitative anom­
aly, in contrast, usually suggests nothing except trouble, but at its 
best it provides a razor-sharp instrument for judging the adequacy of 
proposed solutions. (P. 209) 

This can be supplied with a very plausible normative basis: the 
quantitative anomaly identifies a genuine experimental effect, in par­
ticular, a discrepancy of a specified extent, and rather precise statistical 
criteria can determine whether a proposed solution adequately ac­
counts for it. For example, if a two-standard-deviation discrepancy has 
been identified, then a hypothesis, say H, that can account for an effect 
of at most 0.1 standard deviation fails to explain the identified discrep­
ancy. Thus the quantitative aspect of the discrepancy makes it clear 
that hypothesis H fails to solve the problem. 

Here the Kuhnian function of quantitative anomalies sounds very 
Popperian, and it is. But for Kuhn the quantitative knowledge arose 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:11:04.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



44 CHAPTER Two 

from a normal problem, an effort to learn something-not from a test 
of a large-scale theory. 

True to his perspective on the problem, Kuhn sees himself as re­
porting on the behavior and attitudes of scientists. Yet the respect sci­
entists show for quantitative effects is not just a sociopsychological fact 
about them. It is grounded in the fact that to try to blunt the sharp 
criteria quantitative information affords would be to forfeit accuracy 
and reliability, to forfeit learning. As Kuhn reports: 

I know of no case in the development of science which exhibits a loss 
of quantitative accuracy as a consequence of the transition from an 
earlier to a later theory .... Whatever the price in redefinitions of 
science, its methods, and its goals, scientists have shown themselves 
consistently unwilling to compromise the numerical success of their 
theories. (Kuhn 1977, 212-13) 

Fortunately, our spectacles allow us to get beyond merely noticing that 
scientists appear unwilling to give up "quantitative accuracy" and "nu­
merical success, " and enable us to discern when and why this obstinacy 
is warranted. 

This discernment is a task that will engage us throughout this 
book. Two things should be noted right off: First, it is not numerical 
success in the sense of doing a good job of "fitting the facts" that war­
rants clinging to. Only the special cases where numerical success corre­
sponds to genuine experimental effects deserve this respect. One, but 
not the only, way of demonstrating such experimental knowledge is 
Hacking's favorite practice: intervening in phenomena. Second, if we 
press the normative "why" question about what makes quantitative 
effects so special and quantitative knowledge so robust, we see that 
what is desirable is not quantitative accuracy in and of itself. What is 
desirable is the strength and severity of the argument that is afforded by 
a special kind of experimental knowledge. As such, it makes sense to 
call all cases that admit of a specifiably severe or reliable argument 
"quantitative," so long as this special meaning is understood. (This is 
how I construe C. S. Peirce's notion of a "quantitative induction," a 
topic to be taken up in chapter 12.) 

Quantitative knowledge teaches not only about the existence of 
certain entities but also about the properties of the process causing the 
effect. Such knowledge has primacy, as Kuhn recognizes, "whatever 
the price in redefinitions of science, its methods, and its goals." 

Pause 

Our recasting of normal science, I believe, substantiates the three 
highlights of Kuhn's contrast with Popper with which we began: (1) 
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"It is normal science, in which Sir Karl's sort of testing does not occur, 
rather than extraordinary science which most nearly distinguishes sci­
ence from other enterprises" (p. 6); (2) "It is precisely the abandon­
ment of critical discourse that marks the transition to a science" (p. 6); 
and (3) "Severity of test-criteria is simply one side of the coin whose 
other face is a puzzle-solving [Le., a normal science] tradition" (p. 7). 

Briefly, our gloss on them went as follows: The fundamental fea­
tures of scientific inquiries are to be found in the criteria of normal 
testing, and these criteria demand stringent normal tests, not (uninfor­
mative) attacks on fundamental theory. Because anomalies that are 
reliably produced in normal tests indicate real effects that will not go 
away, they provide the most severe tests of theories-when these are 
warranted. This explains Kuhn's promise that scientists "can be confi­
dent that the pursuit of normal science will inform them when and 
where they can most usefully become Popperian critics" (p. 247), that 
normal science will tell them when and where to find fault with the 
underlying theory. But Kuhn, we shall see, reneges on his promise. 
Once having brought normal scientists to the crisis point, Kuhn still 
will not let them be Popperian testers I 

This gets to the heart of my critique of what Kuhn says about the­
ory testing. Before beginning that critique, I might warn the reader 
against a certain misconstrual of the relation of that critique to the 
account of experimental learning that I am after. My aim is not to pro­
vide an account of large-scale theory appraisal. (I am not looking to 
fulfill Wisdom's idea of turning Kuhn's rabbit [normal science] into 
Popper's duck. Nor do I want to turn Popper's duck into Kuhn's rab­
bit-which is Lakatos's way.) Theory appraisal and theory testing, as 
distinguished from theory choice and theory change, do turn on ex­
perimental knowledge grounded in normal testing, but that is not 
the main reason for acquiring such knowledge. In my view, scientific 
progress and growth is about the accumulation of experimental 
knowledge. 15 

Although experimental knowledge is not all there is to science, it 
holds the key to solving important philosophical problems about sci­
ence. For instance, it is important to show why large-scale theory ap­
praisal is objective and rational-in the very senses that Kuhn rejects. 
I think, however, that we should reject Kuhn's depiction of the prob­
lem of theory testing, namely, as a comparative appraisal of rival large­
scale paradigm theories. Nevertheless, since I want to consider how 
our results about normal science force a revised view of Kuhn's own 

15. An important reason Kuhn despaired of progress is his rejection of the 
Popperian syntactic measures of how theory change represents progress. 
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46 CHAPTER Two 

story about large-scale theory change, I am willing to be swept up in 
Kuhn's story a while longer. 

2.7 THEORY CHOICE VERSUS THEORY ApPRAISAL: GESTALT 

SWITCHES AND ALL THAT 

Why, having brought normal scientists to the crisis point, to the point 
of a warranted criticism of theory, will Kuhn still not let them be Pop­
perian testers? (Granted I am being unclear about whether the theory 
at stake is medium-sized, large-scale, or a full disciplinary matrix, but 
that is because Kuhn is unclear.) According to Kuhn, the products of 
normal science are never going to be decisive for falsifying or for adju­
dicating between global theories. Testing and changing global theories 
or paradigms turns out not to be a matter of reasoned deliberation at 
all. Colorful passages abound in Kuhn's Structure. One such passage 
declares that 

the proponents of competing paradigms practice their trades in differ­
ent worlds .... [T]he two groups of scientists see different things 
when they look from the same point in the same direction .... [B]e­
fore they can hope to communicate fully, one group or the other must 
experience the conversion that we have been calling a paradigm shift. 
Just because it is a transition between incommensurables, the transi­
tion between competing paradigms cannot be made a step at a time, 
forced by logic and neutral experience. Like the gestalt switch, it must 
occur all at once (though not necessarily in an instant) or not at all. 
(Kuhn 1962, 149) 

What were ducks in the scientist's world before the revolution are 
rabbits afterwards. (Ibid., 110) 

This picture of revolutionary science has been convincingly criticized 
by many authors (e.g., Laudan 1984b, 1990c; Scheffler 1982; Shapere 
1984), and perhaps by now no further criticism is called for. But what 
I wish to consider, if only briefly, is how our recasting of normal science 
tells against Kuhn's view of global theory change. 

Viewing global theory change as switching all elements of the par­
adigm, Kuhn supposes there to be no place to stand and scrutinize two 
whole paradigms, as a genuine paradigm test would require. Lacking 
an "empirically neutral system of language," Kuhn holds that "the pro­
posed construction of alternate tests and theories must proceed from 
within one or another paradigm-based tradition" (1962, 145). This 
would be all right if it allowed that testing from within a paradigm 
could rest on something like our interparadigmatic canonical models 
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of experiment. Failing to disentangle the experimental testing portion 
of the paradigm from immersion in its research program, Kuhn not 
surprisingly winds up viewing global theory change as arational­
quite like the (experimentally) unwarranted critical discourse he attri­
butes to nonsciences. It is as if the very process that allows practices to 
become scientific had shifted into reverse, until we are back to "mere" 
critical discourse: 

Critical discourse recurs only at moments of crisis when the bases of 
the field are again in jeopardy. Only when they must choose between 
competing theories do scientists behave like philosophers. That, I 
think, is why Sir Karl's brilliant description of the reasons for the 
choice between metaphysical systems so closely resembles my de­
scription of the reasons for choosing between scientific theories. (pp. 
6-7) 

Indeed, the values Kuhn appeals to in theory change-simplicity, 
scope, fruitfulness, and the like-are precisely the criteria Popper 
claims we must resort to in appraising metaphysical systems. 

The Circularity Thesis 

Kuhn supposes that subscribers to competing global theories nec­
essarily interpret and weigh these factors differently; hence, inevitably, 
one's own global theory gets defended. This circularity thesis is most 
clearly stated in Structure: 

Like the choice between competing political institutions, that be­
tween competing paradigms proves to be a choice between incompat­
ible modes of community life .... When paradigms enter, as they 
must, into a debate about paradigm choice, their role is necessarily 
circular. Each group uses its own paradigm to argue in that paradigm's 
defense. (1962, 93) 

They will inevitably talk through each other when debating the rela­
tive merits of their respective paradigms. In the partially circular argu­
ments that regularly result, each paradigm will be shown to satisfy 
more or less the criteria that it dictates for itself and to fall short of a 
few of those dictated by its opponent. (Ibid., 108-109) 

While such circular defenses are possible, none of the require­
ments of paradigm theories, even as Kuhn conceives them, make their 
role in theory appraisal necessarily circular. On the contrary, there is 
much in what normal science requires that militates against such circu­
larity-even in times of crisis. After all, "the criteria that [the para-
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digm] dictates for itself" are those in the experimental testing models 
and the exemplary arguments that go along with them. Those stan­
dards, if appropriate for their own goals, must condemn such question­
begging arguments as failing utterly to probe a theory severely. At 
some point (Le., with regard to some normal hypothesis), defending a 
global theory no matter what clashes with the requirements of normal 
testing. Such defenses can and do occur, but they do not count as war­
ranted-by the strictures of good normal science. Why? Because they 
come down to a blanket refusal to acknowledge that a hypothesized 
solution to a normal problem fails, and that betrays an essential re­
quirement of normal science. 

Of course, nothing guarantees that actual science obeys the con­
straints of Kuhnian normal science. In fact, however, Kuhn's account 
of normal science is descriptively accurate for the bulk of important 
scientific episodes, episodes from which much has been learned. By 
and large, when these episodes appear to show otherwise it is due to 
mistaking as theory testing remarks that record individual biases ex­
pressed in hopes and fears, complaints, demands, name-calling, and 
bullying. Fortunately, the major and minor players in these cases dis­
cerned the difference. This is not surprising, given that they had been 
enjoying a normal science tradition. After all, and this is. one of my 
main points, each such defense is just a hypothesized 'solution to a 
normal puzzle (and practitioners are well versed in scrutinizing al­
leged solutions). 

To return to my criticism, let us sketch what happens, according to 
Kuhn's circularity thesis, when a global theory, Tl' slips into a crisis. 
Within T1, which we assume to be a genuine science with a normal 
tradition and so on, genuine anomalies have been identified. These 
anomalies, especially if they are quantitative, identify genuine effects 
that need explaining. These give rise to normal puzzles, that is, normal 
testing, to scrutinize attempted solutions, to "set the situation right." 
The criteria of Tl' by dint of its enjoying a normal science tradition, 
severely constrain attempts to deal with such anomalies. A genuine 
crisis is afoot when, after considerable effort, Tl is unable to explain 
away the anomalies as due either to initial conditions or background 
hypotheses. 

All these points of Kuhn's story have already been told. Notice that 
it follows that the experimental testing criteria of Tl themselves warrant the 
existence of anomalies and crisis. Incorporating as they must the general 
criteria of normal testing, they indicate when an anomaly really is un­
evadable (Le., when to put blame elsewhere is tantamount to unwar­
ranted criticism). Do they not, by the same token, indicate that any 
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attempt to save a theory-if that defense depends upon evading the 
anomaly-violates the very norms upon which enjoying a normal 
"puzzle-solving" tradition depends? The norms would bar procedures 
of admitting hypotheses as solutions to puzzles, we saw, if they often 
would do so erroneously, 

Of course, it may take a while until attempted defenses come up 
against the wall of normal testing strictures, But with a genuine crisis, 
it seems, that is exactly what happens. Moreover, from Kuhn's demar­
cation criterion, it is possible to recognize (even if not sharply) that a prac­
tice is losing its normal puzzle-solving ability. (Astrology is a kind of 
exemplar of a practice that falls over onto the nonscience line.) 

These remarks should not be misunderstood. What normal science 
must condemn is not saving a global theory in the face of severe anom­
aly-although that is what Popperian spectacles might have us see. 
What it must condemn (recalling Kuhn's demarcation) is being pre­
vented from learning from normal testing. In any particular case, the 
obstacles to learning that are condemned are very specific: having 
to reject experimentally demonstrated effects, contradict known pa­
rameter values, change known error distributions of instruments or 
background factors, and so on. Such moves are not always learning 
obstacles, but they are when they fly in the face of exemplary experi­
mental models. 

Consider what Kuhn calls for when scientists, having split off from 
global theory TI to develop some rival T2 , come knocking on the door 
of their less adventurous colleagues, who are still muddling through 
the crisis in T I • Confronted with rival T2, which, let's suppose, solves 
T/s crisis-provoking problem, crisis scientists in TI necessarily defend 
TI circularly. This circularity thesis requires them to do a turnabout and 
maintain that TI will eventually solve this problem, or that the problem 
was not really very important after all. Once the members of rival T2 
go away (back to their own worlds, presumably), members of TI can 
resume their brooding about the crisis they have identified with their 
paradigm. Were they to do this, they would indeed be guilty of the 
unwarranted criticism and mere name-calling Kuhn finds typical of 
nonsciences. But Kuhn has given no argument to suppose that crisis 
scientists necessarily do this. 

Even if the circularity thesis is rejected, as it should be, many of 
the more troubling allegations Kuhn raises about global paradigm ap­
praisal persist. These follow, however, not from the high points of nor­
mal testing and crisis, but from two additional premises that we should 
also reject: first, that acceptance (rejection) of a paradigm is the same 
as or indistinguishable from taking up (stopping work on) its problems, 
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and second, that global theory or paradigm change requires a conver­
sion experience. Taken together, these assumptions render the prob­
lem of global theory change as the problem of what causes prac­
titioners working in one paradigm to transfer their allegiance and 
become converted to another. Seen this way, it is no wonder Kuhn 
views the answer to be a matter of sociopsychology. 

Discrediting a Global Theory versus Stopping Work on It 

It would seem that the repeated anomalies that are supposed to 
bring on crisis provide grounds for thinking that the theory has got it 
wrong, at least for the anomalous area. Yet Kuhn denies that scientists 
take even the most well-warranted crisis as grounds to falsify or reject 
the global theory involved (even as a poor problem solver). For Kuhn, 
"once it has achieved the status of paradigm, a scientific theory is de­
clared invalid only if an alternate candidate is available to take its 
place .... The decision to reject one paradigm is always simultaneously 
the decision to accept another" (Kuhn 1962, 77). 

This thesis of comparative appraisal, for Kuhn, is not a result of an 
analysis of warranted epistemic appraisal. It is a consequence of Kuhn's 
first assumption-equating the acceptance of a global theory with pur­
suit of its research program. That is why Kuhn denies that scientists 
can reject a theory without adopting another: "They could not do so 
and still remain scientists" (1962, 78). Together with his assumption 
that science has to be done within a single paradigm, the comparative 
appraisal thesis follows logically. But as we have already said, working 
within a paradigm-pursuing normal problems and tests-is wholly 
distinct from according it certain epistemic credentials. A situation that 
through Kuhnian spectacles appears as "still working within theory T, 
despite severe crisis" may actually be one where T is discredited (e.g., 
key normal hypotheses found false), but not yet replaced. 16 Discredit­
ing a theory is not the same as stopping work on it. 

Good reasons abound for still working on theory T, despite anoma­
lies. Nor need these reasons go away even if T is replaced. Different 
types of anomalies must be distinguished. Suppose that the anomaly 
truly indicts a hypothesis of the theory T, say hypothesis H; that is, "H 
is in error" passes reliable tests. Consider two cases: 

a. Theory T at the moment has got it wrong so far as H goes, but it 
is the kind of problem we know a fair amount about clearing up. Here 
the anomaly counts against neither the correctness of T nor the value 

16. Even when Tis replaced, it may very well still enjoy a puzzle-solving tradi­
tion. If I am correct, this counts against Kuhn's claim that theories are replaced 
only when they fail to have a puzzle-solving tradition. 
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of pursuing Tfurther. Indeed, it is likely to be a fruitful means of modi­
fying or replacing H. 

b. In a genuine crisis situation, theory T is found to have got it 
wrong so far as several key hypotheses go. Here the anomalies discredit 
the full correctness of T but not the value of continued work on T. 
Kuhn's idea of "the creative function of crises" should be taken seri­
ously. The anomalies are extremely rich sources of better hypotheses 
and better normal tests, as well as better theories. After all, whatever 
passes severe tests, that is, experimental effects-including the anoma­
lies themselves-are things for which any new theory should account: 
they do not go away.17 

One reason the thesis about comparative testing appears plausible, 
even to philosophers who otherwise take issue with Kuhn, is that often 
the clearest grounds for discrediting a theory arise when a rival, T2 , is 
at hand. That is because the rival often supplies the experimental 
grounds for using anomalies to show that Tl is genuinely in crisis. But 
the argument, whether it comes in the course of working on Tl or T2 , 

must be made out in the experimental testing framework of Tl • More 
correctly, it must be made out by means of shared canonical models of 
experiment. Such an argument, where warranted, does not depend on 
already holding T2 • 

An example, to be discussed more fully later, may clarify my point. 
The two theories are classical thermodynamics and the molecular­
kinetic theory. Jean Perrin's experiments, while occurring within the 
molecular-kinetic account, demonstrated an unevadable anomaly for 
the classical account by showing that Brownian motion violates a non­
statistical version of the second law of thermodynamics. They did so 
by showing that Brownian movement exemplifies the type of random 
phenomenon known from simple games of chance. The canonical 
model here comes from random walk phenomena. It was well under­
stood and did not belong to anyone paradigm. Once the applicability 
of the canonical model to Brownian motion data was shown, the 
anomaly, which was quantitative, was unevadable. 18 

17. An important task for the experimental program I am promoting would 
be to identify canonical ways of deliberately learning from anomalies. Contribu­
tions from several sources would be relevant. One source would be some of the 
empirical work in cognitive science, such as Lindley Darden 1991. 

18. Those seeking to save a nonstatistical account were not allowed to explain 
away the anomaly or defend their theory circularly. Once all their attempted expla­
nations were shown wanting-on normal experimental grounds-they had to 
concede. It is not that they are bound by a sociological convention-doing other­
wise violates canons of learning from experiment. I discuss this case in detail in 
chapter 7. 
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I do not assert that experimental arguments always exist to guide 
theory appraisal. but rather deny Kuhn's claim that they never do. 
Moreover, for experimental arguments to ground theory appraisal. the 
experimental testing frameworks of the rival large-scale theories need 
not be identical. It is sufficient for the needed arguments to be made 
out by appeal to the interparadigmatic canonical experimental models. 
How can we suppose such a shared understanding? It follows from 
taking seriously the criteria for good normal scientific practice, criteria 
that, for Kuhn, must hold for any practice that enjoys a normal scien­
tific tradition. Moreover, the historical record reveals case after case 
where even the most ardent proponents are forced to relent on the 
basis of very local but very powerful experimental tests. The Kuhn of 
normal science can explain this consensus quite naturally; the Kuhn 
of revolutionary science cannot. 

One is justly led to wonder why Kuhn holds to the curious position 
that the strictures of normal science can compel rejection of hypothe­
ses within a large-scale theory, even to the extent of provoking a crisis, 
while supposing that when the crisis gets too serious or a rival theory 
is proposed, the normal practitioner abruptly throws the strictures of 
normal science out the window and declares (being reduced to aes­
thetic criteria now) that his or her theory is the most beautiful. One 
will look in vain for an argument for this position as well as for an 
argument about why Kuhn takes away what I thought he had prom­
ised us-that a crisis compelled by good normal science lets us finally 
be warranted Popperian testers and reject the theory (as being wrong 
at least so far as its key hypotheses go)-quite apart from stopping 
work on it. Instead one finds that, when turning his gaze to the prob­
lem of large-scale theqry appraisal. Kuhn is simply wearing spectacles 
that necessarily overlook the role of the shared strictures and argu­
ments of normal testing. 

Kuhn seeks something that can effect a transfer of allegiance and 
the gestalt switch that allegedly goes with it. Impressive experimental 
demonstrations can at most pave the way for this conversion by mak­
ing a scientist's mind susceptible to the new gestalt. And unlike the 
gestalt switch of psychology, the scientist cannot switch back and forth 
to compare global theories. 

The Early Innovators 

Not everyone switches at the same time, which is one reason why 
Kuhn supposes that there is no single argument that must rationally 
convince everyone. We should be glad of this, Kuhn maintains, be­
cause such innovations are generally mistaken I 
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Most judgments that a theory has ceased adequately to support a 
puzzle-solving tradition prove to be wrong. If everyone agreed in 
such judgements, no one would be left to show how existing theory 
could account for the apparent anomaly as it usually does. (P. 248) 

53 

But this has a curious consequence for Kuhn. The innovators, with 
their daring value systems, switch early and proceed to work within 
the new theory T2 (never mind how to explain their converting to­
gether). Where are they, it might be asked, while they are developing 
the new theory? Presumably, for Kuhn, they must be within T2, 

since working within T2 is equated with accepting it. It would seem to 
follow, however, that the early innovators would have to convert 
back to TJ when, as happens most of the time pace Kuhn, the innova­
tion is mistaken. Yet this, according to Kuhn, is impossible, or nearly 
always so. 

Whichever paradigm theory they find themselves caught in, the 
early innovators must still be employing experimental testing tools 
from the earlier paradigm (in which we include the general pool of 
canonical models) to test their new hypotheses. Otherwise they could 
not demonstrate the quantitative experimental successes that Kuhn's 
own spectacles reveal to be central (if not determinative) in paradigm 
appraisal. Although their divergent paradigms result in their speaking 
different languages where translation is at most partial, they can learn 
how they differ via experiment. Kuhn himself says, "First and fore­
most, men experiencing communication breakdown can discover by 
experiment-sometimes by thought-experiment, armchair science­
the area within which it occurs" (p. 277). 

A Kuhnian may agree with my thesis about shared testing models, 
yet deny that the experimental arguments provided offer a basis for 
appraising global theories. Nevertheless, that is still no argument for 
Kuhn's thesis that global theory change cannot turn on experimental 
arguments, and, indeed, Kuhn fails to supply one. Rather, his thesis 
results from assuming that theory change is a conversion experience, 
that it requires one to "go native," and is complete only when the new 
theory establishes a grip on one's mind. 

We can hold, with Kuhn, that experimental demonstrations and 
arguments at most allow one to accept a rival theory "intellectually" 
and yet reach the conclusion opposite from his. Far from downplaying 
the role of experimental argument, this just shows why scientific ap­
praisal properly turns only on (epistemologically grounded) "intellec­
tual" acceptance and not on psychological conversions. That evidential 
arguments are incapable of grounding theory change when defined as 
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mind shifts is precisely why mind shifts have nothing to do with 
grounding theory assessment in science. 

It is instructive to consider the new technology of "virtual reality" 
machines. Fitted with the appropriate helmet and apparatus, one can 
enter a 3-d world to learn history, medical procedures, and more. In 
the future a virtual reality program created by the members of one 
paradigm might well allow scientists from another paradigm to vicari­
ously experience the world through the other's eyes (without the risk 
of being unable to convert back). This might even prove to heighten 
the capacity to find solutions to problems set by a research program. 
However, the ability to tell someone to "get into the machine and see 
for yourself" will never be an argument, will never substitute for an 
evidential grounding of the theory thereby "lived in." 

2.8 SUMMARY AND CLOSING REMARKS 

We began by asking what philosophical mileage could be gotten from 
exploring Kuhn's contrast of his position with Popper's. How far have 
we gone and how much of it will be utilized in the project of this book? 

On Kuhn's treatment of normal science, we can sensibly construe 
his comparison with Popper-and it turns out that Kuhn is correct. 
Normal scientists, in my rereading of Kuhn, have special requirements 
without which they could not learn from standard tests. They insist 
on stringent tests, reliable or severe. They could not learn from failed 
solutions to normal problems if they could always change the question, 
make alterations, and so on. That is what Kuhn says. That is what 
having a normal science tradition is all about. But then we have some 
curious consequences at the level of theory appraisal. 

Via the criteria of normal science, Kuhn says, normal science may 
be led to crisis. It is recognized as crisis because of the stringency of its 
rules. Suddenly, when confronted with a rival theory, Kuhn says, nor­
mal scientists do an about-face, defending their theory and denying it 
is in crisis. Kuhn gives no argument for supposing this always happens, 
in fact, my point is that his view of normal science militates against 
this supposition. 

Answering Kuhn does not require us to show that global theory 
testing is always a function of experimental knowledge, but merely 
that we deny the Kuhnian view that it cannot be. My solution is based 
on one thing normal practitioners, even from rival paradigms, have in 
common (by dint of enjoying a normal testing tradition): they can and 
do perform the tasks of normal science reliably. That is the thrust of 
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Kuhn's demarcation criterion. Later we will see how experimental 
knowledge functions in theory testing. 

The problems with Kuhn's account of theory appraisal, however, 
are not the problems that my approach requires be overcome. I do not 
seek an account of the comparative testing of rival large-scale theories, 
as I deny that such a thing occurs (except as understood in an elliptical 
fashion, to be explained). I do not accept Kuhn's supposition that there 
are two kinds of empirical scientific activities, normal and revolution­
ary: there is just normal science, understood as standard testing.19 

Nevertheless, I will retain several of the key theses I have gleaned 
from Kuhn's comparison with Popper: Taking Popperian aim at global 
theories when doing so is not constrained by severe normal testing is 
a poor strategy for obtaining experimental knowledge. The constraints 
and norms of normal testing provide the basis for severe tests and in­
formative scientific inquiries. To understand the nature and growth of 
experimental knowledge, one must look to normal testing. 

We can also retain a version of Kuhn's demarcation criterion. The 
relevant distinction, although it is not intended to be sharp and may 
well admit of degrees, is between inquiries that are scientific or infor­
mative and those that are not. Inquiries are informative to the extent 
that they enable experimental knowledge, that is, learning from nor­
mal science. For Kuhn, in a genuine science, anomalies give rise to 
research puzzles. In our recasting of Kuhn this translates as, in a genu­
inely scientific inquiry, anomalies afford opportunities for learning. 
This learning is tantamount to learning from error, as described in 
chapter 1 and in what follows. The aim of science is not avoiding 
anomaly and error but being able to learn from anomaly and error. 

Finding things out is a lot like normal science being revisited in the 
manner discussed in this chapter. Nevertheless, even the idea of nor­
mal science as extending and filling in theories should be questioned. 
Although it is not too far from a description of what scientists generally 
do, it does not entirely capture knowledge at the forefront-it is still 
too tied to a theory-dominated way of thinking. In the gathering up of 
knowledge, it is typical not to know which fields will be called upon 
to solve problems. There need not even be a stable background theory 
in place. 

Take, for example, recent work on Alzheimer'S disease. Clumps of 
an insoluble substance called beta amyloid have been found in the 
brains of its victims, which presents problems in its relation to the dis-

19. By Hempirical scientific activities" I am referring here to experimental ac­
tivities in the broad sense in which I understand this. 
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56 CHAPTER Two 

ease and how it builds up in the brain. But what is the background 
theory or paradigm being extended? It could come from biology or 
neuroscience, from anyone of their specialties-except that recent 
findings suggest that the solution may come from genetics. 

The growth of knowledge, by and large, has to do not with replac­
ing or amending some well-confirmed theory, but with testing specific 
hypotheses in such a way that there is a good chance of learning some­
thing-whatever theory it winds up as part of. Having divorced normal 
(standard) testing from the Kuhnian dependence upon background 
paradigms in any sense other than dependence upon an intertheoretic 
pool of exemplary models of error, it is easy to accommodate a more 
realistic and less theory-dominated picture of inquiry. In much of day­
to-day scientific practice, and in the startling new discoveries we read 
about, scientists are just trying to find things out. 
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CHAPTER THREE 

The New Experimentalism 
and the Bayesian Way 

[F]amiliarity with the actual use made of statistical methods in the 
experimental sciences shows that in the vast majority of cases the 
work is completed without any statement of mathematical proba­
bility being made about the hypothesis or hypotheses under con­
sideration. The simple rejection of a hypothesis, at an assigned 
level of significance, is of this kind, and is often all that is needed, 
and all that is proper, for the consideration of a hypothesis in rela­
tion to the body of experimental data available. 

-R. A. Fisher, Statistical Methods and Scientific Inference, p. 40 

[T]he job of the average mathematical statistician is to learn from 
observational data with the help of mathematical tools. 

-E. S. Pearson, The Selected Papers ofE. S. Pearson, p. 275 

SINCE LAKATOS, the response to Popper's problems in light of Kuhn has 
generally been to "go bigger." To get at theory appraisal, empirical test­
ing, and scientific progress requires considering larger units-whole 
paradigms, research programs, and so on. Some type of holistic move 
is favored even among the many philosophers who consciously set out 
to reject or improve upon Kuhn. Whatever else can be said of the vari­
ety of holisms that have encroached upon the philosophical landscape, 
they stand in marked contrast to the logical empiricist approaches to 
testing that concerned setting out rules of linking bits of evidence (or 
evidence statements) with hypotheses in a far more localized fashion. 
For post-Kuhnian holists, observations are paradigm laden or theory 
laden and testing hypotheses does not occur apart from testing larger 
units. 

The lesson I drew from Kuhn in the previous chapter supports a 
very different line of approach. The lesson I take for post-Kuhnian phi­
losophy of science is that we need to go smaller, not bigger-to the 
local tests of "normal science." Having so reworked the activity of nor-

57 
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58 CHAPTER THREE 

mal testing I will now drop the term altogether, except when a re­
minder of origins seems needed, and instead use our new terms stan­
dard testing and error statistics. But the aims of standard testing are still 
rather like those that Kuhn sets out for normal science. 

I agree with critics of logical empiricism on the inadequacy of a 
theory of confirmation or testing as a uniform logic relating evidence 
to hypotheses, that is, the evidential-relationship view. But in contrast 
to the thrust of holistic models, I take these very problems to show 
that we need to look to the force of low-level methods of experiment 
and inference. The fact that theory testing depends on intermediate 
theories of data, instruments, and experiment, and that data are theory 
laden, inexact, and "noisy, " only underscores the necessity for numer­
ous local experiments, shrewdly interconnected. 

The suggestion that aspects of experiment might offer an im­
portant though largely untapped resource for addressing key problems 
in philosophy of science is not new. It underlies the recent surge of 
interest in experiment by philosophers and historians of science such 
as Robert Ackermann, Nancy Cartwright, Allan Franklin, Peter Gali­
son, Ronald Giere, and Ian Hacking. Although their agendas, methods, 
and conclusions differ, there is enough similarity among this new 
movement to group them together. Appropriating Ackermann's nifty 
term, I dub them the "New Experimentalists." 

Those whom I place under this rubric share the core thesis that 
focusing on aspects of experiment holds the key to avoiding or solving 
a number of problems, problems thought to stem from the tendency 
to view science from theory-dominated stances. In exploring this thesis 
the New Experimentalists have opened up a new and promising ave­
nue for grappling with key challenges currently facing philosophers of 
science. Their experimental narratives offer a rich source from which 
to extricate how reliable data are obtained and used to learn about 
experimental processes. Still, nothing like a systematic program has 
been laid out by which to accomplish this. The task requires getting 
at the structure of experimental activities and at the epistemological 
rationale for inferences based on such activities. 

To my mind, the reason the New Experimentalists have come up 
short is that the aspects of experiment that have the most to offer in 
developing such tools are still largely untapped. These aspects cover 
the designing, modeling, and analyzing of experiments, activities that 
receive structure by means of statistical methods and arguments. 

This is not to say that the experimental narratives do not include 
the use of statistical methods. In fact, their narratives are replete with 
applications of statistical techniques for arriving at data, for assessing 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 59 

the fit of data to a model, and for distinguishing real effects from arti­
facts (e.g., techniques of data analysis, significance tests, standard er­
rors of estimates, and other methods from standard error statistics). 
What has not been done is to develop these tools into something like 
an adequate philosophy or epistemology of experiment. What are 
needed are forward-looking tools for arriving at reliable data and using 
such data to learn about experimental processes. 

In rejecting old-style accounts of confirmation as the wrong way 
to go to relate data and hypothesis, the New Experimentalists seem to 
shy away from employing statistical ideas in setting out a general ac­
count of experimental inference. Ironically, where there is an attempt 
to employ formal statistical ideas to give an overarching structure to 
experiment, some New Experimentalists revert back to the theory­
dominated philosophies of decision and inference, particularly Bayes­
ian philosophies. The proper role for statistical methods in an adequate 
epistemology of experiment, however, is not the theory-dominated 
one of reconstructing episodes of theory confirmation or large-scale 
theory change. Rather their role is to provide forward-looking, amplia­
tive rules for generating, analyzing, and learning from data in a reliable 
and intersubjective manner. When it comes to these roles, the Bayes­
ian Way is the wrong way to go. 

My task now is to substantiate all of these claims. In so doing I 
shall deliberately alternate between discussing the New Experimental­
ism and the Bayesian Way. The context of experiment, I believe, pro­
vides the needed backdrop against which to show up key distinctions 
in philosophy of statistics. The New Experimentalist offerings reveal 
(whether intended or not) the function and rationale of statistical tools 
from the perspective of actual experimental practice-the very under­
standing missing from theory-dominated perspectives on scientific in­
ference. This understanding is the basis for both my critique of the 
Bayesian Way and my defense of standard error statistics. 

One other thing about my strategy: In the Bayesian critique I shall 
bring to the fore some of the statisticians who have contributed to the 
debates in philosophy of statistics. Their work has received too little 
attention in recent discussions by Bayesian philosophers of science, 
which has encouraged the perception that whatever statisticians are 
doing and saying must be quite distinct from the role of statistics in 
philosophy of science. Why else would we hear so little in the way of 
a defense of standard (non-Bayesian) statistics? But in fact statisticians 
have responded, there is a rich history of their response, and much of 
what I need to say has been said by them. 

I will begin with the New Experimentalism. 
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3.1 THE NEW EXPERIMENTALISM 

Having focused for some time on theory to the near exclusion of exper­
iment, many philosophers and historians of science have now turned 
their attention to experimentation, instrumentation, and laboratory 
practices. i Among a subset of this movement-the New Experimental­
ists-the hope is to steer a path between the old logical empiricism, 
where observations were deemed relatively unproblematic and given 
primacy in theory appraisal, and the more pessimistic post-Kuhn­
ians, who see the failure of logical empiricist models of appraisal as 
leading to underdetermination and holistic theory change, if not 
to outright irrationality. I will begin by outlining what seem to me to 
be the three most important themes to emerge from the New Experi­
mentalism. 

1. Look to Experimental Practice to Restore to Observation 
Its Role as Objective Basis 

Kuhn, as we saw in chapter 2, often betrays the presumption that 
where an algorithm is unavailable the matter becomes one of sociol­
ogy. He proposes that problems that are usually put as questions about 
the nature of and warrant for theory appraisal be reasked as sociologi­
cal questions that have "scarcely even been stated before" (Kuhn 1977, 
212). Whether intended or not, this has invited sociological studies 
into the role that interests and negotiations play in constructing and 
interpreting data. Interviews with scientists have provided further grist 
for the mills of those who hold that evidence and argument provide 
little if any objective constraint. 

A theme running through the work of the New Experimentalists 
is that to restore the role of empirical data as an objective constraint 
and adjudicator in science, we need to study the actual experimental 
processes and reasoning that are used to arrive at data. The old-style 
accounts of how observation provides an objective basis for appraisal 
via confirmation theory or inductive logic should be replaced by an 
account that reflects how experimental knowledge is actually arrived 
at and how it functions in science. 

Peter Galison (1987) rightly objects that "it is unfair to look to ex­
perimental arguments for ironclad implications and then, upon finding 
that experiments do not have logically impelled conclusions, to ascribe 

1. A collection of this work may be found in Achinstein and Hannaway 1985. 
For a good selection of interdisciplinary contributions, see Gooding, Pinch, and 
Schaffer 1989. 
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the experimentalists' beliefs entirely to 'interests'" (p. 11). He suggests 
that we look instead at how experimentalists actually reason. 

Similarly, Allan Franklin (1986, 1990) finds in experimental prac­
tice the key to combating doubts about the power of empirical evi­
dence in science. He puts forward what he calls an "evidence model" 
of science-"that when questions of theory choice, confirmation, or 
refutation are raised they are answered on the basis of valid experi­
mental evidence" (1990, 2)-in contrast to the view that science is 
merely a social construction. 

An evaluation of the New Experimentalists' success must distin­
guish between their having provided us sticks with which to beat the 
social constructivists and their having advanced solutions to philo­
sophical problems that persist, even granting that evidence provides an 
objective constraint in science. 

2. Experiment May Have a Life of Its Own 

This slogan, from Hacking 1983, 1992a, and 1992b points to sev­
eral New Experimentalist subthemes, and can be read in three ways, 
each in keeping with the position I developed in chapter 2. 

Topical hypotheses. The first sense, which Hacking (1983, 160) empha­
sizes, concerns the aims of experiment. In particular, he and others 
recognize that a major aim of experiment is to learn things without 
any intention of testing some theory. In a more recent work, Hacking 
calls the kinds of claims that experiment investigates "topical hypothe­
ses" -like topical creams-in contrast to deeply penetrating theories. 
Hacking (1992a) claims that 

it is a virtue of recent philosophy of science that it has increasingly 
come to acknowledge that most of the intellectual work of the theo­
retical sciences is conducted at [the level of topical hypotheses] rather 
than in the rarefied gas of systematic theory. (P.45) 

The New Experimentalists have led in this recognition. Galison (1987) 
likewise emphasizes that the 

experimentalists' real concern is not with global changes of world 
view. In the laboratory the scientist wants to find local methods to 
eliminate or at least quantify backgrounds, to understand where the 
signal is being lost. and to correct systematic errors. (P. 245) 

The parallels with our recasting of Kuhnian normal science in the last 
chapter are clear. 
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62 CHAPTER THREE 

Theory-independent warrant for data. A second reading of the slogan re­
fers to the justification of experimental evidence-that a theory­
independent warrant is often available. More precisely, the thesis is 
that experimental evidence need not be theory laden in any way that 
invalidates its various roles in grounding experimental arguments. 
Granting that experimental data are not just given unproblematically, 
the position is that coming to accept experimental data can be based 
on experimental processes and arguments whose reliability is indepen­
dently demonstrated. Some have especially stressed the independent 
grounding afforded by knowledge of instruments; others stress the 
weight of certain experimental activities, such as manipulation. The 
associated argument, in each case, falls under what I am calling exem­
plary or canonical arguments for learning from error. 

Experimental knowledge remains. This reading leads directly to the third 
gloss of the slogan about experiment having a life of its own. It con­
cerns the continuity and growth of experimental knowledge. In partic­
ular, the New Experimentalists observe, experimental knowledge re­
mains despite theory change. Says Galison, "Experimental conclusions 
have a stubbornness not easily canceled by theory change" (1987, 
259). This cuts against the view that holders of different theories neces­
sarily construe evidence in incommensurable or biased fashions. We 
saw in chapter 2 that the criteria of good normal science lead to just the 
kind of reliable experimental knowledge that remains through global 
theory change. These norms, I argued, themselves belie the position 
Kuhn takes on revolutionary science, where everything allegedly 
changes. 

Continuity at the level of experimental knowledge also has rami­
fications for the question of scientific progress. It points to a crucial 
kind of progress that is overlooked when measures of progress are 
sought only in terms of an improvement in theories or other larger 
units. Experimental knowledge grows, as do the tools for its acquisi­
tion, including instrumentation, manipulation, computation, and most 
broadly, argumentation.2 Giere and Hacking have especially stressed 
how this sort of progress is indicated when an entity or process be­
comes so well understood that it can be used to investigate other ob­
jects and processes (e.g., Giere 1988, 140). We can happily accept what 

2. Ackermann (1985) and others stress progress through instrumentation, but 
there is also progress by means of a whole host of strategies for obtaining experi­
mental knowledge. That is why I take progress through experimental argumenta­
tion to be the broadest category of experimental progress. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 63 

these authors say about experimental progress while remaining agnos­
tic about what this kind of progress might or might not show about 
the philosophical doctrine of scientific realism. 

3. What Experimentalists Find: Emphasis on Local 
Discrimination of Error 

A third general theme of New Experimentalist work concerns the 
particular types of tasks that scientists engage in when one turns to the 
processes of obtaining, modeling, and learning from experimental 
data: checking instruments, ruling out extraneous factors, getting ac­
curacy estimates, distinguishing real effect from artifact. In short, they 
are engaged in the manifold local tasks that may be seen as estimating, 
distinguishing, and ruling out various errors (in our broad sense). 

"How do experiments end?" (as in the title of Galison's book) asks 
"When do experimentalists stake their claim on the reality of an effect? 
When do they assert that the counter's pulse or the spike in a graph is 
more than an artifact of the apparatus or environment?" (Galison 
1987, 4). The answer, in a nutshell, is only after they have sufficiently 
ruled out or "subtracted out" various backgrounds that could be re­
sponsible for an effect. "As the artistic tale suggests," Galison continues, 
"the task of removing the background is not ancillary to identifying 
the foreground-the two tasks are one and the same" (p. 256), and the 
rest of his book explores the vast and often years-long effort to conduct 
and resolve debates over background. 

3.2 WHAT MIGHT AN EPISTEMOLOGY OF EXPERIMENT BE? 

Now to build upon the three themes from the New Experimentalist 
work, which may be listed as follows: 

1. Understanding the role of experiment is the key to circum­
venting doubts about the objectivity of observation. 

2. Experiment has a life of its own apart from high level theorizing 
(pointing to a local yet crucially important type of progress). 

3. The cornerstone of experimental knowledge is the ability to dis­
criminate backgrounds: signal from noise, real effect from artifact, and 
so on. 

In pressing these themes, many philosophers of science sense that 
the New Experirp.entalists have opened a new and promising avenue 
within which to grapple with the challenges they face. Less clear is 
whether the new attention to experiment has paid off in advancing 
solutions to problems. Nor is it even clear that they have demarcated a 
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program for working out a philosophy or epistemology of experiment. 
The New Experimentalist work seems to agree on certain central 

questions of a philosophy or epistemology of experiment: how to es­
tablish well-grounded observational data, how to use data to find out 
about experimental processes, and how this knowledge bears on revis­
ing and appraising hypotheses and theories. Satisfactory answers to 
these questions would speak to many key problems with which philos­
ophers of science wrestle, but the New Experimentalist work has not 
yet issued an account of experimental data adequate to the task. 

Experimental activities do offer especially powerful grounds for ar­
riving at data and distinguishing real effects from artifacts, but what 
are these grounds and why are they so powerful? These are core ques­
tions of this book and can be answered adequately only one step at 
a time. 

As a first step we can ask, What is the structure of the argument 
for arriving at this knowledge? My answer is the one sketched in chap­
ter 1: it follows the pattern of an argument from error or learning from 
error. The overarching structure of the argument is guided by the fol­
lowing thesis: 

It is learned that an error is absent when (and only to the extent that) 
a procedure of inquiry (which may include several tests) having a 
high probability of detecting the error if (and only iP) it exists never­
theless fails to do so, but instead produces results that accord well 
with the absence of the error. 

Such a procedure of inquiry is highly capable of severely probing for 
errors-let us call it a reliable (or highly severe) error probe. According to 
the above thesis, we can argue that an error is absent if it fails to be 
detected by a highly reliable error probe. 

Alternatively, the argument from error can be described in terms 
of a test of a hypothesis, H, that a given error is absent. The evidence 
indicates the correctness of hypothesis H, when H passes a severe 
test -one with a high probability of failing H, if H is false. An analogous 
argument is used to infer the presence of an error. 

With this conjecture in hand, let us return to the New Experimen­
talists. I believe that their offerings are the most interesting and illumi­
nating for the epistemologist of science when they reveal (unwittingly 
or not) strategies for arriving at especially strong experimental argu-

3. The "only if" is already accommodated by the requirement that failing to 
detect means the result is probable assuming the error is absent. The extreme case 
would be if the result is entailed by the absence of the error. This thesis is the 
informal side of the more fonnal definition of passing a severe test in chapter 6. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 65 

ments; and when this is so, I maintain, it is because they are describing 
ways to arrive at procedures with the capacity to probe severely and 
learn from errors. The following two examples, from Galison 1987 and 
Hacking 1983, though sufficient, could easily be multiplied. 

Arguments for Real Effects 

Galison 

The consistency of different data-analysis procedures can persuade 
the high-energy physicist that a real effect is present. A similar im­
plicit argument occurs in smaller-scale physics. On the laboratory 
bench the experimenter can easily vary experimental conditions; 
when the data remain consistent, the experimentalist believes the ef­
fect is no fluke. (1987, 219) 

What is the rationale for being thus persuaded that the effect is real? 
The next sentence contains the clue: 

In both cases, large- and small-scale work, the underlying assumption 
is the same: under sufficient variation any artifact ought to reveal 
itself by causing a discrepancy between the different "subexperi­
ments." (Ibid.) 

Although several main strategies experimentalists use lie scattered 
through Galison's narratives, he does not explicitly propose a general 
epistemological rationale for the inferences reached. The argument 
from error supplies one. 

How do these cases fit the pattern of my argument from error? The 
evidence is the consistency of results over diverse experiments, and 
what is learned or inferred is "that it is no fluke." Why does the evi­
dence warrant the no-fluke hypothesis? Because were it a fluke, it 
would almost surely have been revealed in one of the deliberately var­
ied "subexperiments." Note that it is the entire procedure of the various 
subexperiments that may properly be said to have the probative 
power-the high probability of detecting an artifact by not yielding 
such consistent results. Never mind just now how to justify the proba­
tive power (severity) of the procedure. For the moment, we are just 
extracting a core type of argument offered by the New Experimental­
ists. And the pattern of the overall argument is that of my argument 
from error. 

Galison's discussion reveals a further insight: whether it is possible 
to vary background factors or use data analysis to argue "as if" they are 
varied, the aim is the same-to argue from the consistency of results 
to rule out its being due to an artifact. 
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Hacking. An analysis of Hacking's "argument from coincidence" reveals 
the same pattern, although Hacking focuses on cases where it is pos­
sible to vary backgrounds by way of literal manipulation. 

Hacking asks, What convinces someone that an effect is real? Low­
powered electron microscopy reveals small dots in red blood platelets, 
called dense bodies. Are they merely artifacts of the electron micro­
scope? 

One test is obvious: can one see these selfsame bodies using quite 
different physical techniques? ... In the fluorescence micrographs 
there is exactly the same arrangement of grid, general cell structure 
and of the "bodies" seen in the electron micrograph. It is inferred that 
the bodies are not an artifact of the electron microscope .... It would 
be a preposterous coincidence if, time and again, two completely dif­
ferent physical processes produced identical visual configurations 
which were, however, artifacts of the physical processes rather than 
real structures in the cell. (Hacking 1983, 200-201) 

Two things should again be noted: First, the aim is the local one, 
to distinguish artifacts from real objects or effects-something that can 
be pursued even without a theory about the entities or effects in ques­
tion. Second, Hacking's argument from coincidence is an example of 
sustaining an argument from error. The error of concern is to take as 
real structure something that is merely an artifact. The evidence is the 
identical configurations produced by completely different physical pro­
cesses. Such evidence would be extremely unlikely if the evidence 
were due to "artifacts of the physical processes rather than real struc­
tures in the cell" (ibid.). 

As before, much more needs to be said to justify this experimental 
argument, and Hacking goes on to do that; for example, he stresses 
that we made the grid, we know all about these grids, and so on. But 
the present concern is the pattern of the argument, and it goes like this: 
"If you can see the same fundamental features of structure using sev­
eral different physical systems, you have excellent reason for saying, 
'that's real' rather than, 'that's an artifact''' (Hacking 1983, 204).4 It 
is not merely the improbability of all the instruments and techniques 
conspiring to make all of the evidence appear as if the effect were real. 
Rather, to paraphrase Hacking again, it is the fact that it would be akin 
to invoking a Cartesian demon to suppose such a conspiracy. 

Hacking tends to emphasize the special evidential weight afforded 
by performing certain experimental activities rather than what is af-

4. It is important to distinguish carefully between "real" as it is understood 
here, namely, as genuine or systematic, and as it is understood by various realisms. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 67 

forded by certain kinds of arguments, saying that "no one actually pro­
duces this 'argument from coincidence' in real life" (1983,201). Not 
so. Unless it is obvious that such an argument could be given, experi­
mental practitioners produce such arguments all the time. In any 
event, as seekers of a philosophy of experiment we need to articulate 
the argument if we are to carry out its tasks. The tasks require us to get 
at the structure of experimental activities and at the epistemological 
rationale for inferences based on the results of such activities. Most 
important, understanding the argument is essential in order to justify 
inferences where the best one can do is simulate, mimic, or otherwise 
argue as if certain experimental activities (e.g., literal manipulation or 
variation) had occurred. Experimental arguments, I suggest, often 
serve as surrogates for actual experiments; they may be seen as experi­
ments "done on paper." 

Other examples from the work of other New Experimentalists 
(e.g., conservation of parity), as well as the work of other philosophers 
of science, lend themselves to an analogous treatment, but these two 
will suffice. In each case, what are needed are tools for arriving at, 
communicating, and justifying experimental arguments, and for using 
the results of one argument as input into others. Those aspects of ex­
periment that have the most to offer in developing such tools are still 
largely untapped, however, which explains, I think, why the New Ex­
perimentalists have come up short. These aspects cover the designing, 
modeling, and analyzing of experiments-activities that receive struc­
ture by means of standard statistical methods and arguments. 

Put Your Epistemology of Experiment at the Level of Experiment 

In rejecting old-style accounts of confirmation as the wrong way to 
go, the New Experimentalists seem dubious about the value of utilizing 
statistical ideas to construct a general account of experimental infer­
ence. Theories of confirmation, inductive inference, and testing were 
born in a theory-dominated philosophy of science, and this is what 
they wish to move away from. It is not just that the New Experimental­
ists want to sidestep the philosophical paradoxes and difficulties that 
plagued formal attempts at inductive logics. The complexities and con­
text dependencies of actual experimental practice just seem recal­
citrant to the kind of uniform treatment dreamt of by philosophers of 
induction. And since it is felt that overlooking these complexities is 
precisely what led to many of the problems that the New Experimen­
talists hope to resolve, it is natural to find them skeptical of the value 
of general accounts of scientific inference. 

The typical features of what may be called "theory-dominated" ac-
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counts of confirmation or testing are these: (1) the philosophical work 
begins with data or evidence statements already in hand; (2) the ac­
count seeks to provide uniform rules for relating evidence (or evidence 
statements) to any theory or conclusion (or decision) of interest; and 
(3) as a consequence of (1) and (2), the account functions largely as a 
way to reconstruct a scientific inference or decision, rather than giving 
us tools scientists actually use or even a way to model the tools actu­
ally used. 

The New Experimentalists are right to despair of accounts that kick 
in only after sufficiently sharp statements of evidence and hypotheses 
are in hand. Galison is right to doubt that it is productive to search for 
"an after-the-fact reconstruction based on an inductive logic" (1987, 
3). Where the New Experimentalists shortchange themselves is in 
playing down the use of local statistical methods at the experimental 
level-the very level they exhort us to focus on. 5 The experimental 
narratives themselves are chock-full of applications of standard statisti­
cal methods, methods developed by Fisher, Neyman and Pearson, and 
others. Despite the alleged commitment to the actual practices of sci­
ence, however, there is no attempt to explicate these statistical prac­
tices on the scientists' own terms. Ironically, where there is an attempt 
to employ statistical methods to erect an epistemology of experiment, 
the New Experimentalists revert to the theory-dominated philosophies 
of decision and inference. A good example is Allan Franklin's appeal 
to the Bayesian Way in attempting to erect a philosophy of experiment. 

The conglomeration of methods and models from standard error 
statistics, error analysis, experimental design, and cognate methods, I 
will argue, is the place to look for forward-looking procedures that 
serve to obtain data in the first place, and that are apt even with only 
vague preliminary questions in hand. If what I want are tools for dis­
criminating signals from noise, ruling out artifacts, and so on, then I 
really need tools for doing that. And these tools must be applicable 
with the kinds of information scientists actually have. At the same 
time, these tools can provide the needed structure for the practices 

5. Hacking's recent work often comes close to what I have in mind, but he is 
reluctant to worry about the Bayes versus non-Bayes controversy in philosophy of 
statistics. "It is true that different schools will give you different advice about how to 
design experiments, but for any given body of data they agree almost everywhere" 
(Hacking 1992b, 153). When it comes to the use of statistical ideas for a general 
philosophy of experiment, the divergent recommendations regarding experimental 
design are crucial. It is as regards the uses of a theory of statistics for philosophy of 
science-the uses that interest me-that the debates in philosophy of statistics 
matter. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:11:46.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



NEW EXPERIMENTALISM AND THE BAYESIAN WAY 69 

given a central place by the New Experimentalists. Before turning to 
standard error statistics we need to consider why the Bayesian Way 
fails to serve the ends in view. 

3.3 THE BAYESIAN WAY 

I take a natural and realistic view of science to allow for the accep­
tance of corrigible statements, both in the form of data and in the 
form of laws and hypotheses .... It is hard to see what motivates the 
Bayesian who wants to replace the fabric of science, already compli­
cated enough, with a vastly more complicated representation in 
which each statement of science is accompanied by its probability, for 
each of us. (Kyburg 1993, 149) 

By the "Bayesian Way" I mean the way or ways in which a certain 
mathematical theory of statistical inference-Bayesian inference-is 
used in philosophy of science. My criticism is of its uses regarding phil­
osophical problems of scientific inference and hypothesis testing as 
distinct from its use in certain statistical contexts (where the ingredi­
ents it requires, e.g., prior probabilities, are u:'1problematic or less prob­
lematic) and in personal decision-making contexts. It is not that the 
Bayesian approach is free of problems in these arenas-ongoing con­
troversies are ever present among statisticians and philosophers of 
statistics. But the problems of central interest to the philosopher of the 
epistemology of experiment are those that concern the Bayesian Way 
in philosophy of science, specifically, problems of scientific inference 
and methodology.6 

There is another reason to focus on the Bayesian Way in philos­
ophy of science: it is here that the deepest and most philosophic­
ally relevant distinctions between Bayesian and non-Bayesian ideas 
emerge. For a set of well-defined statistical problems, and for given 
sets of data, Bayesian and non-Bayesian inferences may be found to 
formally agree-despite differences in interpretation and rationale. 
When it comes to using statistical methods in philosophy of science, 

6. In making this qualification I mean to signal that I recognize the relevance 
of decision theory to philosophy of science generally. However, the set of philo­
sophical problems for which decision theory is most applicable are distinct from 
those of scientific inference. It is true that decision theory (Bayesian and non­
Bayesian) has also been used to model rational scientific agents. However, I do not 
find those models useful for my particular purpose, which has to do with identi­
fying rational methods rather than rational agents or rational actions. It would take 
us too far afield to consider those models here. 
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differences in experimental design, interpretation, and rationales are 
all-important. 

There are three main ways in which a mathematical theory of 
probabilistic or statistical inference can be used in philosophy of 
science: 

1. A way to model scientific inference. The aim may be to model or 
represent certain activities in science, such as acquiring data, making 
inferences or decisions, and confirming or testing hypotheses or theo­
ries. The intention may be to capture either actual or rational ways to 
carry out these activities. 

2. A way to solve problems in philosophy of science. The aim may be to 
help solve philosophical problems concerning scientific inference and 
observation (e.g., objectivity of observation, underdetermination, Du­
hem's problem). 

3. A way to perform a metamethodological critique. It can be used to 
scrutinize methodological principles (according special weight to 
"novel" facts) or to critique the rationality of scientific episodes (meta­
methodology) . 

There are other ways of using a theory of statistics, but the above 
are the most relevant to the epistemological issues before us. The 
Bayesian Way has in fact been put to all these uses, and many imagine 
that it is the only plausible way of using ideas from mathematical statis­
tics to broach these concerns in the philosophy of science. Indeed, its 
adherents often tout their approach as the only account of inference 
we will ever need, and some unblushingly declare the Bayesian Way 
to be the route toward solving all problems of scientific inference and 
methodology. I do not agree. 

Although the Bayesian literature is long and technical, explaining 
why the Bayesian Way is inadequate for each of the three aims re­
quires little or no technical statistics. Such an explication seems to me 
to be of pressing importance. Keeping the Bayesian philosophy of sci­
ence shrouded in mathematical complexity has led to its work going 
on largely divorced from other approaches in philosophy of science. 
Philosophers of science who do consult philosophers of statistics get 
the impression that anything but Bayesian statistics is discredited. Thus 
important aspects of scientific practice are misunderstood or over­
looked by philosophers of science because these practices directly 
reflect non-Bayesian principles and methods that are widespread in 
science. 

It may seem surprising, given the current climate in philosophy of 
science, to find philosophers (still) declaring invalid a standard set of 
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experimental methods rather than trying to understand or explain 
why scientists evidently (still) find them so useful. I think it is surpris­
ing. Is there something special about the philosophy of experimental 
inference that places it outside the newer naturalistic attitudes? By and 
large, Bayesian statisticians proceed as if there were. Colin Howson 
and Peter Urbach (1989) charge "that one cannot derive scientifically 
significant conclusions from the type of information which the Fisher 
and the Neyman-Pearson theories regard as adequate" (p. 130), despite 
the fact that for decades scientists and statisticians have made it clear 
they think otherwise. Nor is their position an isolated case. Howson 
and Urbach are simply the most recent advocates of the strict Bayesian 
line of argument worked out by fathers of Bayesianism such as Bruno 
De Finetti, I. J. Good, Denis Lindley, and 1. J. Savage. To their credit, 
Howson and Urbach attempt to apply the Bayesian Way to current 
challenges in philosophy of science, and so are useful to our project. 

Granted, the majority of Bayesians seem to want to occupy a posi­
tion less strict than that espoused by Howson and Urbach, although 
they are not entirely clear about what this means. What is clear is that 
thus far none of the middle-of-the-road, fallen, or otherwise better­
behaved Bayesians have promoted the battery of non-Bayesian meth­
ods as the basis for an epistemology of experiment. I hope to encourage 
a change in that direction. I do not believe that an adequate philosophy 
of experiment can afford to be at odds with statistical practice in 
science. 

The Focus of My Critique: Bayesian Subjectivism 

My critique of Bayesianism in this chapter will focus on the first 
two ways of using an account of statistical inference in philosophy of 
science-to model scientific inference and to solve philosophical prob­
lems about scientific inference.7 Simply, the Bayesian tools do not tell 
us what we want to know in science. What we seek are ampliative 
rules for generating and analyzing data and for using data to learn 
about experimental processes in a reliable and intersubjective manner. 
The kinds of tools needed to do this are crucially different from those 
the Bayesians supply. 

The shortcomings of the Bayesian Way for the first two aims bear 
directly on its appropriateness for the third aim-using Bayesian prin-

7. Let me confess right off that I will give short shrift to many important tech­
nical qualifications, historical footnotes, and significant mathematical develop­
ments. No doubt some will take me to task for this, and I apologize. For my pur­
poses, I believe, it is of greater importance to get at the main issues in as 
nontechnical and non cumbersome a manner as possible. 
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72 CHAPTER THREE 

ciples in a metamethodological critique. (Bayesian critiques of non­
Bayesian principles and methods will be addressed in later chapters.) 

My immediate target is the version or versions of Bayesianism rou­
tinely appealed to by philosophers of the Bayesian Way: the standard 
subjective Bayesian account (with a few exceptions to be noted).8 To 
keep the discussion informal I shall proceed concentrically, going once 
over the main issues, then again more deeply-rotating all the while 
among the New Experimentalist program, philosophy of statistics, and 
philosophy of science. In later loops (and later chapters) some of the 
more formal notions will fall into place. Although proceeding thus 
means building an argument piecemeal throughout this book, I can 
make several of my main points now by looking at how the subjective 
Bayesians, or Personalists, themselves view the task of an account of 
statistical or inductive inference. 

Evidential-Relationship versus Testing Approaches 

In delineating approaches to statistical inference, I find it helpful 
to distinguish between "evidential-relationship" (E-R) approaches and 
"testing" approaches. E-R approaches grew naturally from what was 
traditionally thought to be required by a "logic" of confirmation or 
induction. They commonly seek quantitative measures of the bearing 
of evidence on hypotheses. What I call testing approaches, in contrast, 
focus on finding general methods or procedures of testing with certain 
good properties. 

For now, the distinction between E-R and testing approaches may 
be regarded as simply a way to help put into perspective the different 
accounts that have been developed. Only later will this descriptive dif­
ference be seen to correspond to more fundamental, epistemological 
ones. A main way to contrast the two approaches is by means of their 
quantitative measures. The quantities in E-R approaches are probabili­
ties or other measures (of support or credibility) assigned to hypothe­
ses. In contrast, testing approaches do not assign probabilities to 
hypotheses. The quantities and principles in testing approaches refer 
only to properties of methods, for example, of testing or of estimation 
procedures. One example is the probability that a given procedure of 
testing would reject a null hypothesis erroneously-an error probabil­
ity. Another is our notion of a severe testing process. 

Bayesian inference is an E-R approach, as I am using that term, 

8. Many of my remarks here and in chapter 10 also apply to so-called objective 
Bayesians, e.g., Roger Rosenkrantz. For an excellent critical discussion of objective 
Bayesianism, see Seidenfeld 1979b. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 73 

while testing approaches include non-Bayesian approaches, for ex­
ample, Popperian corroboration, Fisherian statistics, and Neyman­
Pearson statistics. Under the category of a testing approach, I would 
also include entirely qualitative non-Bayesian approaches, for ex­
ample, those of Clark Glymour and John WorralJ.9 

In the Bayesian approach the key E-R measure is that of a proba­
bility of a hypothesis relative to given data. Computing such probabili­
ties requires starting out with a probability assignment, and a major 
source of difficulty has been how to construe these prior probabilities. 
One way has been to construe them as "logical probabilities," a second, 
as subjective probabilities. 

Carnapian Bayesians. The pioneer in developing a complete E-R theory 
based on logical probability is Rudolf Carnap.10 The Carnapian Bayes­
ian sought to assign priors by deducing them from the logical structure 
of a particular first order language. The E-R measure was to hold be­
tween two statements, one expressing a hypothesis and the other data, 
sometimes written as C(h,e). The measure was to reflect, in some sense, 
the "degree of implication" or confirmation that e affords h. Calculating 
its value, the basis for Carnapian logics of confirmation, was a formal 
or syntactical matter, much like deductive logic. 

Such logics of confirmation, however, were found to suffer from 
serious difficulties. The languages were far too restricted for most sci­
entific cases, a problem never wholly overcome. Even where applic­
able, a deeper problem remained: How can a priori assignments of 
probability be relevant to what can be expected to actually occur, that 
is, to reliability? How can they provide what Wesley Salmon calls "a 
guide to life"? There is the further problem, Carnap showed, of having 
to pick from a continuum of inductive logics. To restrict the field, 
Carnap was led to articulate several postulates, but these, at best, 
seemed to rest on what Carnap called "inductive intuition." Salmon 
remarks: 

9. I have hardly completely covered all non-Bayesian approaches. Notable 
non-Bayesian accounts not discussed are those of Glymour, Kyburg, and Levi. A 
sect of Bayesians who explicitly consider error probabilities, e.g., Seidenfeld, might 
seem to be anomalous cases. I regard them as more appropriately placed under the 
category of testing approaches. I return to this in chapter 10. 

lD. Carnap 1962, Logical Foundations of Probability. See also Carnap's "Replies 
and Systematic Expositions" in Schilpp's The Philosophy of Rudolph Carnap (Schilpp 
1963). Wesley Salmon, in many places, clearly and comprehensively discusses the 
developments of Carnap's work on induction. See, for example, Salmon 1967 and 
1988. See also Carnap and Jeffrey 1971. 
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74 CHAPTER THREE 

Camap has stated that the ultimate justification of the axioms is in­
ductive intuition. I do not consider this answer an adequate basis for 
a concept of rationality. Indeed, I think that every attempt, including 
those by Jaako Hintikka and his students, to ground the concept of 
rational degree of belief in logical probability suffers from the same 
unacceptable apriorism. (Salmon 1988, 13) 

Subjective Bayesians. The subjective Bayesian, instead, views prior prob­
abilities as personal degrees of belief on the part of some individual. 
Subjective Bayesianism is a natural move for inductive logicians still 
wanting to keep within the general Carnapian (E-R) tradition of what 
an inductive logic should look like. By replacing logical with subjective 
probabilities, it provides an evidential-relationship approach to con­
firmation without the problems of logical probability. The definition 
and tasks of inductive logic become altered correspondingly. Take 
Howson and Urbach 1989: 

Inductive logic-which is how we regard the subjective Bayesian the­
ory-is the theory of inference from some exogenously given data 
and prior distribution of belief to a posterior distribution. (P. 290) 

The prior distribution of belief refers to the degrees of belief an agent 
has in a hypothesis H and its alternatives prior to the data;ll the poste­
rior (or final) distribution refers to the agent's degree of belief in H 
after some data or evidence statement is accepted. Inductive inference 
from evidence is a matter of updating one's degree of belief to yield a 
posterior degree of belief (via Bayes's theorem)Y 

The Bayesian conception of inductive logic reflects a key feature 
of theory-dominated philosophies of science: an account of inference 
begins its work only after sufficiently sharp statements of evidence and 
hypotheses are in hand. But more is required to get a Bayesian infer­
ence off the ground. Also necessary are assignments of degrees of belief 
to an exhaustive set of hypotheses that could explain the evidence. 
These are the prior probability assignments. (The full-dress Bayesian 
requires utilities as well, but I leave this to one side.) 

Where do the prior probabilities come from? How does one come 
to accept the evidence? That the Bayesian approach places no restric-

II. When, as is often the case, the data are known, the prior probability refers 
to the degree of belief the agent supposes he or she would have if the data were 
not known. Problems with this occupy us later (chapter 10). 

12. Attempts at interval valued probabilities have been proposed but with 
mixed success. At any rate, nothing in the present discussion is altered by those ap­
proaches. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 75 

tions on what can serve as hypotheses and evidence, while an im­
portant part of its appealing generality, makes it all the more difficult 
to answer these questions satisfactorily. 

Prior Probabilities: Where From? 

Many philosophers would agree with Isaac Levi that "strict Bayes­
ians are legitimately challenged to tell us where they get their num­
bers" (Levi 1982, 387). In particular, it seems they should tell us how 
to assign prior probabilities. The subjectivist disagrees. The Bayesian 
subjectivist typically maintains that 

we are under no obligation to legislate concerning the methods 
people adopt for assigning prior probabilities. These are supposed 
merely to characterise their beliefs subject to the sole constraint of 
consistency with the probability calculus. (Howson and Urbach 
1989,273) 

Agents presumably are to discover their degrees of belief by introspec­
tion, perhaps by considering the odds they might give if presented with 
(and required to take?) a series of bets. 

But would not such personal opinions be highly unstable, varying 
not just from person to person, but from moment to moment? That 
they would, subjectivists accept and expect. 

In their classic paper, Edwards, Lindman, and Savage (1963) tell 
us that the probability of a hypothesis H, P(H) "might be illustrated by 
the sentence: The probability for you, now, that Russia will use a 
booster rocket bigger than our planned Saturn booster within the next 
year is .8'" (p. 198). Throughout the introductory text by Richard Sav­
age (L. J.'s brother) "my probability" is quite deliberately used instead 
of "probability." 

Quantitatively expressing the degree of belief "for you now" is 
quite outside what Bayesian inference officially supplies. Bayesian in­
ference takes it as a given that agents have degrees of belief and as­
sumes that these are expressible as probabilities; its work is to offer a 
way of fitting your beliefs together coherently. In particular, your be­
liefs prior to the data should cohere with those posterior to the data by 
Bayes's theorem (whether you do it by conditionalization or by chang­
ing your prior probability assignment13 ). 

l3. Not all Bayesians hold the posterior to result from conditionality only. It 
might be due to a change in prior probability assignment for reasons other than 
new evidence e. Those who violate conditionality have the Bayesian approach do­
ing even less work-it only tells you to be coherent. Nothing in our discussion 
turns on this qualification, however. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:11:46.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



76 CHAPTER THREE 

(Much of the technical work by Bayesian philosophers concerns 
so-called Dutch Book arguments, which come in various forms. These 
arguments purport to show that if we are rational, we will be coherent 
in the Bayesian sense. The basic argument is that if it is given that 
beliefs are expressible as probabilities, then, assuming you must accept 
every bet you are offered, if your beliefs do not conform to the proba­
bility calculus, you are being incoherent and will lose money for sure. 
In as much as these givens hardly seem to describe the situation in 
science, as many have argued,14 we need not accept what such argu­
ments purport to show.) 

Personal Consistency versus Scientific Prediction 

Bayes's theorem, to be stated shortly, follows from the probability 
calculus and is unquestioned by critics. What is questioned by critics is 
the relevance of a certain use of this theorem, namely, for scientific 
inference. Their question for the subjective Bayesian is whether scien­
tists have prior degrees of belief in the hypotheses they investigate and 
whether, even if they do, it is desirable to have them figure centrally 
in learning from data in science. In science, it seems, we want to know 
what the data are saying, quite apart from the opinions we start out 
with. In trading logical probabilities for measures of belief, the problem 
of relevance to real world predictions remains. 

Leonard "L. J." Savage, a founder of modern subjective Bayes­
ianism, makes it very clear throughout his work that the theory of 
personal probability "is a code of consistency for the person applying it, not a 
system of predictions about the world around him" (Savage 1972, 59; em­
phasis added). Fittingly, Savage employs the term "personalism" to de­
scribe subjective Bayesianism. 

But is a personal code of consistency, requiring the quantification 
of personal opinions, however vague or ill formed, an appropriate basis 
for scientific inference? Most of the founders of modern statistical the­
ory-Fisher, Neyman, Pearson, and others-said no. Pearson (of Ney­
man and Pearson) put his rejection this way: 

It seems to me that ... [even with no additional knowledge] I might 
quote at intervals widely different Bayesian probabilities for the same 
set of states, simply because I should be attempting what would be 
for me impossible and resorting to guesswork. It is difficult to see how 
the matter could be put to experimental test. (Pearson 1966e, 278) 

Stating his position by means of a question, as he was wont to do, 
Pearson asks: 

14. For an excellent recent discussion, see Baccus, Kyburg, and Thalos 1990. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 

Can it really lead to my own clear thinking to put at the very founda­
tion of the mathematical structure used in acquiring knowledge, 
functions about whose form I have often such imprecise ideas? (Pear­
son 1966e, 279) 

77 

Fisher expressed his rejection of the Bayesian approach far more 
vehemently (which is not to say that he favored the one erected by 
Neyman and Pearson, but more on that later). Bayesians, Fisher de­
clared, 

seem forced to regard mathematical probability, not as an objective 
quantity measured by observable frequencies, but as measuring 
merely psychological tendencies, theorems respecting which are use­
less for scientific purposes. (Fisher 1947, 6-7) 

As is evident from this chapter's epigraph, Fisher denied the need for 
posterior probabilities of hypotheses in science in the first place. 

In an earlier generation (late nineteenth century), C. S. Peirce, an­
ticipating the later, non-Bayesian statisticians, similarly criticized the 
use of subjective probabilities in his day. Considering Peirce will clarify 
Fisher's claim that Bayesians "seem forced to regard" probability as 
subjective degrees of belief. 

Why the Evidential-Relationship Philosophy Leads to Subjectivism 

Peirce, whom I shall look at more closely in chapter 12, is well 
aware that probabilities of hypotheses are calculable by the doctrine of 
"inverse probability" (Bayes's theorem). However, Peirce explains, 

this depends upon knowing antecedent probabilities. If these ante­
cedent probabilities were solid statistical facts, like those upon which 
the insurance business rests, the ordinary precepts and practice [of 
inverse probability] would be sound. But they are not and cannot be 
statistical facts. What is the antecedent probability that matter should 
be composed of atoms? Can we take statistics of a multitude of differ-
ent universes? ... All that is attainable are subjective probabilities. 
(Peirce 2.777)15 

And subjective probabilities, Peirce continues, "are the source of most 
of the errors into which man falls, and of all the worst of them" (ibid.). 

By "solid statistical facts" Peirce means that they have some clear 
stochastic or frequentist interpretation. (I discuss my gloss on fre­
quentist statistics in chapter 5.) It makes sense to talk of the relative 

15. All Peirce references are to C. S. Peirce, Collected Papers. References are cited 
by volume and paragraph number. For example, Peirce 2.777 refers to volume 2, 
paragraph 777. 
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78 CHAPTER THREE 

FIGURE 3.1. A single-universe context. 

FIGURE 3.2. A multiple-universe context (universes as plenty as blackberries). 

frequency of events such as "heads" in a population of coin-tossing 
experiments but not of the relative frequency of the truth of a hypoth­
esis such as matter is composed of atoms. The probability of a hypothe­
sis would make sense, Peirce goes on to say, only 

if universes were as plenty as blackberries, if we could put a quantity 
of them in a bag, shake them well up, draw out a sample and examine 
them to see what proportion of them had one arrangement and what 
proportion another. (2.684) 

Single- versus Multiple-Universe Contexts. Figures 3.1 and 3.2 illustrate the 
distinction between the situation Peirce regards scientists as being in 
and one where universes are "as plenty as blackberries." The first situa­
tion (fig. 3.1) involves just one universe or one urn. It contains, let us 
suppose, some fixed proportion of white balls. 

The second situation (fig. 3.2) involves some (possibly infinite) 
number of urns, Uu U2' ••• , each with some proportion of white balls. 
Here universes, represented as urns, are "as plenty as blackberries." 
Consider a hypothesis about the single-universe context, hypothesis H: 
the proportion of white balls (in this one universe Ut ) equals .6. H 
asserts that in a random selection from that urn, the probability of a 
white ball equals .6. Because there is just this one urn, hypothesis H 
either is or is not true about it. H is true either 100 percent of the time 
or 0 percent of the time. The only probabilities that could be assigned 
to H itself are the trivial ones, 1 and o. 

Now consider the second situation, where there are many uni-
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 79 

verses or urns. Hypothesis H may be true in some and not in others. If 
we can imagine reaching in and drawing out one of the universes, like 
selecting well-shaken blackberries from a bag, then it makes sense to 
talk about the probability that we will select a universe (urn) in which 
H is true. (A specific example to come.) But the second context is not 
our situation in science, says Peirce. Since our scientific hypotheses 
refer to just this one universe that we are in, like it or not, probabilities 
of such hypotheses cannot be regarded as "solid statistical facts." 

By interpreting probabilities as subjective degrees of belief in 
hypotheses, however, it becomes meaningful to talk about nontrivial 
assignments of probabilities to hypotheses-even about this one uni­
verse. Until a hypothesis is known to be true or false by an agent, the 
agent may be supposed to have some quantitative assessment, between 
o and I, of the strength of credibility one feels toward the hypothesis. 
Believing a certain "Big Bang" hypothesis to be very credible, for in­
stance, you might assign it a degree of belief of .9. 

We can now understand why the desire for a posterior probability 
measure, coupled with a single-universe context (as well as the rejec­
tion of logical probabilities), "seems to force" the subjective interpreta­
tion of the probability calculus, as Fisher alleged. Fisher, Peirce, Ney­
man, and Pearson, as well as contemporary frequentists, view the 
attempt to model quantitatively tile strengths of opinion and their 
changes as useless for science. Thus except for contexts appropriately 
modeled as in figure 3.2-multiple urn experiments-they view theo­
ries of statistics appropriate for the second case as inappropriate for 
scientific inquiry into our one universe. 16 

An Illustration: A Multiple-Universe Context and Bayes's Theorem 

It will be useful to have a very simple example of a context that 
can be modeled as a multiple-universe or multiple-urn context in 
which Bayes's theorem can be applied. It will also help clarify the no­
tion of conditional probability. 

a. Consider a game of chance, rouge et noire: You bet on either black 
or red, (randomly) select a card from the deck, and win if it is of a suit 
with your color. Let the possible outcomes be either "win" or "lose." 
Suppose that the probability of a win given that rouge et noire is played 
equals .5. We can abbreviate this sentence using probability notation: 

P(win I rouge et noire) = 1/2. 

16. Some may regard Fisher's "fiducial probabilities" as falling outside this de­
lineation, and they may be correct. This is no doubt bound up with the reason that 
such probabilities lead to inconsistencies. 
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80 CHAPTER THREE 

For our purposes, conditional probability need not be technically 
explored. Grasp it by reading whatever comes after the "given bar" (i) 
as announcing the specific type of experiment, condition, or hypothe­
sis to which you are restricted in considering the probability of the 
outcome of interest. With rouge et noire we are asserting that "the prob­
ability of winning, given that the experiment is a rouge et noire experi­
ment, is one-half." 

h. Now consider a second game, that of betting on 1 of 36 numbers 
in roulette (assume that no 0 or 00 outcomes are on the wheel). Let 
the probability of a win, given that the second game is played, equal 
1/36. We can write this as 

P(win I single-number game) = 1/36 • 

c. Now consider a third game, a sort of second-order game. A fair 
coin is tossed to decide whether to play the first or second game above. 
Say that "heads" results in rouge et noir being played, "tails," in the 
single-number roulette game. Thep, with probability lf2, rouge et noire 
is played, and with probability lf2 the single-number game is played. 
Games a and h are like blackberries that we shake up in a bag and draw 
from. (Never mind why anyone would play this game!) 

What has happened in the third game is that the game to be played 
is itself an outcome of a game of ~hance. That is, there are two out­
comes: "rouge et noire is played" and "single-number roulette is 
played" -where it is given that these are the only two possibilities. We 
can write these as two "hypotheses": 

HI: rouge et noire is played. 

H 2 : single-number roulette is played. 

Notice that here we have stipulated that the truth of these two hypoth­
eses is determined by the outcome of a game of chance. Each hypothe­
sis is true with probability 1/2 • That is, the context has two blackberries, 
HI and H 2 , and each has equal chance of being drawn from the bag. 
Thus, we have two (perfectly objective) unconditional probabilities: 

P(H I ) (Le., the probability that rouge et noire is played) 

and 

P(H2 ) (Le., the probability that single-number roulette is played). 

Further, we know the values of these two unconditional probabilities, 
because we have stipulated that they are each 112. 

P(H1 ) = P(H2 ) = 1/2 . 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 81 

d. Now imagine that you are told the following: a woman who has 
gone through the game in (c), and played whatever game it selected for 
her, has won. What might be inferred about whether she won through 
playing rouge et noire (HI is true) or through single-number roulette (Hz 
is true)? The prior (unconditional) probability in each is 112; but with 
this new information-the result was a win-we can update this prob­
ability and calculate the probability that the game played was rouge et 
noire given that it yielded a win. That is, we can calculate the (poste­
rior) conditional probability 

P(H I I win). 

(We can likewise calculate P[Hz I win], but let us just do the first.) 
The formula for this updating is Bayes's theorem, and in this case 

even one who insists on objective probabilities can use it. It just follows 
from the definition of conditional probabilityY 

Here, the needed probabilities for the computation are given. The prior 
probabilities are given, and from (a) and (b) we have 

P(win I HI) = I/Z, and 
P(win I Hz) = V36. 

The reader may want to calculate P(H I I win). The answer is 18/19• So 
the evidence of a win gives a Bayesian "confirmation" of hypothesis 
HI: the posterior probability exceeds the prior probability. 

Bayes's Theorem 

We can generalize this result. For an exhaustive set of disjoint 
hypotheses, HI' Hz, ... , Hn, whose probabilities are not zero, and out­
come e where P(e) > 0: 

17. In genera!, 

P(A I B) = P(A and B). 
P(B) 

So we have 

P(H I win) = P(H I and win) 
I P(win)' 

and 

P(win) = P(win and HI) + P(win and H 2 ). 
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82 CHAPTER THREE 

A Role for Opinions? 

In a case like the above illustration, the truth of a hypothesis can 
be seen as an outcome of an experimental process, and it makes sense 
to talk about the probability of that outcome in the usual frequentist 
sense. Since it makes sense to talk about the probability of the out­
come, it makes sense, in this special kind of case, to talk about the 
probability of the hypothesis being true. In such cases there is no philo­
sophical problem with calculating the posterior probabilities using Bay­
es's theorem. Except for such contexts, however, the prior probabilities 
of the hypotheses are problematic. Given that logical probabilities will 
not do, the only thing left is subjective probabilities. For many, these 
are unwelcome in scientific inquiry. Not to subjectivists. 

Subjectivists or personalists, by contrast, seem only too happy to 
announce, as Savage (1964) puts it, that 

the Bayesian outlook reinstates opinion in statistics-in the guise of 
the personal probabilities of events. (P. 178) 

and that 

the concept of personal probability ... seems to those of us who have 
worked with it an excellent model for the concept of opinion. (P. 182) 

But whether personal probability succeeds well or badly in modeling 
opinion-something that is itself open to question-is beside the point 
for those who, like Peirce, Fisher, Neyman, and Pearson, see this kind 
of reliance on opinion as entirely wrongheaded for scientific inference. 
Knowledge of the world, many think, is best promoted by excluding so 
far as possible personal opinions, preferences, and biases. The argu­
ments of Peirce in his day, and of Fisher, and Neyman and Pearson in 
theirs, remain the major grounds for rejecting the Bayesian approach 
in science. 

Bayesians will object that it is impossible to exclude opinions, that 
at least the Bayesian brings them out rather than "sweeping them un­
der the carpet," to paraphrase I. J. Good (1976). The charge of subjec­
tivity leveled at non-Bayesian statistics will occupy us later (e.g., in 
chapters 5 and 11). I will argue that the type of arbitrariness in non­
Bayesian error statistics is very different from that of subjective proba­
bilities. The subjectivity of personalism, as Henry Kyburg (1993) has 
aptly put it, is particularly pernicious. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 83 

The Pernicious Subjectivity of Prior Probabilities 

That scientists regularly start out with differing opmlOns in 
hypotheses is something the subjective Bayesian accepts and expects. 
Consequently, Bayesian consistency instructs agents to reach different 
posterior degrees of belief, even on the very same experimental evi­
dence. What should be done in the face of such disagreement? Is there 
a way to tell who is right? Denis Lindley, also a father of modern 
Bayesianism, has this to say: 

I am often asked if the method gives the right answer: or, more partic­
ularly, how do you know if you have got the right prior. My reply is 
that I don't know what is meant by "right" in this context. The Bayes­
ian theory is about coherence, not about right or wrong. (Lindley 
1976,359) 

It is understandable that Lindley wonders what "right" can mean 
in the personalist context, for there is no reason to suppose that there 
is a correct degree of belief to hold. My opinions are my opinions and 
your opinions are yours. Without some way to criticize prior degrees 
of belief, it is hard to see how any criticism of your opinion can be 
warranted. If "right" lacks meaning, how can I say that you are in 
error? This leads to Kyburg's charge: 

This is almost a touchstone of objectivity: the possibility of error. 
There is no way I can be in error in my prior distribution for jL­

unless I make a logical error-.... It is that very fact that makes this 
prior distribution perniciously subjective. It represents an assumption 
that has consequences, but cannot be corrected by criticism or further 
evidence. (Kyburg 1993, 147) 

Of course one can change it. Kyburg's point is that even when my 
degree of belief changes on new evidence, it in no way shows my pre­
vious degree of belief to have been mistaken. 

The subjectivity of the subjective Bayesian Way presents a major 
obstacle to its serving as an adequate model for scientific practice. Be­
ing right may be meaningless for a personalist, but in scientific contexts 
being right, avoiding specific errors, is generally well understood. Even 
where uncertainty exists, this understanding at least guides prac­
titioners toward making progress in settling disagreements. And it 
guides them toward doing something right now, with the kind of evi­
dence they can realistically obtain. 

Swamping Out of Priors 

The problem of accounting for consensus is not alleviated by the 
often heard promise that with sufficient additional evidence differ-
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84 CHAPTER THREE 

ences in prior probability are washed away. For one thing, these 
"washout theorems" assume that agents assign nonzero priors to the 
same set of hypotheses as well as agree on the other entries in the 
Bayesian algorithm. For another, they assume statistical hypotheses, 
while the Bayesian Way is intended to hold for any type of hypothesis. 
While some of these assumptions may be relaxed, the results about 
convergence are far less impressive. 

Many excellent critical discussions of these points can be found in 
the literature. IS Committed Bayesians will direct me to so-and-so's new 
theorem that extends convergence results. But these results, however 
mathematically interesting, are of no help with our problem. The real 
problem is not that convergence results hold only for very special cir­
cumstances; even where they hold they are beside the point. The possi­
bility of eventual convergence of belief is irrelevant to the day-to-day 
problem of evaluating the evidential bearing of data in science. 

Imagine two scientists reporting degrees of belief in H of .9 and .1, 
respectively. Would they find it helpful to know that with some 
amount of additional data their degree of belief assignments would 
differ by no more than a given amount? Would they not instead be 
inclined to dismiss reports of degrees of belief as irrelevant for evaluat­
ing evidence in science?19 

John Earman (1992), despite his valiant efforts to combat the 
problems of the Bayesian Way, despairs of grounding objectivity via 
washout theorems: 

Scientists often agree that a particular bit of evidence supports one 
theory better than another or that a particular theory is better sup­
ported by one experimental finding than another .... What happens 
in the long or the short run when additional pieces of evidence are 
added is irrelevant to the explanation of shared judgments about the 
evidential value of present evidence. (P. 149) 

What, then, explains the consensus about present evidence? Is the 
choice really, as Earman's title states, "Bayes or Bust"? I see this as a 
false choice. Science is not a bust. Yet scientists regularly settle or at 

18. See, for example, Earman 1992 and Kyburg 1993. In the case where 
hypotheses are statistical and outcomes are independent and identically distributed, 
it is unexceptional that convergence can be expected. It is hard to imagine any 
theory of statistical inference not having such an asymptotic result for that special 
case (it follows from the laws of large numbers, chapter 5). 

19. What is more ,the tables can be turned on the washout claims. As Kyburg 
(1993, 146) shows, for any body of evidence there are prior probabilities in a hy­
pothesis H that, while non extreme, will result in the two scientists having posterior 
probabilities in H that differ by as much as one wants. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:11:46.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



NEW EXPERIMENTALISM AND THE BAYESIAN WAY 85 

least make progress with disputes about the import of evidence, and 
they do so with arguments and analyses based on non-Bayesian prin­
ciples. The question of how to understand the evidence, in the jargon 
of chapter 2's Kuhnian analysis, regularly gives rise to a "normal re­
search problem." It is tackled by reliable testing of low-level hypothe­
ses about error. 

Making Subjectivism Unimpeachably Objective 

Howson and Urbach, staunch defenders of the subjective Bayesian 
faith, are unfazed by the limited value of the washout theorems, de­
claring them unnecessary to counter the charge of subjectivity in the 
first place. The charge, they claim, "is quite misconceived. It arises from 
a widespread failure to see the subjective Bayesian theory for what it 
is, a theory of inference. And as such, it is unimpeachably objective: 
though its subject matter, degrees of belief, is subjective, the rules of 
consistency imposed on them are not at all" (Howson and Urbach 
1989,290). 

Howson and Urbach press an analogy with deductive logic. Just as 
deductive logic concerns theories of valid inferences from premises to 
conclusions where the truth of the premises is unknown, inductive 
logic concerns inferences from premises to some quantitative measure 
on the conclusion where the truth of the premises is unknown. 

When Bayesians talk this way, they reveal just how deeply dispa­
rate their view of inductive inference is from what is sought by an 
account of ampliative inference or experimental learning. Although 
most Bayesians would not go as far as Howson and Urbach in calling 
the Bayesian approach "unimpeachably objective," all seem to endorse 
their analogy between inductive and deductive logic. As Kyburg 
(1993) has put it, neo-Bayesianism is "yet another effort to convert 
induction to deduction" (p. 150) in the form of a deductive calculus 
of probabilities. 

A Fundamental Difference in Aims 

This fundamental difference in their views of what an account of 
scientific inference should do has played too lfttle of a role in the 
Bayes-non-Bayes controversy. Once we recognize that there is a big 
difference between the goals of a "deductive inductive" inference and 
what we seek from an ampliative account, we can agree to disagree 
with Bayesians on the goals of an account of scientific inference. This 
recognition has two consequences: 

First it explains why Bayesian criticisms of non-Bayesian (standard 
error) statistics cut no ice with non-Bayesians. Such criticisms tend to 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:11:46.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



86 CHAPTER THREE 

show only that the latter fail to pass muster on Bayesian grounds. (Ex­
amples will occupy us later.) It is true that standard error statistics is 
"incoherent" according to the Bayesian definition. But Bayesian coher­
ence is of no moment to error statisticians. At a 1970 conference on 
the foundations of statistics at the University of Waterloo, the statisti­
cian Irwin Bross put it bluntly: 

I want to take this opportunity to flatly repudiate the Principle 0f 
Coherence which, as I see it, has very little relevance to the statistical 
inference that is used in the sciences .... While we do want to be 
coherent in ordinary language, it is not necessary for us to be coher­
ent in a jargon that we don't want to use anyway-say the jargon of 
1. J. Savage or Professor Lindley. (Bross 1971, 448) 

This is not to say that all Bayesian criticisms of error statistics may be 
just dismissed; I will return to them later. 

The second consequence of recognizing the difference in aims is 
more constructive. Conceding the limited scope of the Bayesian algo­
rithm might free the Bayesian to concede that additional methods are 
needed, if only to fill out the Bayesian account. We will pursue this 
possibility as we proceed. 

Can Bayesians Accept Evidence? 

Perhaps the most obvious place for supplementary methods con­
cerns the data or evidence. For just as with arriving at prior probabili­
ties, the Bayesian response when asked about the grounds for ac­
cepting data is that it is not their job: 

The Bayesian theory we are proposing is a theory of inference from 
data; we say nothing about whether it is correct to accept the data .... 
The Bayesian theory of support is a theory of how the acceptance as 
true of some evidential statement affects your belief in some hypothesis. 
How you came to accept the truth of the evidence, and whether you 
are correct in accepting it as true, are matters which, from the point 
of view of the theory, are simply irrelevanL (Howson and Urbach 
1989, 272; emphasis added) 

The idea that we begin from the "acceptance as true of some evi­
dential statement" is problematic for two reasons.20 First, the Bayesian 
Way is to hold for any evidence and hypothesis, not just those associ­
ated with a specific statistical model. So the evidential statement e will 

20. Nor does Richard Jeffrey's (1965) approach, in which the evidence need 
not be accepted as certain but is allowed to be merely probable, help us. See, for 
example, the discussion in Kyburg 1974, 118-22. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 87 

often be the type of claim that a theory of ampliative inference should 
help us to assess-not require us to begin with as given. In applying 
the Bayesian Way to classic episodes of hypothesis appraisal, for ex­
ample, statements that are called upon to serve as evidence e include 
"Brownian motion exists" and "The estimated deflection of light is 
such and such." 

This leads to the second problem with beginning with accepting 
the evidence statement as true-one that is more troubling. The stan­
dard Bayesian philosophy, after all, eschews acceptance of hypotheses 
(unless they have probability one), preferring instead to assign them 
degrees of belief. But why should it be all right to accept a statement 
when it plays the role of evidence and not when it plays the role of the 
hypothesis inferred? Now there are Bayesian accounts of the accep­
tance of hypotheses, but they do not help with our problem of ac­
cepting the evidence to get a Bayesian inference going. 

Patrick Maher (1993a) proposes "a conception of acceptance that 
does not make acceptance irrational from a Bayesian perspective" (p. 
154). Maher argues (199 3a, 1993 b), contrary to the general position 
of Bayesian philosophers of science, that a Bayesian account requires 
a theory of acceptance to be applicable to the history of science. For 
the history of science records the acceptance of claims, not scientists' 
probability assignments. Maher (1993b) argues that Bayesian philoso­
phers of science, for example, Dorling, Franklin, and Howson, "operate 
with a tacit theory of acceptance" (p. 163)-one that identifies accep­
tance with high probability. Maher argues that a more adequate Bayes­
ian theory of acceptance is a decision-theoretic one, where acceptance 
is a function both of probabilities of hypotheses and (cognitive) utili­
ties. While Maher is to be credited for pointing up the shortcomings in 
Bayesian analyses of scientific episodes, his approach, as with all 
Bayesian decision approaches, only adds to the ingredients needed to 
get a Bayesian inference going.21 

To return to the problem of accepting evidence claims, a solution 
could possibly be found by supplementing Bayesian algorithms with 
some separate-non-Bayesian-account for accepting evidential 
claims. Although the problems of arriving at prior probabilities and 
setting out alternative hypotheses (and their likelihoods) would still 
persist. such a supplement might at least offer reliable grounds for ac­
cepting the evidence. StilL this tactic would have at least one serious 

21. It would take me too far afield to discuss the various decision-theoretic 
accounts, Bayesian and non -Bayesian, in this work. Maher (1993b) provides a good 
overview from the point of view of theories of acceptance. 
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88 CHAPTER THREE 

drawback for Bayesians: the need for a supplementary account of evi­
dence would belie one of the main selling points of the Bayesian 
approach-that it provides a single, unified account of scientific 
inference. 

All You Need Is Bayes 

Subjective Bayesians, especially leaders in the field, are remarkable 
for their ability to champion the Bayesian Way as the one true way (its 
many variants notwithstanding). If we take these Bayesians at their 
word, it appears that they view the Bayesian approach as the only ac­
count of inference (and perhaps decision) that we shall ever need. To 
solve the fundamental problems of inference and methodology, we 
need only to continue working out the details of the Bayesian para­
digm. Consider Lindley's reasoning at the Waterloo conference: 

Now any decision that depends on the data that is being used in mak­
ing the inference only requires from the data the posterior distribu­
tion. Consequently the problem of inference is effectively solved by 
stating the posterior distribution. This is the reason why I feel that 
the basic problem of inference is solved. (Lindley 1971, 436) 

Even if it were true that stating the posterior solves the problem of 
inference, it would not follow that the Bayesian Way solves the prob­
lem of inference because it does not give one the posterior distribution. 
It gives, at best, a posterior distribution for a given agent reporting that 
agent's degree of belief at a given time. If we restate Lindley's claim to 
read that the basic problem of inference is solved by stating a given 
agent's degree of belief in a hypothesis, then I think we must conclude 
that Lindley's view of the basic problem of inference differs sharply 
from what scientists view it to be. Learning of an agent's posterior de­
gree of belief, a scientist, it seems to me, would be interested only in 
what the evidence was for that belief and whether it was warranted. 
This calls for intersubjective tools for assessing the evidence and for 
adjudicating disagreements about hypothesis appraisal. This, subjective 
posteriors do not provide. 

M. S. Bartlett, also a prominent statistician attending the Waterloo 
conference, had this response for Lindley: 

What does professor Lindley mean when he says that "the proof of 
the pudding is in the eating"? If he has done the cooking it is not 
surprising if he finds the pudding palatable, but what is his reply if 
we say that we do not. If the Bayesian allows some general investiga­
tion to check the frequency of errors committed ... this might be 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 

set up; but if the criterion is inner coherency, then to me this is not 
acceptable. (Bartlett 1971,447). 

89 

Bartlett puts his finger on a central point over which the error 
statistician is at loggerheads with the Bayesian: the former's insistence 
on checking "the frequency of errors" or on error probabilities.22 The 
centrality of the notion of error probabilities to non-Bayesian statisti­
cians is why it is apt to call them error statisticians. To get a rough and 
ready idea of the error frequency check for which Bartlett is asking, 
imagine that the Bayesian agent reports a posterior degree of belief 
of .9 in hypothesis H. Bartlett, an error statistician, would require 
some way of checking how often such a high assignment would be ex­
pected to occur even if H is false. What for Bartlett would be necessary 
for the palatability of the Bayesian posterior, however, would, for 
the Bayesian, be quite irrelevant. Bayesian principles, as will be seen, 
conflict with error probability principles (chapter 10). Moreover, 
error probabilities call for an objective (frequentist23 ) notion of proba­
bility-while Bayesians, at least strict (or, to use Savage's [1964] 
term, "radical") ones, declare subjective probabilities to be all we 
need. 

I will confess ... that I and some other Bayesians hold this [personal 
probability] to be the only valid concept of probability and, therefore, 
the only one needed in statistics, physics, or other applications of the 
idea. (Savage 1964, 183) 

Scientists, as we shall shortly see, beg to differ. Scientific practice 
does not support the position that "all you need is Bayes," but the 
position held by the founders of non-Bayesian methods in the epi­
graphs to this chapter: when it comes to science, subjective Bayes­
ianism is not needed at all. 

Giere: Scientists Are Not Bayesian Agents 

In reality, scientists do not proceed to appraise claims by explicit 
application of Bayesian methods. They do not, for example, report re­
sults by reporting their posterior probability assignments to one hy­
pothesis compared with others-even dyed-in-the-wool Bayesians ap­
parently grant this. Followers of the Bayesian Way do not seem very 

22. Those who have investigated the error probabilities of Bayesian methods 
have found them to be problematic. See, for example, Giere 1969 and Kempthorne 
and Folks 1971, 304-7. I return to this in chapter 10. 

23. Some, it is true (e.g., Giere), prefer propensities. I will not take up the 
problems with propensity definitions, but will argue for the appropriateness of fre­
quentist statistics. 
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90 CHAPTER THREE 

disturbed by this. One retort is that they are modeling only the ideally 
rational scientist, not the actual one. This type of defense is not very 
comfortable in the present climate where aprioristic philosophy of sci­
ence is unwelcome. More modern Bayesians take a different tack. They 
view the Bayesian approach as a way to reconstruct actual scientific 
episodes and/or to model scientific judgments at some intuitive level, 
although it is not clear what the latter might mean. 

Ronald Giere argues that empirical studies refute the claim that 
typical scientists are intuitive Bayesians and thereby count against the 
value of Bayesian reconstructions of science. Giere, a major (non­
Bayesian) player in the philosophy of statistics debates of the 1970s, 
now declares that "we need not pursue this debate any further, for 
there is now overwhelming empirical evidence that no Bayesian model 
fits the thoughts or actions of real scientists" (Giere 1988, 149). But I 
do not think the debate is settled. To see why not we need to ask, What 
are these empirical studies? 

The empirical studies refer to experiments conducted since the 
1960s to assess how well people obey Bayes's theorem. These experi­
ments, such as those performed by Daniel Kahneman, Paul Slovic, and 
Amos Tversky (1982), reveal substantial deviations from the Bayesian 
model even in simple cases where the prior probabilities are given, and 
even with statistically sophisticated subjects. 

Human beings are not naturally Bayesian information processors. 
And even considerable familiarity with probabilistic models seems not 
generally sufficient to overcome the natural judgment mechanisms, 
whatever they might be. (Giere 1988, 153) 

Apparent success at Bayesian reconstructions of historical cases, Giere 
concludes, is mistaken or irrelevant. 

Scientists, as a matter of empirical fact, are not Bayesian agents. Re­
constructions of actual scientific episodes along Bayesian lines can at 
most show. that a Bayesian agent would have reached similar conclu­
sions to those in fact reached by actual scientists. Any such recon­
struction provides no explanation of what actually happened. (Giere 
1988, 157) 

Although I agree with the upshot of Giere's remarks, I do not claim 
that the probability experiments are what vitiate the Bayesian recon­
structions. While interesting in their own right, these experiments 
seem to be the wrong place to look to test whether Bayes's theorem is 
a good model for scientific inference. Why? Because in these experi­
ments the problem is set up to be one in which the task is calculating 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 91 

probabilities (whether of a posterior or of a conjunction of claims, or 
whatever). The experiments refer to classic games of chance or other 
setups where the needed probabilities are either given or assumed. The 
probabilities, moreover, refer to objective frequency calculations, not 
degrees of belief. Even with fully representative subjects, the results 
are at most relevant to how well people's intuitive judgments of proba­
bility obey the calculus of probabilities. They say nothing about 
whether scientists are engaged in attempting to assign probabilities to 
the hypotheses about which they inquire. If, as I, and error statisti­
cians, urge, scientific inference is not a matter of assigning probabilities 
to hypotheses in the manner in which we would assign probabilities 
to outcomes of games of chance, then it is irrelevant whether subjects' 
judgments in these contexts accord well or badly with the probability 
calculus. 

The finding of the probability experiments, that humans violate 
the probability calculus-when asked to carry out a probability problem­
also says nothing about the methodology actually used in appraising 
scientific claims. For this we have to look at the kinds of experimental 
tools and arguments scientists use. One hardly does justice to infer­
ences in science by describing them merely as violations of the Bayes­
ian account. What one finds is a systematic pattern of statistical reason­
ing-but of the non-Bayesian sort I call standard error statistics. 
Familiar applications include the typical methods we hear about every 
day in reports of polling results and of studies on new drugs, cancer­
causing substances, and the like. Contrary to what Giere had hoped, 
the debates concerning these methods still need to be pursued. Only 
now they should be pursued by considering actual experimental 
practice. 

Where to look? Most classical cases of theory change are too fossil­
ized to help much, unless detailed accounts of data analysis are avail­
able. Two such examples (Brownian motion and eclipse experiments) 
will be considered later. A rich source of examples of standard error 
statistics in experimental inference is the New Experimentalist narra­
tives that we began discussing earlier. Our discussion now picks up 
where we left off in section 3.2. 

3.4 THE NEW EXPERIMENTALISTS: EXPERIMENTAL PRACTICE 

Is NON-BAYESIAN 

Regardless of what one thinks of the Bayesian Way's ability to recon­
struct or model learning, looking at the tools actually used in the build­
ing up of knowledge reveals a use of probabilistic ideas quite unlike 
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92 CHAPTER THREE 

that of an after-trial sum-up of a theory's probable truth. I share the 
view of Oscar Kempthorne, a student of R. A. Fisher: 

It seems then that a use of "probability" as in "the probability that the 
theory of relativity is correct" does not really enter at all into the 
building up of knowledge. (Kempthorne and Folks 1971, 505) 

One way to capture how probability considerations are used, I propose, 
is as tools for sustaining experimental arguments even in the absence 
of literal control and manipulation. The statistical ideas, as I see them, 
embody much of what has been learned about how limited informa­
tion and errors lead us astray, as discussed in chapter I. Using what 
has been learned about these mistakes, we have erected a conglomera­
tion of interrelated tools that are good at practically forcing mistakes 
to show themselves, so to speak. 

GaIison: Neutral Currents 

Let us now turn to the tools used in the trenches and brought to 
light in experimentalist work. Galison's 1987 work is especially conge­
nial, and all references to him in this section refer to that work. Al­
though Galison is not trying to draw any lessons for statistical philoso­
phy and perhaps because he is not, his efforts to get at the arguments 
used to distinguish genuine effect from artifact effectively reveal the 
important roles served by error statistics. As Galison remarks, a key 
characteristic of twentieth -century experimental physics is "how much 
of the burden of experimental demonstration has shifted to data analy­
sis" (p. 151) to distinguish signal from background. The increasingly 
central role played by data analysis makes the pronouncements of 
R. A. Fisher and E. S. Pearson (in the epigraphs to this chapter) as rele­
vant today as in their own time. 

I shall follow a portion of Galison's discussion of the discovery of 
neutral currents, thought to be one of the most significant in 
twentieth-century physics. By the end of the 1960s, Galison tells us, 
the "collective wisdom" was that there were no neutral currents. Bub­
ble chamber evidence from many experiments indicated that neutral 
currents either did not exist (lr were well suppressed (pp. 164, 174). 
Soon after, however, from 1971 to 1974, "photographs ... that at first 
appeared to be mere curiosities came to be seen as powerful evidence 
for" their existence (p. 135). 

This episode, lasting from 1971 to 1974, occupies one-third of Gali­
son's book, but my focus will be on the one analysis for which he pro­
vides the most detailed data. Abstracted from the whole story, this part 
cannot elucidate either the full theory at stake or the sociological con­
text, but it can answer Galison's key question: "How did the experi-
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NEW EXPERIMENTAUSM AND THE BAYESIAN WAY 93 

mentalists themselves come to believe that neutral currents existed? 
What persuaded them that they were looking at a real effect and not 
at an artifact of the machine or the environment?" (p. 136). 

Here is the gist of their experimental analysis: Neutral currents are 
described as those neutrino events without muons. Experimental out­
comes are described as muonless or muonful events, and the recorded 
result is the ratio of the number of muonless and muonful events. (This 
ratio is an example of what is meant by a statistic-a function of the 
outcome.) The main thing is that the more muonless events recorded, 
the more the result favors neutral currents. The worry is that recorded 
muonless events are due, not to neutral currents, but to inadequacies 
of the detection apparatus. 

Experiments were conducted in collaboration by researchers from 
Harvard, Wisconsin, Pennsylvania, and Fermilab, the HWPF group. 
They recorded 54 muonless events and 56 muonful events, giving a 
ratio of 54/56. The question is, Does this provide evidence for the exis­
tence of neutral currents? 

For Rubbia [from Harvard] there was no question about the statistical 
significance of the effect ... Rubbia emphasized that Uthe important 
question in my opinion is whether neutral currents exist or not .... 
The evidence we have is a 6-standard-deviation-effect." (P. 220) 

The uimportant question" revolved around the question of the statisti­
cal significance of the effect. I will refer to it as the significance question. 
It is this: 

Given the assumption that the pre-Glashow-Weinberg-Salam theory 
of weak interactions is valid (no neutral currents), then what is the 
probability that HWPF would have an experiment with as many re­
corded muonless events as they did? (P. 220) 

Three points need to be addressed: How might the probability in 
the significance question be interpreted? Why would one want to 
know it? and How might one get it? 

Interpreting the Significance Question: What is being asked when one asks 
for the probability that the HWPF group would have an experiment 
with as many recorded muonless events as they did, given no neutral 
currents? In statistical language the question is, How (statistically) sig­
nificant is the number of excess muonless events? The general concept 
of statistical significance will be taken up later (e.g., in chapter 5). Here 
I want to informally consider how it might be interpreted. 

The experimental result, we said, was the recorded ratio of muon­
less to muonful events, namely, 54/56. The significance question, then, 
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94 CHAPTER THREE 

is, What is the probability that the HWPF group would get as many as 
(or more than) 54 muonless events, given the hypothesis that there 
are no neutral currents? The probability, notice, is not a probability of 
the hypothesis, it is the probability of a certain kind of experimental 
outcome or event. The event is that of recording as large a ratio of 
muonless to muonful events as the HWPF group did in this one experi­
ment. It refers not only to this one experimental result, but to a set of 
results-54 or more muonless events. Wanted is the probability of the 
occurrence of this event given that there are no neutral currents. One 
way to cash out what is wanted is this: how often, in a series of experi­
ments such as the one done by the HWPF group, would as many (or 
more) muonless events be expected to occur, given that there are no 
neutral currents? 

But there is only one actual experimental result to be assessed, not 
a series of experiments. True, the series of experiments here is a kind 
of hypothetical construct. What we need to get at is why it is perceived 
as so useful to introduce this hypothetical construct into the data 
analysis. 

What Is the Value of Answering the Significance Question? The quick answer 
is that it is an effective way of distinguishing real effects from artifacts. 
Were the experiment so well controlled that the only reason for failing 
to detect a muon is that the event is a genuine muonless one, then 
artifacts would not be a problem and this statistical construct would 
not be needed. But artifacts are a problem. From the start a good deal 
of attention was focused on the backgrounds that might fake neutral 
currents (p. 177). As is standard, one wants to assess the maximum 
amount of the effect for which such backgrounds are likely to be re­
sponsible and then "subtract them out" in some way. In this case, a 
major problem was escaping muons. "From the beginning of the HWPF 
neutral-current search, the principal worry was that a muon could es­
cape detection in the muon spectrometer by exiting at a wide angle. 
The event would therefore look like a neutral-current event in which 
no muon was ever produced" (p. 217, fig. 4.40). 

The problem, then, is to rule out a certain error: construing as a 
genuine muonless event one where the muon simply never made it to 
the spectrometer, and thus went undetected. To relate this problem to 
the significance question, let us introduce some abbreviations. If we let 
hypothesis H be 

H: neutral currents are responsible for (at least some of) the results, 

then, within this piece of data analysis, the falsity of H is the artifact expla­
nation: 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 

H is false (~he artifact explanation): recorded muonless events are due 
not to neutral currents, but to wide-angle muons escaping detection. 

Our significance question becomes 

What is the probability of a ratio (of muonless to muonful events) as 
great as 54/56, given that H is false? 

The answer is the statistical significance level of the result.24 

95 

Returning to the relevance of knowing this probability, suppose it 
was found to be high. That is, suppose that as many or even more 
muonless events would occur frequently, say more often than not, 
even if H is false (and it is simply an artifact). What is being supposed 
is that a result as or even more favorable to H than the actual HWPF 
result is fairly common due not to neutral currents, but to wide-angle 
muons escaping detection. In that case, the HWPF result clearly does 
not provide grounds to rule out wide-angle muons as the source. Were 
one to take such a result as grounds for H, and for ruling out the artifact 
explanation, one would be wrong more often than not. That is, the 
probability of erroneously finding grounds for H would exceed .5. This 
would be a very unreliable way to proceed. Therefore, a result with a 
high significance level is an unreliable way to affirm H. Hence, results 
are not taken to indicate H unless the significance level is very low. 

Suppose now that the significance level of the result is very low, 
say .01 or .001. This means that it is extremely improbable for so many 
muonless events to occur, if H were false and the HWPF group were 
really only observing the result of muons escaping. Since escaping mu­
ons could practically never be responsible for so many muonless 
events, their occurrence in the experiment is taken as good grounds 
for rejecting the artifact explanation. That is because, following an ar­
gument from error, the procedure is a highly reliable probe of the arti­
fact explanation. This was the case in the HWPF experiment, although 
the significance level in that case was actually considerably smaller. 

This result by itself is not grounds for H. Other experiments ad­
dressing this and other artifacts are needed. All I am showing, just now, 
is the relevance of answering the significance question for ruling out 
an artifact. But how do you get the probability needed for this answer? 

How Is the Significance Question Answered? The reasoning just described 
does not require a precise value of the probability. It is enough to know 
that it is or is not extremely low. But how does one arrive at even a 
ballpark figure? The answer comes from the use of various canonical 
statistical analyses, but to apply them (even qualitatively) requires in-

24. Here the "null hypothesis" is that H is false (i.e., not-H). 
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96 CHAPTER THREE 

formation about how the artifact in question could be responsible for 
certain experimental results. Statistical analyses are rather magical, but 
they do not come from thin air. They send the researcher back for 
domain-specific information. Let us see what the HWPF group did. 

The data used in the HWPF paper are as follows (p. 220): 

Visible muon events 
No visible muon events 
Calculated muonless events 
Excess 
Statistical significant deviation 

56 
54 
24 
30 

5.1 

The first two entries just record the HWPF result. What about the third 
entry, the calculated number of muonless events? This entry refers to 
the number calculated or expected to occur because of escaping mu­
ons. Where does that calculation come from? It comes from separate 
work deliberately carried out to find out how an event can wind up 
being recorded "muonless," not because no muon was produced (as 
would be the case in neutral currents), but because the muon never 
made it to the detection instrument. 

The group from Harvard, for example, created a computer simula­
tion to model statistically how muons could escape detection by the 
spectrometer by exiting at a wide angle. This is an example of what is 
called a "Monte Carlo" program. 

By comparing the number of muons expected not to reach the muon 
spectrometer with the number of measured muonless events, they 
could determine if there was a statistically significant excess of neutral 
candidates. (P. 217) 

In short, the Monte Carlo simulation afforded a way (not the only 
way) of answering the significance question. 

The reason probability arises in this part of the analysis is not be­
cause the hypothesis about neutral currents is a statistical one, much 
less because it quantifies credibility in H or in not-H. Probabilistic con­
siderations are deliberately introduced into the data analysis because 
they offer a way to model the expected effect of the artifact (escaping 
muons). Statistical considerations-we might call them "manipula­
tions on paper" (or on computer)-afford a way to subtract out back­
ground factors that cannot literally be controlled for. In several places, 
Galison brings out what I have in mind: 

One way to recapture the lost ability to manipulate the big machines 
has been to simulate their behavior on a computer. In a sense the 
computer simulation allows the experimentalist to see, at least 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 

through the eye of the central processor, what would happen if a larger 
spark chamber were on the floor, if a shield were thicker, or if the 
multiton concrete walls were removed. (P. 265; emphasis added) 

The Monte Carlo program can do even more. It can simulate situa­
tions that could never exist in nature . ... Such altered universes do work 
for the experimentalist. One part of the Gargamelle demonstration 
functioned this way: suppose the world had only charged-current 
neutrino interactions. How many neutral-current candidates would 
there be? Where (statistically) would they be in the chamber? (Ibid.) 

97 

Returning to the specific analysis, it was calculated that 24 muon-
less events would be expected in the HWPF experiment due to escap­
ing muons. This gives the number expected to be misinterpreted as 
genuinely muonless. 

They wanted to know how likely it was that the observed ratio of 
muonless to muon-ful events (54/56) would fall within the statistical 
spread of the calculated ratio (24/56), due entirely to wide-angle mu­
ons. (P. 220) 

They wanted to "display the probability" (as the report put it) that the 
difference between the number of observed and expected muonless 
events was merely an ordinary chance fluctuation. The difference be­
tween the ratio observed and the ratio expected (due to the artifact) is 
54/56 - 24/56 = 0.536. How improbable is such a difference even if 
the HWPF group were experimenting on a process where the artifact 
explanation was true (i.e., where recorded muonless events were due 
to escaping muons)? This is "the significance question" again, and fi­
nally we can answer it. 

What would it be like if the HWPF study actually was an experi­
ment on a process where the artifact explanation is true? The simula­
tion lets us model the relevant features of what it would be like: it 
would be like experimenting on (or sampling from) a process that gen­
erates ratios (of m events to m-less events) where the average (and 
the most likely) ratio is 24/56. (This corresponds to the hypothetical 
sequence of experiments we spoke of.) This value is just an average, 
however, so some experiments would yield greater ratios, others 
smaller ratios. Most experiments would yield ratios close to the aver­
age (24/56); the vast majority would be within two standard deviations 
of it. The statistical model tells us how probable different observed ra­
tios are, given that the average ratio is 24/56.25 In other words, the 

25. Of course, this would be correct only if the tests were at least approxi­
mately independent. 
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98 CHAPTER THREE 

statistical model tells us what it would be like to experiment on a pro­
cess where the artifact explanation is true; namely, certain outcomes 
(observed ratios) would occur with certain probabilities. In short, in­
formation about "what it would be like" is given by "displaying" an 
experimental distribution. 

Putting an observed difference between recorded and expected ra­
tios in standard deviation units allows one to use a chart to read off 
the corresponding probability. The standard deviation (generally only 
estimated) gives just that-a standard unit of deviation that allows the 
same standard scale to be used with lots of different problems (with 
similar error distributions). Any difference exceeding two or more 
standard deviation units corresponds to one that is improbably large 
(occurring less than 3 percent of the time). 

Approximating the standard deviation of the observed ratio shows 
the observed difference to be 5.1 standard deviations.26 This observed 
difference is so improbable as to be off the charts; so, clearly, by sig­
nificance test reasoning, the observed difference indicates that the arti­
fact explanation is untenable. It is practically impossible for so many 
muonless events to have been recorded, had they been due to the arti­
fact of wide angle muons. The procedure is a reliable artifact probe. 

This analysis is just one small part of a series of experimental argu­
ments that took years to build Up.27 Each involved this kind of statisti­
cal data analysis to distinguish real effects or signals from artifacts and 
to rule out key errors piecemeal. They are put together to form the 
experimental arguments that showed the experiment could end. I 
would be seriously misunderstood if I were taken as suggesting that 
the substantive inference is settled on the basis of a single such analy­
sis. Nothing could be further from my intent. 

As Galison points out, by analyzing the HWPF data in a different 
manner, in effect, by posing a different question, the same data were 
seen to yield a different level of statistical significance-still highly sig­
nificant. The error statistics approach does not mandate one best ap­
proach in each case. Its principal value is that it allows different analy­
ses to be understood and scrutinized. Galison's excellent narration of 
this episode reveals a hodgepodge of different results both on the same 
and different data, by the same and different researchers at different 

26. The standard deviation is estimated using the recorded result and a stan­

dard statistical model. It equals 24 ~ + ~ = 0.105 (Galison 1987, 220-21). 
56 24 56 

27. The recent inference to the identification of so-called top quarks followed 
an analogous pattern. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 99 

times in different labs. This calls for just the kinds of tools contained in 
a tool kit of error statistics. 

Some Contrasts with the Bayesian Model 

The Bayesian model is neater, but it does not fit the actual proce­
dure of inquiry. The Bayesian model requires the researchers to start 
out with their degrees of belief in neutral currents and then update 
them via Bayes's theorem. It also requires assessing their strength of 
belief in all the other hypotheses that might explain some experimen­
tal result, such as the artifact explanation of escaping muons. The re­
searchers did not do this. 

As Galison shows, different institutes at different times came up 
with different estimates of parameters of interest. No one is surprised 
by this, and, more importantly, the researchers can use these reports as 
the basis for criticism and further work. Imagine, in contrast, different 
institutes reporting their various posterior degrees of belief in H, neu­
tral currents. Suppose one institute reports that the degree of belief in 
H is low. Lindley says all the information resides in an agent's posterior 
probability. But it is not clear what other institutes could make of this. 
For one thing, one would not know whether it was due to a highly 
discrepant result or a small prior degree of belief. A two-standard­
deviation difference and a ten-standard-deviation ·difference indicate 
different things to the practitioner, but they could both very well yield 
an identical (low) posterior. The posterior would not have provided 
the information the researchers actually used to learn things such as 
what to do next, where the source of error is likely to lie, how to com­
bine it with other results, or how well the data accord with the model. 

Bayesians, at least officially, reject the use of significance tests and 
other error probability methods. (Indeed, it is hard to see how one can 
be a consistent Bayesian and not reject them. See chapter 10.) Howson 
and Urbach (1989), following the Bayesian fathers cited earlier, main­
tain that "the support enjoyed by [error statistics methods] ... among 
statisticians is unwarranted" (p. 198). They declare that one of the sta­
ples of the experimenter's tool kit for assessing "goodness of fit" for a 
model to data (the chi-square test) "should be discarded" (p. 136)! 
Their criticisms, to be taken up later, stem from the fact that error sta­
tistics methods aim to perform a very different role from the one envis­
aged in the Bayesian model of inductive inference. 

Error probabilities are not final evidential-relation measures in 
hypotheses. However, error probabilities of the experiment from 
which a claim is arrived at perform a much valued service in experi­
ments. They provide for an objective communication of the evidence 
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100 CHAPTER THREE 

and for debate over the reasons a given claim was reached. They indi­
cate what experiments have been performed and the process by which 
the estimate or result came about. They can be checked by experiment­
ing with a different type of test. Scientists obviously find such informa­
tion valuable.28 Their value is as part of an iterative and messy series 
of small-scale probes using a hodgepodge of ready-to-use and easy-to­
check methods. (Much like ready-to-wear [versus designer] clothes, 
these "off the shelf" methods do not require collecting vast resources 
before you can get going with them.) They will not appeal to ultra 
neatnicks. 

By working with the data and arguments of specific cases, how­
ever, it is possible to see how the messiness of a host of piecemeal 
analyses gives way to rather neat strategies. The ingredients, for at least 
several important cases, I maintain, are already available in the works 
of the New Experimentalists. This is so even for Allan Franklin's work, 
despite his appeal to the Bayesian Way in his proposed epistemology 
of experiment, for his extensive examples reveal page after page of 
error statistics. Separate from these experimental narratives, Franklin 
attempts to give a Bayesian gloss to the experimental strategies he so 
aptly reveals. In doing so, the actual epistemological rationale of those 
strategies gets lost. 

Scientists Are Bayesians in Disguise (and Artists Paint by Number) 

Even where the use of error-statistical methods is of indisputable 
value, the ardent Bayesian still withholds credit from them. What the 
Bayesian would have us believe is that the methods used are really 
disguised attempts to apply Bayes's theorem, and the Bayesian will 
happily show you the priors that would give the same result. We may 
grant that experimental inferences, once complete, may be recon­
structed so as to be seen as applications of Bayesian methods-even 
though that would be stretching it in many cases. My point is that 
the inferences actually made are applications of standard non -Bayesian 
methods. That an after-the-fact Bayesian reconstruction is possible 
provides no reason to think that if the researchers had started out only 
with Bayesian tools they would have reached the result they did. The 
point may be made with an analogy. Imagine the following conver­
sation: 

Paint-by-number artist to Leonardo Da Vinci: I can show that the Mona Lisa 
may be seen as the result of following a certain paint-by-number kit that 

28. This is what endears these methods to practitioners. See, for example, Lu­
cien LeCam 1977 and B. Efron 1986. 
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NEW EXPERIMENTALISM AND THE BAYESIAN WAY 101 

I can devise. Whether you know it or not you are really a painter by 
number. 

Da Vinci: But you devised your paint-by-number Mona Lisa only by starting 
with my painting, and I assure you I did not create it by means of a paint­
by-number algorithm. Your ability to do this in no way shows that the 
paint-by-number method is a good way to produce new art. If I were 
required to have a paint-by-number algorithm before beginning to paint, 
I would not have arrived at my beautiful Mona Lisa. 
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CHAPTER FOUR 

Duhem, Kuhn, and Bayes 

DEFENDERS of the Bayesian Way can and do argue that even if scientists 
are not conscious or unconscious Bayesians, reconstructing scientific 
inference in Bayesian terms is of value in solving key problems of phi­
losophy of science. In this chapter I will consider how Bayesian recon­
structions have been used to grapple with Duhem's problem, and to 
bridge the logical empiricist approach to confirmation with the histori­
cist approach promoted by Kuhn. In both cases I will argue that if the 
goal is solving rather than reconstructing problems, then the Bayesian 
Way comes up short. 

4.1 THE BAYESIAN WAY OUT OF THE DUHEM PROBLEM 

The problem for which the Bayesian Way is most often touted as scor­
ing an impressive success is the Duhem problem-the problem of 
which of a group of hypotheses used to derive a prediction should be 
rejected when experiment disagrees with that prediction. Although I 
will argue that the Bayesian Way out of Duhem's problem is really no 
way out at all, my aim is not primarily negative. Rather, my hope is to 
lay the groundwork for a satisfactory non-Bayesian approach to the 
problem based on error statistics. 

Some philosophers of science dismiss the Duhem problem as the 
product of old-fashioned (hypothetico-deductive) philosophy of sci­
ence and therefore not really an issue for New Experimentalists. What 
Duhem's problem shows, strictly speaking, is that logic alone permits 
an anomalous result to be blamed not on the primary hypothesis being 
tested, but on the host of auxiliary principles and hypotheses involved 
in testing. And we know formal logic is not all we have at our disposal. 
But the problem that still remains is to show that there are good 
grounds for localizing the bearing of evidence. If an inference account 
cannot at least make headway toward showing which assignment of 
error is warranted, it cannot be seen to have gotten around the Duhem 
problem in its modern guise. 

Lakatos, we saw, attempted to improve on Popper in the light of 
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DUHEM, KUHN, AND BAYES 103 

Duhem's problem as brought home by Kuhn, For Lakatos, anomalies 
are blamed on suitable auxiliary hypotheses, hard-core theories re­
maining protected. But he conceded that any hard-core theory can be 
defended "progressively" this way. Bayesians believe that they have a 
more adequate solution to Duhem's problem, that "the questions left 
unanswered by Lakatos are answered with the help of Bayes's theo­
rem" (Howson and Urbach 1989, 96). They and other Bayesians appeal 
to the Bayesian strategy of Jon Dorling (1979), which I will outline 
shortly. In the section "The Duhem Problem Solved by Bayesian 
Means" (p. 96), Howson and Urbach declare just that. Let us see what 
they mean. 

The Duhem Problem Solved by Bayesian Means 

When Bayesians say they can solve Duhem's problem, what they 
mean is this: Give me a case in which an anomaly is taken to refute a 
hypothesis H out of a group of hypotheses used to derive the predic­
tion, and I'll show you how certain prior probability assignments can 
justify doing so. The "justification" is that H gets a low (or lower) poste­
rior probability than the other hypotheses. As with the general Bayes­
ian Way of explaining a scientific episode, solving Duhem comes down 
to a homework assignment-not to say a necessarily easy one-of 
how various assumptions and priors allow the scientific inference 
reached to be in accord with that reached via Bayes's theorem. 

In addition to accounting for specific episodes, the Bayesian Way 
can be used to derive a set of general statements of the probabilistic 
relationships that would have to hold for one or another parceling out 
of the blame. These equations are neat, and the algorithms they offer 
for solving such homework problems are interesting. What they do not 
provide, however, is a solution to Duhem's problem. Duhem's prob­
lem, as Howson and Urbach themselves say, is to determine "which of 
the several distinct theories involved in deriving a false prediction 
should be regarded as the false element" (Howson and Urbach 1989, 
94). The possibility of a degree of belief reconstruction does not help 
to pinpoint which element ought to be regarded as false. 

From all we have already seen, we might expect the subjective 
Bayesian to retort that I am misunderstanding the subjectivist account. 
For the subjective Bayesian, the hypotheses an agent ought to consider 
disconfirmed are the ones with low posterior probabilities, and these 
follow deductively from the agent's prior degrees of belief (and other 
subjective probabilities), which agents are assumed to have. That is 
what a subjectivist means by an inference being rational. Dorling 
(1979), to his credit, admits as much. He says that adopting a personal­
ist reconstruction "automatically" yields a resolution of Duhem, but 
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104 CHAPTER FOUR 

quite correctly stresses "that it is the adoption of a personalist Bayes­
ianism which yields this way out of the Duhem problem" (p. 178). The 
question that remains is whether to adopt the Bayesian Way out is 
really to have a way out of the problem. Not, I claim, if the problem is 
understood normatively. What the Bayesian Way offers, at best, is a 
way of reconstructing given inferences probabilistically. The Duhem 
problem, if it is not simply defined away, just returns as the problem of 
justifying the correctness of the probabilities in the Bayesian equations. 

Since Dorling's work is credited as the exemplar for the Bayesian 
solution to Duhem, I will take it as my example too. 

Dorling's Homework Problem 

Dorling considers a situation where despite the fact that an anoma­
lous result e' occurs, the blame is placed on an auxiliary hypothesis A 
while the credibility placed on theory T is barely diminished. In Dor­
ling's simplified problem, only one auxiliary hypothesis A is considered 
(I am replacing his H with A). 

In the historical case considered here, Dorling (1979, 178) takes T 
to be "the relevant part of solidly established Newtonian theory which 
Adams and Laplace used" to compute e, the predicted secular accelera­
tion of the moon, which conflicted with the observed result e'. The 
auxiliary, A, is the hypothesis that the effects of tidal friction are not of 
a sufficient order of magnitude to affect appreciably the lunar acceler­
ation. 

Dorling's homework problem is to provide probability assignments 
so that, in accordance with the episode, an agent's credibility in theory 
T is little diminished by the anomaly e', while the credibility in auxil­
iary A is greatly diminished. We can sidestep the numerical gymnastics 
to get a feel for one type of context where the agent faults A. After­
wards I will give a numerical algorithm (calculated at the end of sec­
tion 4.1). 

Theory T and auxiliary A entail e, but e' is observed. When might 
e' blame A far more than T? Here's one scenario sketched in terms that 
I intend to be neutral between accounts of inference. Suppose (1) there 
is a lot of evidence for theory T, whereas (2) there is hardly more evi­
dence for the truth of auxiliary hypothesis A than for its falsity. Sup­
pose, further, that (3) unless A is false, there is no other way to explain 
e'. This is a rough account, it seems to me, of a situation where e' 
indicates (or is best explained by) A being in error. I 

1. A more extreme situation would give a very low prior probability to hypoth­
esis A. Darling is trying to describe a case where it is not so obvious how things 
come out. 
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DUHEM, KUHN, AND BAYES 105 

A Bayesian rendering may be effected by inserting "agent x be­
lieves that" prior to assertions 1, 2, and 3. We then have a description 
of a circumstance where the agent believes or decides that A is discred~ 
ited bye'. Nothing is said about whether the assignments are war­
ranted, or, more importantly, how a scientist should go about de­
termining where the error really lies. Assigning the probabilities 
differently puts blame elsewhere, and the Bayesian "solution" is not a 
solution for adjudicating such assignments. 

The Numerical Solution to the Homework Assignment 

The numerical "solution" that corresponds to what I described 
above is this: The scientist's degree of belief is such that a high degree 
of belief is initially accorded to T (e.g., P(T) = .9); in any case, it is 
substantially more probable than A, which is considered only slightly 
more probable than not (e.g., P(A) = .6). These numbers are intro­
duced by the personalist, Dorling explains, as approximate descriptions 
of the belief state of a particular scientist at the time. Let us see how 
we might describe the agent's beliefs so that the third and key assump­
tion is cashed out probabilistically. 

First, imagine the agent considering the possibility that auxiliary 
hypothesis A is true: 

The agent contemplates auxiliary A being true. Clearly, T could not also 
be true (since together they counterpredict e'). But might not some 
rival to T explain e'? Here is where the key assumption enters. The 
agent believes there to be no plausible rival that predicts e'. That is to 
say, the agent sees no rival that, in his or her opinion, has any plausibil­
ity, that would make anomaly e' expected. In subjective probability 
terms, this becomes 

a. The probability of e', given that A holds and T is false, is very small. 
Let this very small value be e. 

Since the anomaly e' has been observed, it might seem that the 
agent would assign it a probability of 1. Doing so would have serious 
ramifications (Le., this is the "old-evidence problem"). To avoid as­
signing degree of belief 1 to e', Bayesian agents need to imagine how 
strongly they would have believed in the occurrence of anomaly e' before 
it was observed-no mean feat. But never mind the difficulties in as­
signing such probabilities just now (see chapter 10). The Bayesian as­
sumes that the agent can and does make the key assumption that, in 
the agent's view, the e' observed is extremely improbable if A is true. 
Now consider the agent's beliefs assuming that auxiliary A is false. 

The agent contemplates auxiliary A being false. In contrast, if auxiliary 
A were false, the agent would find e' much more likely than if T were 
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106 CHAPTER FOUR 

false and A true. In fact, Dorling imagines that scientists assign a proba­
bility to e', given that A is false, 50 times as high as that in (a), whether 
or not T is true. That is, P(e' I A is false) = SOB. We have 

h. i. The probability of e', given that T holds and A is false, is 50s. 
ii. The probability of e', given that T is false and A is false, is 50s. 

Of course, (i) and (ii) need not be exactly equal, but what they must 
yield together is a probability of e' given A is false many times that in 
(a). A further assumption, it should be noted, is that T and A are inde­
pendent. 

Together, (a) and (b) describe a situation where the outcome e' is 
believed to be far more likely if A is false than if A is true. This yields 
assumption 3. The result is that the posterior probability of T remains 
rather high, that is, .897, while the posterior of A becomes very low, 
dropping from .6 to .003. 

This gives one algorithm-Dorling's-for how evidence can yield 
a Bayesian disconfirmation of auxiliary A, despite A's being deemed 
reasonably plausible at the start. Nonquantitatively put, the algorithm 
for solving the homework problem is this: Start with a suitably high 
degree of belief in T as compared with A, believe no plausible rival to 
T exists that would make you expect the anomalous result, and hold 
that the falsity of A renders e' many times more expected than does 
any plausible rival to T. 

Reconstructing versus Solving Duhem 

Dorling's homework problem can be done in reverse. Scientists 
who assign the above degrees of belief, but with A substituted for T, 
reach the opposite conclusion about T and A. So being able to give a 
Bayesian retelling does not, by itself, say which apportionment of 
blame is warranted. 

Bayesians may retort that the probabilities stipulated in their re­
construction are plausible descriptions of the beliefs actually held at 
the time, and others are not. That may well be, though it is largely due 
to the special way in which they describe the prediction. I leave that 
to one side. For my own part, I have no idea about the odds "a typical 
non-Newtonian would have been willing to place [on] a bet on the 
correct quantitative value of the effect, in advance even of its qualita­
tive discovery" (Dorling 1979, 182). (Something like this is the contor­
tion required to get around assigning e' a probability of 1.) 

Nor is it easy to justify the prior probability assignments needed to 
solve the homework problem, in particular, that theory T is given a 
prior probability of .9. The "tempered personalism" of Abner Shimony 
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DUHEM, KUHN, AND BAYES 107 

(e.g., 1970) advises that fairly low prior probabilities be assigned to 
hypotheses being considered, to leave a fairly high probability for their 
denial-for the "catchall" of other hypotheses not yet considered. The 
Dorling assignment leaves only .1 for the catchall hypothesis. 

A Highly Qualified Success? If Bayesian reconstructions fail to count as 
solving Duhem, it seems fair to ask what value such reconstructions 
might have. Bayesians apparently find them useful. John Earman, for 
example, shares my position that the Bayesian Way is no solution to 
Duhem. While calling it a "highly qualified success for Bayesianism," 
Earman finds that "the apparatus provides for an illuminating repre­
sentation of the Quine and Duhem problem" (Earman 1992, 85). For 
my part, I find the problem stated by Duhem (1954) clear enough­
how to determine the error responsible: 

The only thing the experiment teaches us is that among the proposi­
tions used to predict the phenomenon ... there is at least one error; 
but where this error lies is just what it does not tell us. The physicist 
may declare that this error is contained in exactly the proposition he 
wishes to refute, but is he sure it is not in another proposition? If he 
is, he accepts implicitly the accuracy of all the other propositions he 
has used, and the validity of his conclusion is as great as the validity 
of his confidence. (Duhem 1954, 185) 

This last clause can be put in Bayesian terms by replacing "the validity 
of his confidence" with "the validity of his prior and other degree of 
belief assignments." But I do not see how attaching a degree of belief 
phrase to the claims in Duhem's statement helps to illuminate the mat­
ter. Indeed, attaching probabilities to statements only complicates 
things. 

But there is something that might be said about the Bayesian re­
constructions that may explain why philosophers find them appealing 
to begin with. A purely syntactical theory of confirmation along the 
lines of a hypothetico-deductive account seems to lack a way to ac­
count for differential assignments of blame for an anomaly.2 Two dif­
ferent cases may go over as the same syntactical configuration, even 
though our intuitions tell us that in one case the primary hypothesiS is 
discredited while in the other the auxiliary is. The complaint against 
syntactical approaches is correct. But this shows only that syntax alone 
won't do and that substantive background knowledge is needed. What 

2. Even Glymour's bootstrapping version, Earman argues, seems to have no 
way to solve it. 
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108 CHAPTER FOUR 

it does not show, and what I have been urging we should deny, is 
that the background should come in by way of subjective degrees of 
belief. 

A Sign of Being a Correct Account? Howson and Urbach follow Dorling's 
treatment in their own example, giving assignments very similar to, 
though less striking than, Dorling's. The ability of the Bayesian model 
to accord with actual cases of attributing blame, they conclude, shows 
that "Bayes's Theorem provides a model to account for the kind of 
scientific reasoning that gave rise to the Duhem problem" (Howson 
and Urbach 1989, 101). If this just means that there are Bayesian re­
constructions of the sort we have been conSidering, then we can agree. 
However, Howson and Urbach go on to claim that the ability to give a 
Bayesian reconstruction of cases shows "that the Bayesian model is 
essentially correct"! (p. 101). But merely being able to offer reconstruc­
tions of episodes says nothing about the Bayesian model's correctness. 3 

If the name of the game is reconstruction, it is quite simple to offer 
a non-Bayesian one. How would our error-testing model reconstruct 
an episode where an auxiliary A is blamed, rather than theory T? We 
would want to distinguish between two cases: (a) the case where there 
are positive grounds for attributing the error to auxiliary A, and (b) the 
case where there are simply inadequate grounds for saying an error in 
A is absent. In coming out with a posterior probability of .003 in A. 
Dorling is describing the case as (a), yet anomaly e' itself seems at best 
to warrant regarding it as in case (b)-where there is simply not 
enough information to attribute blame to T. 

An error-statistical description of the episode might go like this: 
Theory T is not shown to be in error as a result of anomaly e' unless the 
evidence warrants ruling out the possibility that an error in auxiliary 
hypothesis A is responsible. Evidence does not warrant ruling out an 
error in auxiliary A unless A has been shown to pass a sufficiently se­
vere test. But the assumption of lukewarm evidence for A (recon­
structed by Dorling as its having a prior probability of .6) would be 
taken as denying that A had passed a severe test. This explains why e' 
was not taken to discredit T. To take e' as grounds for condemning T 
would be to follow a very unreliable procedure. To reconstruct an epi­
sode as a case of (a), in contrast, would require there to be positive 
grounds to consider A false, and its falsity to blame for the anomaly. In 
that case what must have passed a severe test is hypothesis "not-A": 

3. Similar criticisms of the Bayesian solution to Duhem are raised by Worrall 
(1993). 
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DUHEM. KUHN. AND BAYES 109 

that the extraneous factor (tidal friction) is responsible for the anoma­
lous effect (lunar acceleration). 

My error statistics reconstruction enjoys several advantages over 
the Bayesian one: First, it does not suppose that for any anomaly there 
is some inference to be reached about where to lay the blame. The 
description in (b) may be all that would be allowed until positive 
grounds for fingering an auxiliary were obtained. Second, the question 
whether there are grounds for an error in A does not turn on opinions 
in T and there is no need to imagine having a prior in all the other 
possible theories (Le., the so-called catchall). This second reason leads 
to a third, which is what allows us to go beyond mere reconstruction: 
unlike the probabilities needed for the Bayesian reconstruction, philos­
ophers do not have to invent the components we need in depicting 
the scientific inference, nor work with make-believe calculations (e.g., 
imagining the odds scientists would place if they did not already know 
the evidence). 

There seems to be no suggestion, even by Bayesians, that scientists 
actually apply Bayes's theorem in reaching their conclusion. Most im­
portant, the Bayesian description fails to capture how Duhemian prob­
lems are actually grappled with before they are solved. Adjudicating 
disputes with a measure of objectivity calls for methods that can actu­
ally help to determine whether given auxiliaries are responsible for the 
anomaly. Scientists do not succeed in justifying a claim that an anom­
aly is due to an auxiliary hypothesis by showing how their degrees of 
subjective belief brought them there. Were they to attempt to do so, 
they undoubtedly would be told to go out and muster evidence for 
their claim, and in so doing, it is to non-Bayesian methods that they 
would turn. 

What's Belief Got to Do with It? 

Howson and Urbach (1989) state, without argument, that "by con­
trast [with the Bayesian model], non-probabilistic theories seem to 
lack entirely the resources that could deal with Duhem's problem" (p. 
101) where "non-probabilistic theories" include the error statistics 
methods of Fisher and Neyman and Pearson. In truth, these methods 
contain just the resources that are needed and regularly relied upon to 
solve real-life Duhemian problems. 

A major virtue of the error statistics approach is that the issue of 
whether the primary or auxiliary hypothesis is discredited is not based 
on the relative credence accorded to each. The experiment is supposed 
to find out about these hypotheses; it would only bias things to make 
interpreting the evidence depend on antecedent opinions. After all, in 
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110 CHAPTER FOUR 

Dorling's examples, and I agree that the assumption is plausible, theory 
T is assumed to be independent of auxiliary A. There is no reason to 
suppose that assessing auxiliary A should depend at all on one's opin­
ion about T. What is called for are separate researches to detect 
whether specific auxiliaries are responsible for observed anomalies. 

Let me allude to an example to be considered later (chapter 8). 
When one of the results of the 1919 eclipse experiments on the deflec­
tion of light disagreed with Einstein's prediction, there was a lengthy 
debate about whether the anomaly should be attributed to certain dis­
tortions of the mirror, to Einstein's theory, or to something else. The 
debate over where to lay the blame was engaged in by scientists with 
very different opinions about Einstein's theory. Such attitudes were no 
part of the arguments deemed relevant for the question at hand. The 
relevant argument, put forth by Sir Arthur Eddington (and others), 
turned on a rather esoteric piece of data analysis showing (holdouts 
notwithstanding) that the mirror distortion was implicated. 

Eddington believed in the correctness of Einstein's account, but 
nobody cared how strongly Eddington believed in Einstein. Quite the 
contrary-it only made those who favored a Newtonian explanation 
that much more suspicious of Eddington's suggestion that the faulty 
mirror, not Einstein'S account, was to blame. Being an ardent propo­
nent of either of the two rivals entered the debate: it explained the 
lengths to which players in the debate were willing to go to scrutinize 
each other's arguments. But ardor did not enter into the evidential ap­
praisal of the hypotheses involved. 

The argument to blame an auxiliary such as the mirror is the flip 
side of the argument to rule out an artifact. Here the anomalous effect 
may be shown to go away when there is no distortion of the lens. 
Additional positive arguments that the lens was the culprit were given, 
but I will save those for later. 

Ronald Giere (1988) suggests a "technological fix for the Duhem­
Quine problem" (p. 138), observing that often auxiliary hypotheses are 
embodied in instruments, and "Scientists' knowledge of the technol­
ogy used in experimentation is far more reliable than their knowledge 
of the subject matter of their experiments" (p. 139). My position for 
solving Duhem extends this technological fix to include any experi­
mental tool. It is the reliability of experimental knowledge in general, 
the repertoire of errors and strategies for getting around them, that 
allows checking auxiliaries, and for doing so quite apart from the pri­
mary subject matter of experiments. 

When it comes to finding out which auxiliaries ought to be 
blamed, and to adjudicating disputes about such matters, error statis-
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DUHEM, KUHN, AND BAYES III 

tics provides forward-looking methods to turn to. I do not claim that 
scientists will always be able to probe the needed errors successfully. 
My claim is that scientists do regularly tackle and often enough solve 
Duhemian problems, and that they do so by means of error statistical 
reasoning. Once we have set out the ingredients of an experimental 
framework (in chapter 5) we will see more clearly how an inquiry may 
be broken down so that each hypothesis is a local assertion about a 
particular error. There, and again in later chapters (e.g., chapters 6 and 
13) we will return to Duhem's problem. 

In the following subsection, I summarize the calculations that yield 
the results of Dorling's homework problem. 

Calculations for the Homework Problem: 
BACKGROUND ASSUMPTIONS: 

Hypotheses A and T entail e, but e' is observed: P(e' I A and T) = 
O. A and T are statistically independent 

ASSUMED PRIOR PROBABILITIES 

P(T) = .9, P(A) = .6. 
ASSUMED LIKELIHOODS: 

a. P(e' I A and -T) = 8 (very small number, e.g., .001). 
b. i. P(e' I-A and T) = 508 

ii. P(e' I -A and -T) = 508 

Bayes's theorem: 

P(T Ie') = P(e' I T) P(T) 
P(e') 

From the above we get the following: 

So 

P(e') = P(e' I T)P(T) + P(e' I-T)P(-T). 

P(e' I T) = P(e' I A and T) P(A) + P(e' I -A and T)P(-A) 
o + 508(.4) 

= 208. 
P(e' I-T) = P(e' I A and -T)P(A) + P(e' I-A and -T)P(- A) 

= 8(.6) + 508(.4) 
= 20.68. 

P(e') = 208(.9) + 2.068 
= 20.068. 

The posterior probability of T can now be calculated: 
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( I) 20e(.9) P e = --'--'-
20.06e 

= 0.897. 

Next we can calculate the posterior probability of A: By Bayes's theo­
P(e' I A) P(A) 

rem: P(A lei) = . Since 
P(e /) 

P(e' I A) = P(e' I A and T)P(T) + P(e' I A and -T)P(-T) 
o + e(.I) 

= .le. 

We get 

( I ') .06e PA e =--
20.06e 

= .003. 

4.2 THOMAS KUHN MEETS THOMAS BAYES, INTRODUCTIONS 

BY WESLEY SALMON 

I have thus far confined my criticism to the standard subjectivist Bayes­
ian approach. There have been attempts to constrain the prior 
probabilities but with very limited success, especially when it comes 
to the Bayesian Way in philosophy of science. To discuss them here 
would require introducing technical ideas beyond the scope of our dis­
cussion. There is, however, one line of approach, developed by Wesley 
Salmon, that will tie together and illuminate a number of the 
themes I have taken up. My focus will be on his paper "Rationality 
and Objectivity in Science, or Tom Kuhn Meets Tom Bayes" (Salmon 
1990). 

As with the discussion in the previous section, Salmon's discussion 
is an attempt to employ the Bayesian Way to solve a philosophical 
problem, this time to answer Kuhn's challenge as to the existence of 
an empirical logic for science. Reflecting on the deep division between 
the logical empiricists and those who adopt the "historical approach," a 
division owing much to Kuhn's Structure of Scientific Revolutions, Salmon 
(1990) proposes "that a bridge could be built between the differing 
views of Kuhn and Hempel if Bayes's theorem were invoked to expli­
cate the concept of scientific confirmation" (p. 175). The idea came 
home to Salmon, he tells us, during an American Philosophical Associ­
ation (Eastern Division 1983) symposium on Carl Hempel, in which 
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DUHEM, KUHN, AND BAYES 113 

Kuhn and Hempel shared the platform.4 "At the time it seemed to me 
that this maneuver could remove a large part of the dispute between 
standard logical empiricism and the historical approach to philosophy 
of science" on the fundamental issue of confirmation (p, 175). 

Granting that observation and experiment, together with hypo­
thetico-deductive reasoning, fail adequately to account for theory 
choice, Salmon argues that the Bayesian Way can accommodate the 
additional factors Kuhn seems to think are required. In building his 
bridge, Salmon often refers to Kuhn's (1977) "Objectivity, Value Judg­
ment, and Theory Choice." It is a fitting reference: in that paper Kuhn 
himself is trying to build bridges with the more traditional philosophy 
of science, aiming to thwart charges that he has rendered theory 
choice irrational. 

Deliberately employing traditional terminology, Kuhn attempts to 
assuage his critics, He assures us that he agrees entirely that the stan­
dard criteria-accuracy, consistency, scope, simplicity, and fruitful­
ness-playa vital role in choosing between an established theory and 
a rival (p. 322). But as noted in chapter 2, Kuhn charges that these 
criteria underdetermine theory choice: they are imprecise, differently 
interpreted and differently weighed by different scientists. Taken 
together, they may contradict each other-one theory being most ac­
curate, say, while another is most consistent with background knowl­
edge. Hence theory appraisals may disagree even when agents ostensi­
bly follow the same shared criteria. They function, Kuhn says, more 
like values than rules. 

Here's where one leg of Salmon~s bridge enters. The shared criteria 
of theory choice, Salmon proposes, can be cashed out, at least partly, in 
terms of prior probabilities. The conflicting appraisals that Kuhn might 
describe as resulting from different interpretations and weightings of 
the shared values, a Bayesian could describe as resulting from different 
assignments of prior probabilities. We have at least a partial bridge link­
ing Bayes and Kuhn, but would a logical empiricist want to cross it? 

Logical empiricists, it seems, would need to get around the Kuhn­
ian position that the shared criteria are never sufficient to ground the 
choice between an accepted theory and a competitor, that consensus, 
if it occurs, always requires an appeal to idiosyncratic, personal factors 
beyond the shared ones, They would need to counter Kuhn's charge 
that in choosing between rival theories "scientists behave like philoso­
phers," engaging in what I called "mere critical discourse" in chapter 2. 

4. See "Symposium: The Philosophy of Carl G. Hempel," Journal of Philosophy 
80, no. 10 (October 1983):555-72. Salmon's contribution is Salmon 1983. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:12:02.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



114 CHAPTER FOUR 

Interestingly, Kuhn's single reference to a Bayesian approach is to 
combat criticism of his position. For the sake of argument, Kuhn says, 
suppose that scientists deploy some Bayesian algorithm to compute the 
posterior probabilities of rival theories on evidence and suppose that 
we could describe their choice between these theories as based on this 
Bayesian calculation (Kuhn 1977, 328). "Nevertheless," Kuhn holds 
that "the algorithms of individuals are all ultimately different by virtue 
of the subjective considerations with which each must complete the 
objective criteria before any computations can be done" (p. 329). So 
sharing Bayes's theorem does not count as a "shared algorithm" for 
Kuhn. Kuhn views his (logical empiricist) critic as arguing that since 
scientists often reach agreement in theory choice, the subjective ele­
ments are eventually eliminated from the decision process and the 
Bayesian posteriors converge to an objective choice. Such an argu­
ment, Kuhn says, is a non sequitur. In Kuhn's view, the variable priors 
lead different scientists to different theory choices, and agreement, if it 
does occur, results from sociopsychological factors, if not from unrea­
soned leaps of faith. Agreement, in other words, might just as well be 
taken as evidence of the further role of subjective and sociopsychologi­
cal factors, rather than of their eventual elimination. 

But perhaps building a logical empiricist bridge out of Bayesian 
bricks would not require solving this subjectivity problem. Perhaps 
Salmon's point is that by redescribing Kuhn's account in Bayesian 
terms, Kuhn's account need not be seen as denying science a logic 
based on empirical evidence. It can have a logic based on. Bayes's theo­
rem. It seems to me that much of the current appeal of the Bayesian 
Way reflects this kind of move: while allowing plenty of room for "ex­
trascientific" factors, Bayes's theorem ensures at least some role for 
empirical evidence. It gives a formal model, we just saw, for recon­
structing (after the fact) a given assignment of blame for an anomaly, 
and it may well allow for reconstructing Kuhnian theory choice. Put­
ting aside for the moment whether a bridge from Bayes to Kuhn holds 
us above the water, let us see how far such a bridge would need to go. 

Right away an important point of incongruity arises. While Kuhn 
talks of theory acceptance, the Bayesian talks only of probabilifying a 
theory-something Kuhn eschews. For the context of Kuhnian nor­
mal science, where problems are "solved" or not, this incongruity is 
too serious to remedy. But Salmon is talking about theory choice or 
theory preference, and here there seem to be ways of reconciling Bayes 
and Kuhn (provided radical incommensurabilities are put to one side), 
although Salmon does not say which he has in mind. One possibility 
would be to supplement the Bayesian posterior probability assessment 
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DUHEM, KUHN, AND BAYES 115 

with rules for acceptance or preference (e,g" accept or prefer a theory 
if its posterior probability is sufficiently higher than that of its rivals), 

A second possibility would be to utilize the full-blown Bayesian 
decision theory. Here, averaging probabilities and utilities allows calcu­
lating the average or expected utility of a decision. The Bayesian rule 
is to choose the action that maximizes expected utility, Choosing a theory 
would then be represented in Bayesian terms as adopting the theory 
that the agent feels maximizes expected utility. If it is remembered 
that, according to Kuhn, choosing a theory means deciding to work 
within its paradigm, this second possibility seems more apt than the 
first. The utility calculation would provide a convenient place to locate 
the variety of values-those shared as well as those of "individual per­
sonality and biography" -that Kuhn sees as the basis for theory choice. 

Even this way of embedding Kuhn in a Bayesian model would not 
quite reach the position Kuhn holds. In alluding to the Bayesian 
model, Kuhn (1977) concedes that he is tempering his position some­
what, putting to one side the problems of radically theory-laden evi­
dence and incommensurability. Strictly speaking, comparing the ex­
pected utilities of choosing between theories describes a kind of 
comparison that Kuhn deems impossible for choosing between incom­
mensurables. It is doubtful that a genuine Kuhnian conversion is cap­
tured as the result of a Bayesian conditionalization. Still, the reality of 
radical incommensurability has hardly been demonstrated. So let us 
grant that the subjective Bayesian Way, with the addition of some rule 
of acceptance such as that offered by Bayesian decision theory, affords 
a fairly good bridge between Bayes and a slightly-tempered Kuhn. 
Note also that the Kuhnian problems of subjectivity and relativism are 
rather well modeled-though not solved-by the corresponding 
Bayesian problems. The charge that Kuhn is unable to account for how 
scientists adjudicate disputes and often reach consensus seems analo­
gous to the charge we put to the subjective Bayesian position. (For a 
good discussion linking Kuhn and Bayes, see Earman 1992, 192-93.) 

But this is not Salmon's bridge. Our bridge pretty much reaches 
Kuhn, but the toll it exacts from the logical empiricist agenda seems 
too dear for philosophers of that school to want to cross it. Salmon's 
bridge is intended to be free of the kinds of personal interests that 
Kuhn allows, and as such it does not go as far as reaching Kuhn's phi­
losophy of science. But that is not a mark against Salmon's approach, 
quite the opposite. A bridge that really winds up in Kuhnian territory 
is a bridge too far: a utility calculation opens theory choice to all man­
ner of interests and practical values. It seems the last thing that would 
appeal to those wishing to retain the core of a logical empiricist phil os-
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116 CHAPTER FOUR 

ophy. (It opens too wide a corridor for the enemy!) So let us look at 
Salmon's bridge as a possible link, not between a tempered Kuhn and 
Bayes, but between logical empiricism and a tempered Bayesianism. 
Before the last brick is in place, I shall question whether the bridge 
does not actually bypass Bayesianism altogether. 

4.3 SALMON'S COMPARATIVE ApPROACH AND A BAYESIAN BYPASS 

Salmon endorses the Kuhnian position that theory choice, particularly 
among mature sciences, is always a matter of choosing between rivals. 
Kuhn's reason, however, is that he regards rejecting a theory or para­
digm in which one had been working without accepting a replacement 
as tantamount to dropping out of science. Salmon's reason is that using 
Bayes's theorem comparatively helps cancel out what he takes to be 
the most troubling probability: the probability of the evidence e given 
not-T nhe catchall"). (Salmon, like me, prefers the term hypotheses 
to theories, but uses T in this discussion because Kuhn does. I shall 
follow Salmon in allowing either to be used.) 

Because of some misinterpretations that will take center stage 
later, let us be clear here on the probability of evidence e on the catchall 
hypothesis. 5 Evidence e describes some outcome or information, and 
not- T, the catchall, refers to the disjunction of all possible hypotheses 
other than T, including those not even thought of, that might predict 
or be relevant to e. This probability is not generally meaningful for a 
frequentist, but is necessary for Bayes's theorem.6 Let us call it the 
Bayesian catchall factor (with evidence e):7 

Define the Bayesian catchall factor (in assessing T with evidence e) as 

P(e I not- T). 

Salmon, a frequentist at heart, rejects the use of the Bayesian catchall 
factor. 

What is the likelihood of any given piece of evidence with respect to 
the catchall? This question strikes me as utterly intractable; to answer 
it we would have to predict the future course of the history of science. 
(Salmon 1991, 329) 

5. To my knowledge, it was L. J. Savage who originated the term catchall. 
6. See chapter 6. 
7. I take this term from that of the Bayes factor, which is the ratio of the Bayes­

ian catchall factor and P(e I 1'}. 
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DUHEM, KUHN, AND BAYES 117 

This recognition is a credit to Salmon, but since the Bayesian catch­
all factor is vital to the general Bayesian calculation of a posterior prob­
ability, his rejecting it seems almost a renunciation of the Bayesian 
Way. The central role of the Bayesian catchall factor is brought out in 
writing Bayes's theorem as follows: 

P(T I e) = P(e I T) P(T) 
P(e I T) P(T) + P(e I not-1) P(not-T). 

Clearly, the lower the value of the Bayesian catchall factor, the 
higher the posterior probability in T, because the lower its value, the 
less the denominator in Bayes's theorem exceeds the numerator. 
The subjectivist Nsolution" to Duhem turned on the agent assign­
ing a very small value to the Bayesian catchall factor (where the 
evidence was the anomalous result e'), because that allowed 
the posterior of T to remain high despite the anomaly. Subjective 
Bayesians accept, as a justification for this probability assignment, 
that agents believe there to be no plausible rival to T that they feel 
would make them expect the anomaly e'. This is not good enough for 
Salmon. 

In order to get around such a subjective assignment (and avoid 
needing to predict the future course of science), Salmon says we 
should restrict the Bayesian Way to looking at the ratio of the posteri­
ors of two theories TJ and T2 : In the ratio of the posteriors of the two 
theories, we get a canceling out of the Bayesian catchall factors (the 
probability of e on the catchall).8 Let us see what the resulting compar­
ative assessment looks like. Since the aim is no longer to bridge Kuhn, 
we can follow Salmon in talking freely about either theories or hypoth­
eses. Salmon's Bayesian algorithm for theory preference is as follows 
(to keep things streamlined, I drop the explicit statement of the back­
ground variable B): 

Salmon's Bayesian algorithm for theory preference (1990, 192): 

Prefer TJ to T2 whenever P(TJ I e)/P(T21 e) exceeds 1, where: 

8. This is because 

P(T I e) = P(e I I;)P(Tj ) 
, P(e I Tj)P(TJ + P(e I-I;)P(-I;). 

Note that the denominator equals P(e). Since that is so for the posterior of T, as 
well as for T" the result of calculating the ratio is to cancel P(e), and thereby cancel 
the probabilities of e on the catchalls. 
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P(TI I e) _ P(TI ) P(e I TI ) 

P(T2 I e) P(T2) P(e I T2) 

CHAPTER FOUR 

To start with the simplest case, suppose that both theories TI and 
T2 entail e. 9 Then P(e I TI ) and P(e I T2) are both 1. These two probabili­
ties are the likelihoods of TI and T2, respectively.lo Salmon's rule for this 
special case becomes: 

Special case: Salmon's rule for relative preference (where each of TI 
and T2 entails e): 

Prefer TI to T2 when~ver P(TI ) exceeds P(T2). 

Thus, in this special case, the relative preference is unchanged by evi­
dence e. You prefer TI to T2 just in case your prior probability in TI 
exceeds that of T2 (or vice versa). Note that this is a general Bayesian 
result that we will want to come back to. In neutral terms, it says that 
if evidence is entailed by two hypotheses, then that evidence cannot 
speak any more for one hypothesis than another-according to the 
Bayesian algorithmY If their appraisal differs, it must be due to some 
difference in prior probability assignments to the hypotheses. This will 
not be true on the error statistics model. 

To return to Salmon's analysis, he proposes that where theories do 
not entail the evidence, the agent consider auxiliary hypotheses (AI 

and A2 ) that, when coinjoined with each theory (TI and T2 , respec­
tively), would entail the evidence. That is, the conjunction of TI and 
Al entails e, and the conjunction of T2 and A2 entails e. This allows, 
once again, the needed likelihoods to equal 1, and so to drop out. The 
relative appraisal of TI and T2 then equals the ratio of the prior proba­
bilities of the conjunctions of TI and AI' and T2 and A2. We are to prefer 
that conjunction (of theory and auxiliary) that has the higher prior 
probability.12 In short, in Salmon's comparative analysis the weight is 
taken from the likelihoods and placed on the priors, making the ap­
praisal even more dependent upon the priors than the noncomparative 
Bayesian approach. 

9. While this case is very special, Salmon proposes that it be made the standard 
case by conjoining suitable auxiliaries to the hypotheses. I will come back to this in 
a moment. 

10. Note that likelihoods of hypotheses are not probabilities. For example, the 
sum of the likelihoods of a set of mutually exclusive, collectively exhaustive 
hypotheses need not equal I. 

II. This follows from the likelihood principle to be discussed in later chapters. 
12. For simplicity, we could just replace TI' T2 , in the statement of the special 

case, with the corresponding conjunctions TI and AI' and T2 and A2, respectively. 
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DUHEM, KUHN, AND BAYES 119 

Problems with the Comparative Bayesian Approach 

Bayesians will have their own problems with such a comparative 
Bayesian approach. How, asks Earman (1992, 172), can we plug in 
probabilities to perform the usual Bayesian decision theory? But Ear­
man is reluctant to throw stones, confessing that "as a fallen Bayesian, 
I am in no position to chide others for acts of apostasy" (p. 171). Ear­
man, with good reason, thinks that Salmon ha.s brought himself to the 
brink of renouncing the Bayesian Way. Pursuing Salmon's view a bit 
further will show that he may be relieved of the yoke altogether. 

For my part, the main problem with the comparative approach is 
that we cannot apply it until we have accumulated sufficient knowl­
edge, by some non-Bayesian means, to arrive at the prior probability 
assignments (whether to theories or theories conjoined with auxilia­
ries). Why by some non-Bayesian means? Couldn't prior probability 
assessments of theories and auxiliaries themselves be the result of 
applying Bayes's theorem? They could, but only by requiring a reintro­
duction of the corresponding assignments to the Bayesian catchall fac­
tors-the very thing Salmon is at pains to avoid. The problems of adju­
dicating conflicting assessments, predicting the future of science, and 
so on, remain. 

Could not the prior probability assignments be attained by some 
more hard-nosed assessment? Here is where Salmon's view becomes 
most interesting. While he grants that assessments of prior probabili­
ties, or, as he prefers, plausibilities, are going to be relative to agents, 
Salmon demands that the priors be constrained to reflect objective con­
siderations. 

The frightening thing about pure unadulterated personalism is that 
nothing prevents prior probabilities (and other probabilities as well) 
from being determined by all sorts of idiosyncratic and objectively 
irrelevant considerations (Salmon 1990, 183) 

such as the agent's mood, political disagreements with or prejudices 
toward the scientists who first advanced the hypothesis, and so on. 

What we want to demand is that the investigator make every effort 
to bring all of his or her relevant experience in evaluating hypotheses 
to bear on th~ question of whether the hypothesis under consider­
ation is of a type likely to succeed, and to leave aside emotional irrele­
vancies. (P. 183) 

Ever the frequentist, Salmon proposes that prior probabilities "can 
be understood as our best estimates of the frequencies with which cer-
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120 CHAPTER FOUR 

tain kinds of hypotheses succeed" (p. 187).13 They may be seen as per­
sonalistic so long as the agent is guided by "the aim of bringing to bear 
all his or her experience that is relevant to the success or failure of 
hypotheses similar to that being considered." According to Salmon, 
"On the basis of their training and experience, scientists are qualified 
to make such judgments" (p. 182). 

But are they? How are we to understand the probability Salmon is 
after? The context may be seen as a single-universe one. The members 
of this universe are hypotheses similar to the hypothesis H being con­
sidered, presumably from the population of existing hypotheses. To 
assign the prior probability to hypothesis H, I imagine one asks oneself, 
What proportion of the hypotheses in this population are (or have 
been) successful? Assuming that H is a random sample from the uni­
verse of hypotheses similar to H, this proportion equals the probability 
of interest. Similar to hypothesis H in what respects? Successful 
in what ways? For how long? The reference class problem becomes 
acute. 

I admit that this attempt at a frequentist prior (also found in Hans 
Reichenbach) has a strong appeal. My hunch is that its appeal stems 
from unconsciously equating this frequency with an entirely different 
one, and it is this different one that is really of interest and, at the same 
time, is really obtainable. 

Let us imagine that one had an answer to Salmon's question: what 
is the relative frequency with which hypotheses relevantly similar to 
H are successful (in some sense)? Say the answer is that 60 percent of 
them are. If H can be seen as a fair sample from this population, we 
could assign H a probability of .6. Would it be of much help to know 
this? I do not see how. I want to know how often this hypothesis will 
succeed. 

What might an error statistician mean by the probability that this 
hypothesis H will succeed? As always, for a frequentist, probability ap­
plies to outcomes of a type of experiment. (They are sometimes called 
"generic" outcomes.) The universe or population here consists of pos­
sible or hypothetical experiments, each involving an application of hy­
pothesis H. Success is some characteristic of experimental outcomes. 
For example, if H is a hypothesized value of a parameter j.L, a successful 
outcome might be an outcome that is within a specified margin of error 
of 11.. The probability of success construed this way is just the ordinary 

13. This was also Reichenbach's view. He did not consider that enough was 
known at present to calculate such a probability, but thought that it might be 
achievable in the future. 
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DUHEM, KUHN, AND BAYES 121 

probability of the occurrence of certain experimental outcomes. (Fur­
ther discussion occurs in chapter 5.) Indeed, for the error theorist, the 
only kinds of things to which probabilities apply are things that can be 
modeled as experimental outcomes. Knowledge of H's probable success 
is knowledge of the probability distributions associated with applying 
H in specific types of experiments, Such knowledge captures the spirit 
of what C. S. Peirce would call the "experimental purport" of hypothe­
sis H. 

7Wo Meanings of the Probability That a Hypothesis Is Successful. Let us have 
a picture of our two probabilities. Both can be represented as one-urn 
models. In Salmon's urn are the members of the population of hypoth­
eses similar to H. These hypotheses are to be characterized as successful 
or not, in some way that would need to be specified, The probability 
of interest concerns the relative frequency with which hypotheses in 
this urn are successful. This number is taken as the probability that H 
is successful. 

In my urn are members of a population of outcomes (a sample 
space) of an experiment. Each outcome is defined as successful or not 
according to whether it is close to what H predicts relative to a certain 
experiment (for simplicity, omit degrees of closeness). The probability 
of interest concerns the relative frequency with which outcomes in this 
urn are successful. Hypothesis H can be construed as asserting about 
this population of outcomes that with high probability they will be 
successful (e.g., specifiably close to what Hpredicts). The logic of stan­
dard statistical inference can be pictured as selecting one outcome, ran­
domly, from this "urn of outcomes" and using it to learn whether what 
H asserts is correct. 

Take one kind of hypothesis already discussed, that a given effect 
is real or systematic and not artifactual. In particular, take Hacking's 
hypothesis H (discussed in chapter 3). 

H: dense bodies are real structures in blood cells, not artifacts. 
We have no idea what proportion of hypotheses similar to H are true, 
nor do we have a clue as to how to find out, nor what we would do if 
we did. In actuality, our interest is not in a probabilistic assignment to 
H. but in whether H is the case. We need not have infallible knowledge 
about H to learn about the correctness of H. 

We ask: what does the correctness of H say about certain experi­
mental results, ideally, those we can investigate? One thing Hacking's 
H says is that dense bodies will be detected even using radically differ­
ent physical techniques, or at least that they will be detected with high 
reliability, Experimenting on dense bodies, in other words, will not be 
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like experimenting on an artifact of the experimental apparatus. Or so 
H asserts. This leads to pinpointing a corresponding notion of success. 
We may regard an application of H as successful when it is specifiably 
far from what would be expected in experimenting on an artifact. 
More formally, a successful outcome can be identified as one that a 
specified experimental test would take as failing the artifact explana­
tion. That H is frequently successful, then, asserts that the artifact ex­
planation, that is, not-H, would very frequently be rejected by a certain 
statistical test. 

The knowledge of the quality of the evidence in hand allows as­
sessing whether there are good grounds for the correctness of H (in the 
particular respects indicated in defining success). In particular, knowl­
edge that H passes extremely severe tests is a good indication that H is 
correct, that it will often be successful. Why? Because were the dense 
bodies an artifact, it would almost certainly not have produced the 
kinds of identical configurations that were seen, despite using several 
radically different processes. 

What are needed, in my view, then, are arguments that H is cor­
rect, that experimental outcomes will very frequently be in accordance 
with what H predicts-that H will very frequently succeed, in this sense. 
These are the arguments for achieving experimental knowledge 
(knowledge of experimental distributions). We obtain such experi­
mental knowledge by making use of probabilities-not of hypotheses 
but probabilistic characteristics of experimental testing methods (e.g., 
their reliability or severity). Where possible, these probabilities are ar­
rived at by means of standard error probabilities (e.g., significance lev­
els). In those cases, what I have in mind is well put in my favorite 
passage from Fisher: 

In relation to the test of significance, we may say that a phenomenon 
is experimentally demonstrable when we know how to conduct an 
experiment which will rarely fail to give us a statistically significant 
result. (Fisher 1947, 14) 

A Natural Bridge between Salmon and Error Statistics 

Whereas Salmon construes "the probability of H's success" as the 
relative frequency with which hypotheses similar to H are successful, 
the error statistician proposes that it be given a very different fre­
quentist construal. For the error statistician, "the probability of H's suc­
cess" or, more aptly, H's reliability, is viewed as an elliptical way of 
referring to the relative frequency with which H is expected to succeed 
in specifically defined experimental applications. There is no license to 
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DUHEM, KUHN, AND BAYES 123 

use the latter frequentist notion in applying Bayes's theorem. Never­
theless, it may be used in Salmon's comparative approach (where the 
likelihoods drop out), and doing so yields a very natural bridge con­
necting his approach to that of error statistics. 

To see in a simple way what this natural bridge looks like, let the 
two hypotheses HI and H2 entail evidence e (it would be adequate to 
have them merely fit e to some degree), Then, on Salmon's compara­
tive Bayesian approach, HI is to be preferred to H2 just in case the prior 
probability assessment of HI exceeds H 2 • The assignment of the prior 
probabilities must not contain irrelevant subjective factors, says 
Salmon, but must be restricted to assessing whether the hypotheses 
are likely to be successful. Hypothesis HI is to be preferred to H2 just in 
case HI is accorded a higher probability of success than H 2 • Now let us 
substitute my error statistical construal of probable success (for some 
specified measure of "successful outcome"). Evaluating H's probable 
success (or H's reliability) means evaluating the relative frequency with 
which applications of H would yield results in accordance with (Le., 
specifiably close to) what H asserts. As complex as this task sounds, it 
is just the kind of information afforded by experimental knowledge of 
H. The task one commonly sets for oneself is far less technically put. 
The task, informally, is to consider the extent to which specific ob­
stacles to H's success have been ruled out. Here is where the kind of 
background knowledge I think Salmon has in mind enters. What train­
ing and experience give the experimenter is knowledge of the specific 
ways in which hypotheses can be in error, and knowledge of whether 
the evidence is so far sufficient to rule out those errors. 

To put my point another way, Salmon's comparative approach re­
quires only the two prior probabilities or plausibilities to be considered, 
effectively wiping out the rest of the Bayesian calculation. The focus is 
on ways of assessing the plausibilities of the hypotheses or theories 
themselves. However, Salmon's approach gives no specific directions 
for evaluating the plausibilities or probable success of the hypotheses. 
Interpreting probable success in the way I recommend allows one to 
work out these directions. Salmon's comparative appraisal of HI against 
a rival H2 would become: prefer HI to H2 just to the extent that the 
evidence gives a better indication of H/s likely success than Hz's. 

Further, the kinds of evidence and arguments relevant to judge H's 
success, in my sense, seem quite congenial to what Salmon suggests 
should go into a plausibility assessment. In one example Salmon refers 
explicitly to the way in which standard (non-Bayesian) significance 
tests may be used to give plausibility to hypotheses (Salmon 1990, 
182). In particular, a statistically significant association between sac-
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charin and bladder cancer in rats, he says, lends plausibility to the hy­
pothesis H that saccharin in diet drinks increases the risk of bladder 
cancer in humans. Provided that errors of extrapolating from rats to 
humans and from high to low doses are satisfactorily ruled out, a statis­
tically significant association may well provide evidence that H has 
been shown, that H will be successful in our sense. This success may be 
cashed out in different ways, because the truth of H has different impli­
cations. One implication of the correctness of H here is that were popu­
lations to consume such and such amount of saccharin the incidence 
of bladder cancer would be higher than if they did not. My point is 
that such experiments are evidence for the correctness of H in this 
sense. Such experiments do not provide the number Salmon claims to 
be after, the probability that hypotheses similar to the saccharin hy­
pothesis are successful. So even if that probability were wanted (I claim 
it is not), that is not what the saccharin experiments provide. 14 

By allowing for this error statistical gloss of H H's probable success, " 
the reader should not be misled into viewing our account as aiming to 
assign some quantitative measure to hypotheses-the reverse is true. 
My task here was to erect a bridge between an approach like Salmon's 
and the testing account 1 call error statistics. By demonstrating that the 

14. In the case of the saccharin hypothesis, it might look as if Salmon's fre­
quentist probability is obtained. That, I think, is because of a tendency to slide from 
one kind of probability statement to another. Consider hypotheses of the form x 
causes cancer in humans. They are all similar to H: saccharin causes cancer in hu­
mans. But what should be included in the reference set for getting Salmon's proba­
bility? Might x be anything at all? If so, then only a very tiny proportion would be 
successful hypotheses. That would not help in assessing the plausibility of H. I sug­
gest that the only way this probability makes sense is if hypotheses "similar to H" 
refers to hypotheses Similarly grounded or tested. In trying to specify the reference 
set in the case of the saccharin hypothesis we might restrict it to those causal 
hypotheses (of the required form) that have been shown to hold about as well as 
H. So it would consist of causal claims where a statistically significant correlation is 
found in various animal species, where certain dosage levels are used, where cer­
tain extrapolation models are applied (to go from animal doses to human doses as 
well as from rats to humans), where various other errors in identifying carcinogens 
are ruled out, and so on. Notice how these lead to a severity assessment. 

A relative frequency question of interest that can be answered, at least qualita­
tively, is this: What is the relative frequency with which hypotheses of this sort (x 
causes cancer in humans) pass experimental tests El' ... , En as well as H does, and 
yet do not succeed (tum out to be incorrect)? One minus this gives the severity of 
the test H passes. The question boils down to asking after the severity of the test H 
passes (where, as is common, several separate tests are taken together). 

It does not matter that the hypotheses here differ. Error probabilities of proce­
dures hold for applications to the same or different hypotheses. Neyman (e.g., 1977) 
often discussed the mistake in thinking they hold only for the former. 
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DUHEM, KUHN, AND BAYES 125 

role Salmon gives to plausibility assessments is better accomplished by 
an assessment of the reliability of the tests hypotheses pass, 1 mean to 
show that the latter is all that is needed. 

There are plenty of advantages to the testing account of scientific 
inference. First, by leading to accepting hypotheses as approximately 
correct, as well indicated, or as likely to be successful-rather than 
trying to assign some quantity of support or probability to hypothe­
ses-it accords with the way scientists (and the rest of us) talk. Second, 
reporting the quality of the tests performed provides a way of commu­
nicating the evidence (summarizing the status of the problem to date) 
that is intersubjectively testable. A researcher might say, for example, 
that the saccharin rat study gives good grounds for holding that there 
is a causal connection with cancer in rats, but deny that the corre­
sponding hypothesis about humans has been severely tested. This indi­
cates what further errors would need to be ruled out (e.g., certain 
dose-response models are wrong). 

Now it is open to a Bayesian to claim that the kinds of arguments 
and evidence that I might say give excellent grounds for the correct­
ness of H, for accepting H, or for considering H to have passed a severe 
test can be taken as warranting a high prior probability assignment in 
H. For example, "there are excellent grounds for H" may be construed 
as "H has high prior probability" (say, around .9). (That Bayesians im­
plicitly do this in their retrospective reconstructions of episodes is what 
gives their prior probability assessments their reasonableness.) Used in 
a purely comparative approach such as Salmon's, it might do no harm. 
However, there is nothing Bayesian left in this comparative approach! 
It is, instead, a quantitative sum-up of the quality of non-Bayesian tests 
passed by one hypothesis compared with those passed by another. 
(Whether such a non-Bayesian assessment of Bayesian priors could 
even be made to obey the probability calculus is not clear.) 

To call such an approach Bayesian, even restricting it to compari­
sons, would be misleading. It is not just that the quantitative sum-up 
of H's warrant is not arrived at via Bayes's theorem. It is, as critics of 
error statistics are happy to demonstrate, that the principles of testing 
used in the non-Bayesian methods conflict with Bayesian principles. 15 

(I will have much more to say about this later, e.g., in chapter 10.) The 
Bayesian Way supposes, for any hypothesis one wishes to consider, 

15. To anticipate a little, the Bayesian Way follows the likelihood principle, 
which conflicts with error-probability principles. Quoting Savage: "Practically none 
of the 'nice properties' respect the likelihood principle" (1964, 184). The "nice 
properties" refer to error characteristics of standard statistical procedures, such as 
unbiasedness and significance levels. I return to this in chapter 10. 
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that a Bayesian prior is available for an agent, and that an inference 
can be made. In general, however, there are not going to be sufficient 
(non-Bayesian) grounds to assign even a rough number to such 
hypotheses. We are back to the problem of making it too difficult to 
get started when, as is commonly the case, one needs a forward­
looking method to begin learning something. 

Bayesian Heretics, Fallen and Disgruntled Bayesians 

The Bayesian landscape is littered with Bayesians who variably de­
scribe themselves or are described by others as fallen, heretical, tem­
pered, nonstrict, or whatnot. Many Bayesians in this category came to 
the Bayesian Way in the movements led by Carnap and Reichenbach. 
Assigning probabilities to hypotheses was a natural way of avoiding 
the rigidities of a hypothetico-deductive approach. Inadequacies in the 
two main objective ways philosophers tried to define the prior proba­
bilities-Carnapian logical or Reichenbachian frequentist-have left 
some in limbo: wanting to avoid the excesses of personalism and not 
sure how non-Bayesian statistics can help. Those Bayesians do not see 
themselves as falling under the subjectivist position that I criticized ear­
lier. I invite them to tryout the natural bridge proffered above, to see 
where it may lead. 

What is really being linked by this bridge? Might it be said to link 
the cornerstone of logical empiricism on the one hand and the center­
piece of the New Experimentalism on the other? Such a bridge, as I 
see it, would link the (logical empiricist) view that the key to solving 
problems in philosophy of science is an inductive-statistical account of 
hypothesis appraisal with the view that the key to solving problems in 
philosophy of science is an understanding of the nature and role of 
experiment in scientific practice. It provides a way to model Kuhn's 
view of science-where he is correct-as well as a way to "solve Kuhn" 
where he challenges the objectivity and rationality of science. 

In this chapter and the last I have brought out the main shortcom­
ings of appeals to the Bayesian Way in modeling scientific inference 
and in solving problems about evidence and inference. Understanding 
these shortcomings also puts us in a better position to see what would 
be required of any theory of statistics that purports to take a leading 
role in an adequate philosophy of experiment. For one thing, we need 
an account that explicitly incorporates the intermediate theories of 
data, instruments, and experiment that are required to obtain experi­
mental evidence in the first place. For another, the account must en­
able us to address the question of whether auxiliary hypotheses or ex­
perimental assumptions are responsible for observed anomalies from a 
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DUHEM, KUHN, AND BAYES 127 

hypothesis H, quite apart from how credible we regard hypothesis H. 
In other words, we need to be able to split off from some primary in­
quiry or test those questions about how well run the experiment was, 
or how well its assumptions were satisfied. Let us now turn to an ex­
perimental framework that will lend itself to these requirements. 
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CHAPTER FIVE 

Models of Experimental Inquiry 

The conception of chance enters into the very first steps of scien­
tific activity, in virtue of the fact that no observation is absolutely 
correct. 

-Max Born, Natural Philosophy of Cause and Chance, p. 47 

5.1 OVERVIEW 

IN THE LAST TWO CHAPTERS I have argued that an adequate account of 
experimental testing must not begin at the point where data and 
hypotheses are given, but rather must explicitly incorporate the inter­
mediate theories of data, instruments, and experiment that are re­
quired to obtain experimental evidence in the first place. The account 
must also find places to house the many piecemeal local experiments 
that are needed to link raw data to substantive experimental questions. 
One might describe what is needed as the homes within which experi­
ments "live lives of their own," lives connected to high-level theoriz­
ing, but with their own models, parameters, and theories. To this end, 
I propose we view experimental inquiry in terms of a series of concep­
tual representations or models ranging from the primary scientific 
hypotheses or questions that are being addressed in an inquiry to the 
nitty-gritty details of the generation and analysis of data. For each ex­
perimental inquiry we can delineate three types of models: models of 
primary scientific hypotheses, models of data, and models of experi­
ment that link the others by means of test procedures. Figure 5.1 gives 
a schematic representation: 

... ... 
Primary 

... Experimental ... Data 

Model .... Model .... Model 
.... .... 

FIGURE 5.1. Framework of models. 
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MODELS OF EXPERIMENTAL INQUIRY 129 

Precisely how to break down a given experimental inquiry into 
these models is not a cut and dried affair-most inquiries will call for 
several of each. The main thing is to have at our disposal a framework 
that permits us to delineate the relatively complex steps from raw data 
to scientific hypotheses, and to systematically pose the questions that 
arise at each step. Let us begin with the key questions that would be 
posed. 

1. Primary scientific hypotheses or questions. A substantive scientific in­
quiry is to be broken down into one or more local or "topical" hypothe­
ses, each of which corresponds to a distinct primary question or primary 
problem. In a comprehensive research situation, several different piece­
meal tests of hypotheses are likely to correspond to a single primary 
question. Typically, primary problems take the form of estimating 
quantities of a model or theory, or of testing hypothesized values of 
these quantities. They may also concern the form or equation linking 
theoretical variables and quantities. These problems often correspond 
to questions framed in terms of one or more canonical errors: about 
parameter values, causes, accidental effects, and assumptions involved 
in testing other errors. 

2. Experimental models. The experimental models serve as the key 
linkage models connecting the primary model to the data, and con­
versely. Two general questions are how to relate primary questions to 
(canonical) questions about the particular type of experiment at hand, 
and how to relate the data to these experimental questions. 

3. Data models. Modeled data, not raw data, are linked to the experi­
mental models. Accordingly, two questions arise, one before the data 
are collected-"before-trial"-and one after the data are in hand­
"after-trial." The before-trial question is how to generate and model 
raw data so as to put them in the canonical form needed to address the 
questions in the experimental model. The after-trial question is how 
to check whether actual data satisfy various assumptions of experi­
mental models. 

Table 5.1 summarizes these questions. Clearly, the answers to these 
questions depend on what one wants to learn in a given inquiry as 
well as on the methodological strategies and tools that are available for 
investigating the primary questions. Different principles of experimen­
tal methodology relate to one or more of these questions, and method­
ological rules should be assessed in relation to these tasks. 

This framework of models does double duty for my account: it pro­
vides a means for spelling out the relationship between data and 
hypotheses-one that organizes but does not oversimplify actual sci-
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TABLE 5.1 

PRIMARY MODELS 

How to break down a substantive inquiry into one or more local questions that can be 
probed reliably 

EXPERIMENTAL MODELS 

How to relate primary questions to (canonical) questions about the particular type of 
experiment at hand 

How to relate the data to these experimental questions 

DATA MODELS 

How to generate and model raw data so as to put them in canonical form 

How to check if the actual data generation satisfies various assumptions of 
experimental models 

entific episodes-and it organizes the key tasks of a philosophy of ex­
periment. 

The idea of appealing to something like the above framework of 
models is hardly new. A formal analog is found in standard statistical 
inference. I am not the first to notice this. Patrick Suppes was. In his 
short but seminal paper "Models of Data," he remarks that 

it is a fundamental contribution of modern mathematical statistics to 
have recognized the explicit need of a model in analyzing the signifi­
cance of experimental data. (Suppes 1969, 33) 

Because it is always a model of data that links experiment to theories, 
Suppes proposes "that exact analysis of the relation between empirical 
theories and relevant data calls for a hierarchy of models" of different 
types (p. 33): models of data, models of experiment, and models 
of theories. The Suppean idea that understanding the relationship 
between theory and experiment calls for investigating the linkages 
between models of data and other models in this hierarchy, while in 
marked contrast with the more traditional approaches of the time, 
struck a chord when I was first introduced to statistics in graduate 
school. It still does. 

More recently, Suppes's framework has gained currency from de­
velopments on the semantic view of theories (Suppes's view is one 
variant), as noted by Fred Suppe (e.g., 1977, 1989) and Bas van Fraas­
sen (1989).1 Proponents of the semantic view of theories convincingly 
argue that it promotes a more realistic picture of the relationship 
between theories and experiment than the so-called received 

1. A fuHlist of contributors to the semantic approach and an in-depth discus­
sion of the specific developments can be found in Fred Suppe's work. A good part 
of the attention has been to employ the semantic view to promote realism (e.g., 
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MODELS OF EXPERIMENTAL INQUIRY 131 

view. The last section of Suppes's "Models of Data" merits quoting at 
length: 

One of the besetting sins of philosophers of science is to overly sim­
plify the structure of science. Philosophers who write about the repre­
sentation of scientific theories as logical calculi then go on to say that 
a theory is given empirical meaning by providing interpretations or 
coordinating definitions for some of the primitive or defined 
terms .... What I have attempted to argue is that a whole hierarchy 
of models stands between the model of the basic theory and the com­
plete experimental experience .... For each level ... there is a theory 
in its own right. Theory at one level is given empirical meaning by 
making formal connections with theory at a lower level. ... Once the 
empirical data are put in canonical form (at the level of model of data 
... ), every question of systematic evaluation that arises is a formal 
one .... It is precisely the fundamental problem of scientific method 
to state the principles of scientific methodology that are to be used to 
answer these questions-questions of measurement, of goodness of 
fit, of parameter estimation, of identifiability, and the like. (Suppes 
1969, 34) 

In saying that these principles are formal, Suppes means "that they 
have as their subject matter set-theoretical models and their compari­
son" (p. 34). A goal of Suppes's program is to articulate the formal, set­
theoretical relationships between the models involved-something he 
masterfully pursued. 

However, "the principles of scientific methodology that are to be 
used to answer these questions" are open to controversy, and to flesh 
them out and assess their epistemological rationale requires going be­
yond the set-theoretical relationships between models. In any case, I 
am much less concerned with the possibility of specifying the set­
theoretic relationships of these models than in using them to embark 
upon the kind of philosophy of experiment I have been sketching. My 
interest is in how the various models of inquiry offer a framework for 
canonical models of error, methodological rules, and theories of statis­
tical testing. Except for the level of data models, Suppes's "Data Mod­
els" is fairly sketchy; much filling in is in order. Since my chief interest 
is in the relationships between the models, particularly between 
the data models and the primary models, my emphasis will be on 
these linkages. The list of questions in table 5.1 is a guide to adapting 
Suppes's hierarchy of models to our purposes. 

Giere 1988, Suppe 1989) or antirealism (e.g., van Fraassen 1989). The semantic 
view has also been adopted and developed by a number of philosophers of biology 
(e.g., Beatty 1980, Lloyd 1988, and Thompson 1988). 
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132 CHAPTER FIVE 

Before turning to that adaptation, here is a summary of the ground 
to be covered in this chapter. In section 5.2, I will discuss the details of 
Suppes's hierarchy of models and then adapt that framework to the 
present project. In section 5.3, I will use the hierarchy of models devel­
oped in section 5.2 to trace the main tasks of an epistemology of exper­
iment. In section 5.4, I will illustrate a canonical inquiry into an error 
concerning "chance effects." And in section 5.5, I will attempt to de­
mystify and justify the roles of probability models and relative fre­
quency notions in experimental reasoning. The reader hungry for a 
full-blown scientific example may wish to turn to chapter 7 following 
section 3 (or before). 

5.2 A SUPPEAN HIERARCHY OF MODELS 

The top of Suppes's hierarchy is occupied by the primary model being 
evaluated (his example is a linear response model from learning the­
ory). Beneath this are models of experiment and models of data, then 
a level of experimental design and a level of data generation. At the 
bottom are extraneous ceteris paribus conditions. Associated with each 
type of model is a theory in its own right: the primary theory of inter­
est, theory of experiment, theory of data, and finally, theory of experi­
mental design and data analysis. 

The Suppean hierarchy begins with a problem: Experimental data 
are to be used to assess values of theoretical quantities, despite the 
fact that the data constitute only a finite sample of outputs from the 
experimental system, the accuracy, precision, and reliability of which 
are limited by various distortions introduced by intermediary processes 
of observation and measurement. Data are finite and discrete, while 
primary hypotheses may refer to an infinite number of cases and in­
volve continuous quantities such as weight and temperature. The 
problem is how to link the detailed raw data to primary theoretical 
hypotheses. 

Let us draw from an example to be considered in more detail later 
(chapter 8). The substantive theory is Einstein's theory of gravitation. 
A single question that may be split off for testing might concern a pa­
rameter A, the mean deflection of light at the limb of the sun. Jumping 
down to the other end of the experimental spectrum is the description 
of the experimental apparatus, and the means by which raw data were 
obtained and analyzed. The following is a snippet from the celebrated 
account of the expedition to Sobral, Brazil, during the eclipse of 1919: 

When the crescent disappeared the word "go" was called and a met­
ronome was started by Dr. Leocadio, who called out every tenth beat 
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MODELS OF EXPERIMENTAL INQUIRY 

during totality, and the exposure times were recorded in terms of 
these beats. It beat 320 times in 310 seconds .... The plates remained 
in their holders until development, which was carried out in conve­
nient batches during the night hours of the following days, being 
completed by June 5 .... On June 7 ... we left Sobral for Fortaleza, 
returning on July 9 for the purpose of securing comparison plates of 
the eclipse field. Before our departure we dismounted the mirrors 
and driving clocks which were brought into the house to avoid expo­
sure to dust. The telescopes and coelostats were left in situ. (Dyson, 
Eddington, and Davidson 1920, 299-301) 

133 

A wide gap exists between the nitty-gritty details of the data gathering 
experience and the primary theoretical model of the inquiry. The result 
of this gap, in Suppes's terminology, is that "a possible realization 
[model] of the theory cannot be a possible realization [model] of ex­
perimental data" (Suppes 1969,26). Two additional models are there­
fore introduced: experimental models and data models. It is through 
these "linkage models" that experimental methodology links data and 
theories. 

Nothing turns on whether we choose to array the models of in­
quiry into a hierarchy or into something like the flow chart in figure 
5.1. Our present purposes are best served by Suppes's hierarchical de­
sign. The idea is that as one descends the hierarchy, one gets closer to 
the data and the actual details of the experimental experience. In addi­
tion, hypotheses at one level are checked as well as applied by making 
connections to the level below. I will consider each link in turn. 

Experimental Models 

The experimental model, the first step down from the primary hy­
pothesis or theory, serves two chief functions. First, an experimental 
model provides a kind of experimental analog of the salient features of 
the primary model. In this way the primary question or hypothesis 
may be articulated with reference to the kind of experiment being con­
templated, the number of trials, the particular experimental character­
istics to be recorded (experimental statistics). If the primary question 
is to test some hypothesis H, the job of the experimental model is to 
say, possibly with the aid of other auxiliary hypotheses, what is ex­
pected or entailed by the truth of H, with respect to the kind of experi­
ment of interest. But this stated expectation, at the level of the experi­
mental model, still retains the main idealizations of the primary 
hypothesis (e.g., frictionless planes, perfect control). It is not yet a 
statement of the actual experimental outcome. If the primary hypothe­
sis is Einstein's law of gravitation, and the contemplated test is on de­
flection of starlight, an experimental prediction might hypothesize 
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134 CHAPTER FIVE 

what the mean deflection would be for light right at the edge or "limb" 
of the sun, even though no actual experiment will observe this. 

This first function of the experimental model, then, involves speci­
fying the key features of the experiment, and stating the primary ques- . 
tion (or questions) with respect to it. 

Experimental models, as I see them, serve a second function: to 
specify analytical techniques for linking experimental data to the ques­
tions of the experimental model. Whereas the first function addresses 
the links between the primary hypotheses and experimental hypothe­
ses (or questions), the second function concerns links between the ex­
perimental hypotheses and experimental data or data models. In hous­
ing this second function within experimental models I seem to be going 
beyond Suppes's scheme, but not in any way that prevents us from 
keeping to the broad outlines of his conception. 

What do the linkages of the second kind look like? Suppose the 
primary question is a test of a hypothesis. Because of the many sources 
of approximation and error that enter into arriving at the data, the 
data would rarely if ever be expected to agree exactly with theoretical 
predictions. As such, the link between data model and experimental 
hypothesis or question may often be modeled statistically, whether or 
not the primary theory or hypothesis is statistical. This statistical link 
can be modeled in two ways: the experimental prediction can itself be 
framed as a statistical hypothesis, or the statistical considerations may 
be seen to be introduced by the test (in its using a statistical test rule). 

To refer to the example of the predicted deflection of light, the 
first way of modeling the relationship between the data model and 
experimental hypothesis would be to regard the prediction as includ­
ing a margin of error (e.g., the Einstein prediction might be that "the 
mean deflection of light is 1.75/1 plus or minus some experimental er­
ror"). The second way would regard the predicted deflection as 1. 7 5/1, 
but then classify the data as in accordance with that prediction so long 
as it did not differ by more than some margin of experimental error. 
Either way, the primary hypothesis may be seen to entail something 
about the probability with which certain experimental results would 
occur. This is an experimental distribution-and it is in terms of the ex­
perimental distribution (in the experimental model) that the primary 
question is asked and answered. More exactly, when the primary ques­
tion is tackled it is by means of a hypothesis about an experimental 
distribution (Le., a statistical hypothesis). 

In specifying a test, the experimental model also includes some 
experimental measure offit or distance by which to compare the experi­
mental hypothesis and the data model. One example is a significance 
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MODELS OF EXPERIMENTAL INQUIRY 135 

level (discussed in chapter 3 and more fully later in this chapter); an­
other would be the number of probable errors (between a hypothe­
sized and an observed quantity). Commonly, a test's job would be to 
specify which distances to count as "in accordance with" a given hy­
pothesis, and which not to count. In an estimation problem, the exper­
imental model supplies a rule for using the modeled data to arrive at 
an inference about the value of a parameter being estimated. Gener­
ally, the inferred estimate is of a range or interval of values. 

According to the present account, the overarching criterion in per­
forming the analytical function of an experimental model is that of 
reliability or severity. The concern is that estimators are not sufficiently 
reliable or that tests are not sufficiently probative to test severely 
hypotheses of interest. Principles of statistical inference enter at the 
level of the experimental model to address these worries. (Since test 
problems can be converted to estimation problems, severity serves to 
cover both.) 

I follow Suppes in distinguishing experimental models from exper­
imental design, which occurs two levels lower in the hierarchy. This 
distinction reflects statistical practice and will be explained more fully 
after we have considered data models. 

Data Models 

Data models, not raw data, are linked to the questions about the 
primary theory, and a great deal of work is required to generate the 
raw data and massage them into the canonical form required to actu­
ally apply the analytic tools in the experimental model. What should 
be included in data models? The overriding constraint is the need for 
data models that permit the statistical assessment of fit (between pre­
diction and actual data) just described. A common practice in statistics 
is to seek data models that parallel the relevant features and quantities 
of the primary hypothesis for which they are to provide information. 
For instance, if the primary question concerns the mean value of a 
quantity f,L, a characteristic of the data might be the corresponding 
sample mean abbreviated as X, read "x-bar." 

Let us return to the account of the photographs discussed from 
Sobral. Of the eight photographs taken during the eclipse, seven gave 
measurable images of these stars. These measurements of apparent star 
positions did not yet yield data on light displacement. "The problem was 
to determine how the apparent positions of the stars, affected by the 
sun's gravitational field, compared with the normal positions on a pho­
tograph taken when the sun was out of the way" (Eddington [1920] 
1987,115). 
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136 CHAPTER FIVE 

Plates of the same field taken under nearly similar conditions ... 
were taken on July 14, 15, 17 and 18 ... for comparison with the 
eclipse plates .... The micrometer at the Royal Observatory is not 
suitable for the direct comparison of plates of this size. It was there­
fore decided to measure each plate by placing, film to film upon it, 
another photograph of the same region reversed by being taken 
through the glass [the scale plate] .... The measures, both direct and 
reversed [through 180 degrees], were made by two measurers (Mr. 
Davidson and Mr. Furner), and the means taken. (Dyson, Eddington, 
and Davidson 1920, 302) 

This is followed by a page with a vast array of measurements recording 
the positions of the seven stars in the eight eclipse plates and in the 
seven comparison plates. These measures provide the raw data on dis­
placement, but simply looking at this vast array researchers could not 
see what the "observed" mean deflection was. They needed a tech­
nique of data analysis that would let them infer this observation. Con­
sulting their "experimental tool kits," as it were, they employed a stan­
dard statistical technique known from other astronomical problems, 
and arrived at an estimated mean deflection. This estimated deflection 
gave them the needed modeled data. (I discuss this further in chap­
ter 8.) 

This estimated deflection is more accurate than the individual 
measurements by themselves. In this sense, we come out of the statisti­
cal analysis with more than we put inl The estimate we come out with 
is actually a hypothesis (in the theory of the data) that says something 
about what deflection value would have resulted had more accurate and 
precise measurements been made. 

This hypothesis about the data, however, holds only if certain as­
sumptions are met. This brings us to the key function of data models. 
The statistical prediction in the experimental model relates to canoni­
cally modeled data, that is, to data models. But in order for the compar­
ison offered by the statistical link in the experimental model to go 
through, the assumptions of the experimental model must hold suffi­
ciently in the actual experiment. There are two ways to do this. One is 
to design an experiment that conforms sufficiently to the assumptions. 
The second is to find a way (through corrections or whatever) of arriv­
ing at a desired data statement that effectively subtracts out (or renders 
harmless) any violation of assumptions. This second way suffices be­
cause it supplies a statement of what the data would have been were 
the assumptions actually met. So another "would have been" enters. 
Often one can take one's pick: one can either utilize theories of experi­
mental design to get data that pretty well conform to assumptions, or 
utilize theories of data analysis to arrive at cleaned-up data. Whether 
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MODELS OF EXPERIMENTAL INQUIRY 137 

it is through literal manipulation or Nwould have been" reasoning, the 
upshot, in Suppes's terminology, is to turn the actual data into a model 
of the data. 

In complex cases, as with the eclipse experiments, both careful 
design and extensive use of after-trial corrections are needed. With 
respect to the Sobral plates alluded to above, the researchers reported: 

The probable error of the result judging from the accordance of the 
separate determinations is about 6 per cent. It is desirable to consider 
carefully the possibility of systematic error. The eclipse and compari­
son photographs were taken under precisely similar instrumental 
conditions, but there is the difference that the eclipse photographs 
were taken on the day of May 29, and the comparison photographs 
on nights between July 14 and July 18. A very satisfactory feature of 
the photographs is the essential similarity of the star images on the 
two sets of photographs. (Dyson, Eddington, and Davidson 1920, 
306) 

The eclipse researchers' determination of this Nessential similarity" 
used a standard technique of statistical analysis. Such standard statisti­
cal tests (e.g., tests of goodness of fit) are used to check assumptions of 
experimental data models, once the results are in (Le., after-the-trial). 

The task qf checking assumptions may be regarded as a secondary 
experimental question in relation to the primary one. (Or if one 
chooses, this task may be set out as a distinct primary question.) Gener­
ally, the modeled data intended for the primary question must be re­
modeled to ask this secondary question. In the eclipse experiment, the 
data for the primary question condensed the data from individual stars 
into an estimated mean deflection. When it comes to the secondary 
question, the relevant data are the uncondensed data reporting the 
observed positions of the individual seven stars in the eclipse plates. 
These remodeled data were then compared with the positions observed 
in the comparison plates. NThe satisfactory accordance of the eclipse 
and comparison plates is shown by a study of the plate constants" (Dy­
son, Eddington, and Davidson 1920, 306). 

In contrast to these results, when it came to checking experimental 
assumptions on a second set of photographs from Sobral, no such satis­
factory accordance could be shown. Instead, this second set revealed 
violations of key experimental assumptions, and on these grounds was 
discounted. The validity of discounting this second set was of particular 
interest because it appeared to yield an estimate in accord with the 
NNewtonian" rather than the Einstein prediction. (More on this in 
chapter 8.) 

The extensive battery of low-level tests of experimental assump-
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138 CHAPTER FIVE 

tions, while typically overlooked in philosophical discussions, occupies 
center stage in an approach that properly recognizes the importance of 
data models. (These tests deal with the fourth type of error in my list: 
violations of experimental assumptions.) For Suppes, a complete de­
scription of models of data should include a delineation of the statistical 
tests that hypothesized data models would have to pass. The secondary 
tests generally demand less stringent standards than the primary 
ones-thanks to certain robustness arguments. In Suppes's learning 
theory example, one of the checks concerns "stationarity," whether 
the conditional relative frequency of a reinforcement is constant over 
the trials. An assertion like "with respect to stationarity the data are 
satisfactory" is generally all that is required to rule out each of the ways 
data could fail to be a model of data for an experiment. Typically, the 
tests of assumptions are applications of the same kinds of statistical 
tests that are used in testing primary claims, so discussing these does 
double duty. In this book I will only be able to discuss tests of assump­
tions of this type. There is also a large battery of tests designed specifi­
cally to test assumptions (e.g., runs tests), which would certainly need 
to be included in a full-blown experimental account. 

Checking assumptions does not always call for running explicit sta­
tistical tests. In many experimental contexts this can be accomplished 
by formal or informal checks of instruments used in data generation. 
An aberrant instrumental measurement can often be discerned right 
off. Nor am I saying that in practice elaborate checks are always needed 
to affirm that the experimental assumptions are satisfactorily met. The 
theory of experimental design and data generation may be so well un­
derstood and well checked that they are already known to produce 
data that would pass the tests (at the level of the data model). (Or if 
not, it may often be argued, the error is almost sure to come to light 
before any damage is done.) This is the key value of standard statistical 
mechanisms for data generation-which I will return to in section 5.5. 

Admittedly, I am only scratching the surface here. A full-blown 
philosophy of experiment calls for much more work in explicating the 
formal tests and the informal reasonings that go into checking experi­
mental assumptions. This work would take place at the lowest levels 
of the hierarchy, which I will combine into one. 

Experimental Design, Data Generation, and Ceteris Paribus 

An important first step has already been taken by some of the New 
Experimentalists. They have given us experimental narratives chock­
full of discussions of laboratory equipment and instrumental devices. 
It is the relationship between these tools and the overall experimental 
reasoning that has not been explored in any systematic way. This can 
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MODELS OF EXPERIMENTAL INQUIRY 139 

be remedied, I believe, by considering how the various methods for 
planning and carrying out the generation of data-the theory of the 
experimental design-relate to satisfying the requirements of the 
canonical data models. 

To some extent, the difference between the typical experimental 
narrative and what I am calling for is a matter of emphasis. For ex­
ample, an important consideration under experimental design would 
be various protocols for instrumentation-something already found in 
many narratives-but the emphasis should be on how these protocols 
bear on experimental assumptions, for example, assessing experimen­
tal errors, making any needed adjustments, circumventing pitfalls. In­
formation, say, about how the eclipse and scale plates were held to­
gether, about temperature, about exposure times, and so on would be 
relevant because these factors were vital in reaching probable errors 
and in answering charges about the influence of extraneous factors. In 
a very different sort of inquiry, considerations of experimental design 
would include procedures for assigning subjects to treatments, because 
that bears directly on an assumption of random selection in the data 
model. 

In short, what we need to extract from the experimental experi­
ence under the rubric of "experimental design" are all of the considera­
tions in the data generation that relate explicitly to the recorded data, 
that is, to some feature of the data models. But there are also numer­
ous and sundry factors that are not incorporated in any of the models 
of data for assessing the primary hypothesis. These are the leftovers 
that Suppes places under the heading of the ceteris paribus conditions 
of an experiment. "Here is placed every intuitive consideration of ex­
perimental design that involves no formal statistics" (Suppes 1969, 
32)-for example, the control of bad odors, the time of day, noises, the 
sex of investigator-where these are not incorporated in models of 
data. Suppes creates a distinct level for these ceteris paribus condi­
tions-the idea being that they are assumed to hold or be controlled 
and are not explicitly checked. For two reasons I think it is better to 
include them with experimental design: First, even those features of 
data generation that do relate explicitly to data models need not always 
be checked by formal statistics. Second, features assumed to be irrele­
vant or controlled may at a later stage turn out to require explicit scru­
tiny. For example, the sex of an experimenter in a study on human 
subjects may not be explicitly incorporated in a data modeL and 
thereby placed under ceteris paribus, yet a suspected influence of gen­
der on a subject's response may later be studied as a possible obstacle 
to satisfying the experimental model assumptions. 

Experimental design and ceteris paribus both concern possible flaws 
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TABLE 5.2 Hierarchy of Models of Inquiry 

PRIMARY MODELS 

Break down inquiry into questions that can be addressed by canonical models for 
testing hypotheses and estimating values of parameters in equations and theories 

Test hypotheses by applying procedures of testing and estimation to models of data 

Tjipical form of errors: Hypothesis is false: a discrepancy of a exists, the difference 
between modeled data and hypothesis exceeds 8, form of model or equation is 
incorrect, H fails to solve a problem adequately 

MODELS OF EXFERIMENTS 

Break down questions into tests of experimental hypotheses, select relevant canonical 
models of error for performing primary tests 

Specify experiments: choice of experimental model, sample size, experimental 
variables, and test statistics 

Specify analytical methods to answer questions framed in terms of the experiment: 
choice of testing or estimating procedure, specification of a measure of fit and of test 
characteristics (error probabilities), e.g., significance level 

Specification errors: Experimental specifications fail to provide a sufficiently 
informative or severe test of primary hypotheses, unable to assess error 
probabilities 

MODELS OF DATA 

Put raw data into a canonical form to apply analytical methods and run hypothesis tests 

Test whether assumptions of the experimental model hold for the actual data (remodel 
data, run statistical tests for independence and for experimental control), test for 
robustness 

Tjipical errors: Violations of experimental assumptions 

EXPERIMENTAL DESIGN, DATA GENERATION, AND CETERIS PARIBUS CONDITIONS 

Planning and executing data generation procedures: 

Introduce statistical considerations via simulations and manipulations on paper or on 
computer 

Apply systematic procedures for producing data satisfying the assumptions of the 
experimental data model, e,g., randomized treatment-control studies 

Insure the adequate control of extraneous factors or estimate their influence to 
subtract them out in the analysis 

in the control of the experiment-auxiliary factors that might be con­
fused with those being studied. An adequate account of an experimental 
inquiry requires explicating all the considerations, formal and informal, 
that bear on the assumptions of the data from the experiment. 

Table 5.2 is my version of Suppes 1969, page 31, table 1. It gives a 
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MODELS OF EXPERIMENTAL INQUIRY 141 

rough idea of how the key models of inquiry organize the problems 
and errors in experimental inquiry. It corresponds to the list of ques­
tions delineated in table 5.1. While I am filling out Suppes's delineation 
a good deal, I do not think it differs substantially from what he has in 
mind. (See also table 7.2.) 

Now for an example. Although I have already drawn from the 
edipse experiments on the deflection of light, they are too complex to 
fill out now, when what we want are the bare bones of the hierarchy. 
A simpler example with a lower level theory is needed. The following 
example has the additional merit of illustrating a canonical type of in­
quiry when causal knowledge is sought-one based on a standard 
treatment-control study. 

Example 5.1: Birth Control Pills 

The following passage comes from a review of the evidence from 
studies conducted in the United States in the 1960s and 1970s on the 
relationship between oral contraceptives and blood-dotting disease: 

A study from Puerto Rico by Fuertes, et aI., which was a randomized 
controlled trial of oral contraceptives, has reported no increased inci­
dence o/thromboembolic disease in persons taking the oral contraceptives . ... 
This experiment is often cited as evidence that the case-control stud­
ies from the United States and from England ... may be finding a 
spurious association. (Stolley 1978, 123) 

The primary analysis in a large study by Fuertes et al. (1971) was to 
test whether taking birth control pills causes an increased incidence of 
a blood-dotting disorder in the population of women, or whether the 
increases observed in some studies are really spurious. I discuss this 
example in some detail in Mayo 1985b, but our present purpose re­
quires only a sketch. 

Primary Question. We can state the primary hypothesis as a question: is 
there an increased risk of developing a blood-dotting disorder among 
women who use the pill (for a specified time)? Would it be an error, 
our question asks, to suppose that the risk of a dotting disorder is no 
greater among pill takers than among non-pill takers? We are entitled 
to infer that a genuine increased risk exists only to the extent that we 
can rule out this error. The hypothesis that the risk is no greater among 
pill users ("the treated group") than among nonusers . ("the control 
group") is the test or null hypothesis here. That is, 

Ho: the incidence of clotting disorders in women treated (with the 
pill) does not exceed the incidence among the controls. 
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If (J.T is the average or mean incidence of clotting disorders among pill 
users and (J.c that among nonusers, the question of interest may be 
framed as concerning a parameter a, the difference in average inci­
dence rates (Le., a = (J.T - (J.c)' The question in this study concerned 
the error of supposing Ho (no increased risk) when in fact there is a 
positive increase in risk. The assertion of a positive increase in risk is 
the alternative hypothesis to the null hypothesis Ho' Whereas Ho asserts 
that a = 0, the alternative, which we can abbreviate as H', asserts that 
a > o. So we can represent the primary question as a test of Ho against 
H'. That is, 

Primary question: test Ho: a = 0 versus H' : a > O. 

Experimental Model. An experiment is specified to include two groups 
of women, say, with 5,000 in each group. What does our test hypothe­
sis Ho predict about the results of this study? An idea from statistics is 
to represent the experiment as observing an experimental statistic, a 
function of the experiment, that parallels the population parameter 
a-the difference in the population means. The standard statistic cho­
sen is the difference in the observed rates of a blood-clotting disease in 
the two groups. Let XT represent the observed proportion with a clot­
ting disease in the treated group, and Xc the observed proportion with 
the disease in the control group. Then the test statistic is XT - Xc' This 
difference in the proportions with clotting disease may be called the 
risk increase RI. That is, 

Test statistic (risk increase) RI: XT - Xc 

Suppose that Ho is true, and that the mean (or "expected") risk of 
clotting disease is the same in both treated and nontreated women. 
Then hypothesis Ho predicts that if the two groups of women had the 
same chance of suffering a blood-clotting disorder at the start of the 
experiment, and if the only relevant difference introduced over a pe­
riod of years is that one group is given birth-control pills, then the 
two groups would still have about the same chance of a blood-clotting 
disorder. However, even if Ho is true (and the treated and untreated 
groups have the same chance of a blood-clotting disorder), the actual 
data, that is, the value of RI, is not expected to be exactly O. Some 
experiments might yield an RI of 0, others will exceed 0, others will be 
less than O. However, on the average, RI would be O. That is, if we imag­
ine the hypothetical population of experiments that consist in observ­
ing RI, under the assumptions of this experiment, the average value 
will be 0 if Ho is true. 
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We can say more about what it would be like in a hypothetical 
series of experiments on a population where Ho is true and RI calcu­
lated. We can say about each possible value of statistic RI how probable 
that outcome would be under Ho. A statement of the probability associ­
ated with each value of a statistic is what I call its experimental distribu­
tion. (I prefer this to its official name, the sampling distribution.2 ) The 
truth of Ho (together with experimental assumptions) entails the ex­
perimental distribution of statistic RI. 

Given the predicted experimental distribution we can define a 
standard measure of fit or distance between Ho and statistic RI. A natu­
ral measure would be the difference between the experimental risk 
increase RI and the expected or predicted increase according to Ho 
(namely, 0). That is, 

Distance from Ho = observed RI - expected RI (Le., 0). 

The further away from 0 the risk increase RI is observed to be, the 
worse is the fit between the data and what is expected if Ho is true. 
For each possible fit, for each possible distance between RI and 0, the 
experimental distribution of RI gives us the probability of a worse fit, 
given that hypothesis Ho is true. This is the significance level of the dif­
ference. 

The test may simply report the significance level of the difference 
observed, or it may specify a cutoff beyond which the fit is so poor as 
to lead to rejecting Ho and passing alternative H', that d > o. (A differ­
ence that reaches this cutoff is also said to be statistically significant.) A 
central concern is that the experimental test provide a severe test of 
whatever hypothesis passes. In a test such as this one, where the effect 
of interest is likely to be small, a common mistake is that the sample 
size is not large enough to have detected an increased risk even if there 
is one. The possibility of this mistake needs to be investigated in the 
eventuality that the observed RI is not statistically significantly differ­
ent from o. I shall return to the Fuertes study (section 6.5) in tackling 
the problem of insufficiently severe tests. 

Data Model. Approximately 10,000 women were randomly assigned to 
either the treated group or the control group, each with approximately 
5,000 women. The recorded data, the data model, is the value of RI 
obtained once the experiment has been run and the results observed. 

2. My reason for this preference is that experimental distributions (distribu­
tions of experimental statistics) are utilized in science in contexts not ordinarily 
construed as sampling from a population. 
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We can abbreviate the observed value of RI as RIobs. Its actual value in 
this study was 0.0002. 

Data model: the observed value of the risk increase: RIobs (e.g., 
0.0002). 

In order for R10bs to be used to test H, it must satisfy adequately the 
assumptions of a comparative or treatment-control random experiment. 

Separate tests for each such assumption may be carried out. To en­
sure that the treated and control women were sufficiently homoge­
neous with respect to the chance of suffering a blood-clotting disorder, 
the researchers tested a series of hypotheses that were themselves ex­
amples of null or "no effect" hypotheses: that the two groups do not dif­
fer significantly with respect to year of admission, age, number of preg­
nancies, last school year completed, income, years of marriage, and 
other factors thought to be relevant to clotting disorders. They found no 
significant difference between the treated and control groups on any 
of these factors. They found, in short, that the assumption of no differ­
ence on each of these factors was sufficiently met in their experiment. 

Experimental Design, Data Generation, and Ceteris Paribus. Experimental 
design includes all of the pretrial methods aimed at producing a sample 
that satisfies the assumptions of a comparative-randomized study, for 
example, randomized assignment of subjects into treated and control 
groups, use of placebos, blindness of subjects and doctors. Notice that 
these methods correspond to the goal of satisfying the experimental 
assumptions-the assumptions that are tested by the series of signifi­
cance tests at the level of the data models. After-trial corrections (e.g., 
eliminating certain subjects) may also be called for. 

Then there is the array of extraneous factors assumed to be either 
irrelevant to the effect of interest or satisfactorily controlled. The cor­
rectness of this assumption itself can, in principle, come up for ques­
tioning after-the-trial. In this study extraneous factors would include 
those not likely to have been recorded, such as hair color, patient 
height, astrological sign. 

5.3 THE HIERARCHY OF MODELS AND THE TASKS OF AN 

EPISTEMOLOGY OF EXPERIMENT 

This framework of models of experimental inquiry does double duty 
for my account: it provides a means for setting out the relationship 
between data and hypotheses that organizes but does not oversimplify 
the complexities of actual experimental inquiries, and it provides a 
framework to address systematically the key tasks of an epistemology 
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of experiment thus far sketched out. The sampling that follows, which 
shows some of the ways it does this, is also a preview of some of the 
problems yet to be taken up in this book as well as the many tasks that 
still lay ahead for this experimental program. 

Vague Statements of Data or Evidence Will Not Do 

Recognizing the need for each step in the hierarchy should ward 
off the central ambiguities and oversimplifications of approaches that 
try to articulate some general relationship between data and hypothe­
sis. In particular, it checks the tendency to blur the different types of 
data that arise as evidence in a substantive scientific appraisal. The' 
framework being proposed not only requires that references to "data" 
be situated within a specific inquiry, but also that they be attached to 
a particular level and model of that inquiry. 

Take the example of the use of observations and measurements 
from a single eclipse expedition to address questions about Einstein's 
law of gravitation. The "data" may refer to at least this many different 
things: (a) the raw measurements of the positions of a group of stars 
before and after the eclipse; (b) the estimate, resulting from data analy­
sis (least squares averaging, error corrections) of the deflection of light 
observed for the actual stars measured (which were at least two times 
the solar radius away from the sun);3 (c) the estimate, using the data 
in (b), of the deflection that would have been observed at the limb of 
the sun, together with its standard errors; or (d) the estimate, using 
results in (c), of the deflection due to the sun's gravitational field. These 
different data statements roughly correspond to the results of the the­
ory of experimental design, the data models, and [(c) and (d)] to two 
experimental models.4 

It follows that epistemologists of experiment need to be able to 
cope with real data and methods for their analysis, not only to have 
anything genuinely relevant to say about how to conduct inquiries, 
but also to understand historical episodes in science. 

Canonical Experimental Questions 

Breaking down a substantive inquiry into the framework of a hier­
archy of models is needed to render the analysis tractable, but not just 

3. This can also be stated counterfactually as the deflection that would have 
been observed had repeated measurements been made. It too is an inference. Note 
that this is an example of how a more reliable observation can arise from inferences 
built on less reliable ones. 

4. Basically, statement c corresponds to an estimation of the mean deflection 
of light at the limb of the sun, statement d to a test (or estimation) of the mean 
deflection of light (at the limb of the sun) that is due to the sun's gravitational field. 
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any delineation will do. Hark back to our recasting of Kuhn's demarca­
tion of good scientific inquiries: in a good inquiry it must be possible 
to learn from failures. As such, we said, the criteria of good normal 
science (good standard testing) direct us to become appropriately small 
in our questioning. There is nothing about this framework that re­
quires starting from the scientific hypotheses and working one's way 
down to the data. A familiar situation is to start with some data model 
and then ask, of what experimental hypothesis could these data be 
regarded as having provided a good test? In an appropriately specified 
experimental model, the answer feeds up to the primary hypothesis as 
well. But it may turn out that only some more restricted hypothesis 
has been well tested. 

There is a variant on this strategy that needs emphasis. Here, one 
starts out by surveying the feasible experimental models and the ques­
tions they allow to be posed, and then designs the primary hypotheses 
so that these questions are applicable. Suppose, for example, that the 
only feasible experimental question would be to ask, retrospectively, 
whether women with blood-clotting disorders had had exposure to 
oral contraceptives. Then one might choose to pose a primary question 
about the existence of such an association, rather than about a causal 
connection (where a prospective study is wanted). 

These considerations lead me to introduce the idea of canonical ex­
perimental questions. One set of (sufficient but not necessary) conditions 
that would make questions standard or canonical is that (1) they corre­
spond to questions of interest in a large variety of inquiries, (2) they 
are associated with standard experimental design techniques known 
to make it likely that assumptions are sufficiently met, (3) they are 
open to applying standard statistical tests (e.g., goodness-of-fit tests) to 
check systematically experimental assumptions, and (4) there are well­
understood methods of estimation and testing that link data models 
with answers to the canonical question. 

Clearly, an adequate experimental inquiry will often have to pose 
several different primary questions whose answers are inputs into 
other inquiries. But the complexity of the story pays off in terms of 
understanding actual inquiries and disputes. It is also the key to grap­
pling with a number of philosophical problems. 

The Three Decisions 

In chapter 1 we discussed Popper's "three decisions" and the prob­
lems each raised for his account. They were: falsifying (or, more gener­
ally, testing) statistical claims, arriving at test statements, and ruling 
out alternative auxiliary factors. These correspond most nearly to the 
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problems addressed by theories of experiment (or experimental test­
ing), data, and experimental design, respectively. 

For example, the problem of articulating what counts as a genuine 
or severe test-a problem Popper never satisfactorily solved-will be 
addressed within a theory of testing based upon standard error statis­
tics (in the next chapter). Considerations of severity are the pivot point 
around which the tasks at the levels of data models and experimental 
design will turn. Where the need for reliable test statements and IIfalsi­
fying hypotheses" were embarrassments for Popper, and where auxil­
iaries posed an insuperable threat, tools for achieving reliable (mod­
eled) data and adequate experimental control are seat-of-the-pants 
techniques of data analysis and experimental design. 

Duhemian Problems Revisited 
Suppes emphasizes, quite correctly, that checking whether the ac­

tual data satisfy the assumptions of the experimental data model calls 
for criteria lito determine if the experiment was well run, not to decide 
if the [primary hypothesis or model] has merit" (Suppes 1969, 32). 
Likewise, a problem with the experimental model is distinct from a 
problem with the primary model. Indeed, errors at all but the level of 
the primary model reflect weaknesses in the experiment, not in the 
primary hypothesis being tested. Separating out the models relating 
data and hypotheses goes a long way toward achieving the aim of cor­
rectly apportioning blame (as well as praise). Frederick Suppe, in dis­
cussing Suppes, puts it this way: 

The actual experimental setup will be a putative realization [model] 
of the theory of experimental design and the ceteris paribus conditions; 
the actual correction procedures used to put the raw data in canonical 
form will be putative realizations of the theory of data. And the pre­
dictions yielded from the [physical] theory will be putative realiza­
tions of the theory of the experiment. . . . In case of anomalous or 
disconfirming experimental results, the source of the anomaly may 
be the result of the experimental procedures failing to be realizations 
of any of these theories or as a result of the theory's empirical falsity. 
(Suppe 1977, 108-9) 

Why do I find it illuminating to express Duhem's problem in terms 
of the hierarchy of models whereas I had denied that characterization 
of the Bayesian formulation (in chapter 4)7 Because this expression 
gives a realistic picture of how such problems are effectively grappled 
with. To remind us of the Bayesian solution, exemplified by Dorling, 
we can utilize example 5.1, on oral contraceptives. The test hypothesis 
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Ho was that the birth control pill does not increase the risk of clotting 
disorders (or does so negligibly). Suppose that the result showed a risk 
increase RI that was statistically significant among women receiving 
the pill. Let auxiliary hypothesis A assert that the auxiliary factors are 
not responsible for the observed increase. To assess whether Ho or A is 
most disconfirmed, the Bayesian calculates the posterior probabilities. 
But these depend on prior degrees of belief. If the Bayesian researcher 
strongly believes that the pill imposes no increased risk (and thus has 
a high enough prior degree of belief in Ho)' then one has the makings 
of a situation where the Bayesian analysis disconfirms A-the blame 
falls on the auxiliaries rather than on the pill. 

In our framework, the question of hypothesis A arises at the stage 
of checking whether the data obey the assumptions of the experiment. 
Separate work to show that the auxiliaries are responsible is required 
before disconfirming A. There is no consideration (here or elsewhere, 
for that matter) of what we called the Bayesian catchall factor. One's 
belief in the hypothesis that the pill does not increase the risk of clot­
ting disorders simply does not enter into the separate statistical tests to 
check whether the influence of each auxiliary factor is responsible for 
the observed effect. 

This is not to say that background theories or, if one likes, back­
ground beliefs, play no role in the experimental inference. Background 
knowledge (e.g., concerning the pill's action and the nature of blood­
clotting disorders) is what led researchers to look for risk increases and 
not decreases, and to control for some factors (e.g., diet) and not oth­
ers. But whereas specifying experiments may well reflect subjective 
beliefs, pragmatic factors, or something else, what the results do and do 
not indicate is not a matter of subjective beliefs. By reporting the fea­
tures of the test specifications, researchers enable others to scrutinize 
a result, to perhaps find experimental assumptions violated or a result 
misinterpreted or irrelevant (to some primary question that interests 
them). Eddington believed that the aberrant result (from the second 
set of plates at Sobral) was due to the sun's distortion of a mirror. But 
the only way this belief enters, the only way it ought to enter, is in 
motivating him to make a case for blaming the mirror. And that case 
should not depend on the correctness of the primary hypothesis that 
the data are supposed to test. If it does, a different alarm goes off, now 
at the level of the experimental model to test H- the resulting test of 
H may fail to be severe. 

Methodological Rules Must Be Assessed in Context 

Just as data statements need to be scrutinized within the appro­
priate data model, rules and principles of experimental methodology 
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need to be queried by reference to the proper experimental node. In 
section 5.1 I listed the key questions that correspond to the different 
models of inquiry. Different principles of experimental methodology 
relate to one or more of these questions, and proposed rules should be 
assessed in relation to these tasks. Some refer to before-trial experi­
mental planning, others to after-trial analysis of the data. The former 
include rules about how specific errors are likely to be avoided or cir­
cumvented; the latter, rules about checking the extent to which given 
errors are committed or avoided in specific contexts. 

If I am right, then we can understand why the task of appraising 
methodological rules (metamethodology) has run into such trouble as 
of late. Take a much discussed methodological rule, sometimes called 
the rule of predictive novelty: prefer hypotheses that predict unknown 
facts to those that are constructed to account for known facts. The way 
to assess naturalistically this and other rules, say some (e.g., Laudan 
1987, 1990b, 1996), is to see how often a rule correlates with success­
ful hypotheses and theories. Scientific episodes that violate the predic­
tion rule and yet end up with successful hypotheses are taken as evi­
dence against the efficacy of the rule. The present account rejects this 
kind of appraisal as misleading or uninformative. s Aside from the dif­
ficulty of inferring the efficacy of a rule by finding means-end correla­
tions, such a strategy of appraisal is vitiated by the "false-negatives" 
that result. That is, even where a rule is effective for a given end­
say, for attaining the aim of reliable hypotheses-we should expect the 
historical record to provide us with violations (Le., with cases where 
the end is achieved even where the rule is violated). Why? Because 
insofar as there is progress in experimental methodology, it is likely 
that methods are developed with the express purpose of securing reli­
able results even where a rule is not or cannot be strictly upheld. 

For an example, consider an uncontroversial rule: perfect con­
trol in causal inquiries serves to obtain reliable causal hypotheses. 
The more we learn of how extraneous uncontrolled factors can create 
obstacles to correctly attributing causes, the better we have got­
ten at avoiding these obstacles even without literal control. (Such 
ways include randomizing treatments, double-blinding, and stratifica­
tion.) As with violating strict controls so it is with violating predictive 
novelty. With respect to certain test procedures, constructing hypo-

5. For one thing, it is far from clear how to determine when a rule has been 
applied or followed in reaching a hypothesis and when it has been violated. For 
another, there is the problem of determining whether a hypothesis resulting from 
a rule is successful or reliable. Moreover, even if applying a rule is found to be 
correlated with a successful hypothesis, it would not show that obeying the rule is 
the cause of that hypothesis's success. Leplin (1990) raises related criticisms. 
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theses to fit known facts is wholly unproblematic because the over­
all reliability of the inference is sustained. (I take up this rule in chap­
ter 8.) 

Rules cannot be properly appraised apart from their specific tasks 
in inquiry. Since the rules are claims about strategies for avoiding mis­
takes and learning from errors, their appraisal turns on understanding 
how methods enable avoidance of specific errors. One has to examine 
the methods themselves, their roles, and their functions in experimen­
tal inquiry. 

5.4 CANONICAL INQUIRIES INTO ERRORS 

An adequate epistemology of experiment should shed some light 
on the problems that arise at each level of the hierarchy of models. A 
good place to start is with the task of breaking down substantive in­
quiries into manageable pieces. These piecemeal experimental inquir­
ies are guided by canonical inquiries into the four types of errors 
I have marked out: errors about real as opposed to accidental effects, 
about parameter values, about causes, and about experimental as­
sumptions (of the type addressed in checking data models). Canoni­
cal questions about standard types of errors, and the methodological 
tools available for addressing them, are heuristic guides for how to 
proceed. 

An inquiry into a possible error is itself an example of an experi­
mental inquiry. Hence we can set out the canonical models for inquir­
ing about errors by employing the hierarchical framework of models 
of inquiry. We can do this by letting the primary question of the in­
quiry be asking after the specific error. In carrying out a substantive 
inquiry, the methodologist's arsenal includes exemplary or paradigm 
examples of inquiries that have as their primary question asking about 
key errors. These are the canonical models of error or, more correctly, 
models of error inquiry. 

The first error I have listed is mistaking artifacts or "mere chance" 
for real or systematic effects. In distinguishing real from accidental ef­
fects, a common model to employ, either directly or by analogy, is the 
Binomial or "coin-tossing" model of experiment. In the next section I 
will give the bare essentials of the components of a Binomial exper­
iment. 

A Binomial Model of Experiment 

So-called games of chance like coin tossing and roulette wheels 
are exemplary processes used in modeling a variety of questions about 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:12:48.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



MODELS OF EXPERIMENTAL INQUIRY 151 

errors. Take coin tossing. At each trial of a standard coin-tossing 
experiment, there are two possible outcomes, "heads" and "tails." 
The Binomial model labels such dichotomous outcomes as 
"success" and "failure," which may be abbreviated as sand f 
with the probability of success at each trial equal to some value p,6 
The population here is really the coin-tossing mechanism or pro­
cess, but because this process is modeled by the Binomial distribution, 
we often speak of the population distribution. Running n trials of 
the experimental process, in other words, is tantamount to taking n 
samples from this population distribution. As with all statistical 
distributions, the Binomial distribution assigns a probability to each 
possible outcome, here to each possible number of successes out 
of n trials. Once the probability of success on each trial, p, is given, 
this probability assignment follows. So the key quantity or param­
eter of the Binomial distribution is p, and assertions about the value 
of p are statistical hypotheses defined in terms of the Binomial 
model. 

An example of a primary hypothesis framed in terms of this model 
is the hypothesis that p equals .5 (the standard "fair coin" hypothesis). 
This is a typical example of a test or null hypothesis, and can be abbrevi­
ated as Ro: 

Ho: the value of the parameter of the Binomial model, p, equals .5. 

Alternative hypotheses are defined in relation to RD. 

Experimental Model: The Binomial Experiment 

To be more explicit, let us consider a tiny experiment consisting of 
only three independent tosses of a coin, and where Ro is true, that is, 
the probability of heads p on each trial is equal to .5. Then we can 
calculate the probability distribution of the experimental variable or 
statistic X-the proportion of heads in the 3 tosses. The proportion of 
heads in n tosses can also be expressed as the relative frequency of heads 
in n tosses. The experimental distribution of statistic X consists of a list 
of possible values of X together with a probability assignment to each 
value. 7 To arrive at this experimental distribution, first consider each 

6. Such trials are called Bernoulli trials, with p the parameter. 
7. Rather than list the probability for each possible number k of successes out 

of n trials, a general formula is given. The probability of getting k successes out of 
n Binomial trials (each having a probability of success equal to p) equals 

P(relative frequency of success = kin) = n! pk( 1 - p)n - k. 
k!(n - k)! 
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TABLE 5.3 Binomial Experiment 

Experimental Outcome Valueo!X 

f,f,f 0 

f,f,s -
3 

f,s,f 
1 

3 

f,s,s 
2 
-
3 

s,f,f -
3 

s,f,s 
2 

3 

s,s,f 
2 
-
3 

S.S,s 

Probability 

1 

8 

-
8 

1 

8 

-
8 

-
8 

-
8 

-
8 
1 

8 

of the 8 possible outcomes-each a sequence of 3 ss or fs. The probabil­
ity of each is (V2) X (V2) X (V2) or 1/8 (table 5.3). 

X has 4 distinct values. The probability of each value of X is calcu­
lated by summing the probabilities of all the individual outcomes that 
lead to that value. This yields the experimental (or sampling) distribu­
tion of X (table 5.4). 

Data Model 

A given experimental outcome is only one of the 8 possible se­
quences of 3 trials (e.g., s,s,f), yielding only one of the 4 possible values 
for X. In order for it to be a random sample, the experimental assump­
tions must hold. That is, each of the 3 trials must be an independent 
Binomial trial with p equal to 1/2 • 

It should be remembered that a statistic, such as the proportion of 
successes X, is a property of the experimental outcome, whereas a pa­
rameter, such as p, is a property of the population from which the out­
come is a sample. If assumptions are sufficiently met, however, the 
value of the statistic can be used to learn about the population parame­
ter. A highly important relationship for all of statistics is that between 
the sample mean X and the population mean. It is this: the average or 
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TABLE 5.4 Experimental Distribution of X (with n = 3, P = 0.5) 

Value of Random Variable X 

o 

-
3 

2 
3 

Probability 

8 

3 
-
8 

3 
-
8 

1 

8 

153 

mean value of the average X is itself equal to the population mean. This 
relationship is entirely general. Since, in the Binomial distribution, the 
population mean is equal to p (the probability of success on each trial) 
we get: 

The mean of X = the population mean = p. 

Thanks to this, an observed value of the sample mean X is used to learn 
about the mean of X, and thereby to learn about the population mean 
p (to which the latter is equal).8 The standard deviation of the statistic 
Xis also related in a known way to the standard deviation of the popu­
lation, e.g., in the Binomial experiment the standard deviation of X is 
the square root ofP(1 - P).9 

n 
In explaining the key features of statistical tests, a central role is 

played by paradigm examples or exemplary cases where tests supply 
tools for inquiring about common types of errors. Statistical models 
not only offer paradigms for asking about errors, they also embody 
much of our ordinary understanding of these errors. The following is 
a variant on Fisher's famous example of the "Lady Tasting Tea." 

Example 5.2: A Lady Tasting Tea: Mistaking Chance for a Real Effect 

To avoid mistaking a merely chance effect for a genuinely system­
atic one, we need a way of discriminating between the two. Fisher 

8. The mean of X is also called the expected valued of X, written E(X). SO we 
have E(K, = p. The mean is defined as the arithmetic average. 

9. The standard deviation of X, the population distribution, equals the square 
root of p(l - pl. 
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154 CHAPTER FIVE 

describes one way by telling his story of the "lady tasting tea." 10 Imag­
ine that a lady maintains that she can tell by tasting a cup of tea with 
milk whether the milk or the tea was first added to the cup. Suppose 
that her claim is not that she will always be right, but that she can do 
better than chance. In other words, the lady is claiming that she can 
do better than someone who is merely guessing. To say that her claim 
is in error is to say that in fact she can do no better than someone 
who is merely guessing, that her pattern of successes is merely "due to 
chance." To express this in a canonical way, denying her claim asserts 
that the lady's procedure is one that produces no more successful pre­
dictions than the process of guessing. 

The standard null hypothesis here formalizes the claim that the 
effect is "like guessing" or "due to chance" by appealing to a familiar 
chance process. It asserts that the process that produces the lady's pat­
tern of successful discernments is like the process that produces the 
pattern of heads and tails in fair tosses of a coin. They are alike in their 
respective relative frequencies of success. This suggests running an ex­
periment where the Binomial model can be utilized as a canonical 
model of error. 

The Binomial Model as a Canonical Model of Error 

The proposed experiment in Fisher's lady tasting tea example in­
volves recording the success or failure of each of her n predictions 
about the order of tea and milk in the infusion. The hypotheses of 
interest are claims about the value of the parameter p of the Binomial 
model. The possible values for p, the parameter space, range from 0 to 
1. Let us say that the interest is only in whether pis .5 or greater. ll The 
hypothesis that the lady is guessing or, more generally, that the process 
is of the chance variety is the null hypothesis Ho' Ho asserts that p, the 
probability that the lady will give the correct answer, equals .5. Within 
the statistical model of experiment it may be stated as follows: 

Ho: P equals .5 (the lady is merely guessing), 

while the lady's claim H' is of the form 

H': p is greater than .5 (the lady does better than one who is merely 
guessing). 

10. It is discussed in Fisher 1947. An extended introductory treatment of this 
example can be found in Bailey 1971. 

11. The treatment is analogous if the interest is in p differing from .5 in both 
directions. In the corresponding test (which is called a "two-tailed" test) the null 
hypothesis is rejected when the success rate is either much larger than .5 or much 
smaller than .5. 
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In the canonical Binomial model of experiment, each possible out­
come is a sequence of n successes or failures, one for each trial of the 
experiment. The procedure of running a trial, say trial i, and recording 
either success or failure, is represented in the model as the result of 
observing the value of a Binomial (random) variable Xi' Each n-fold 
sequence of outcomes may be represented as a vector of length n, Xl' 
X2 , ••• , Xn where each Xi is a Binomial variable. (Each is assumed to 
be independent of the other, and p is the probability of success at each 
trial.) There are 2" such possible samples. 

Experimental Statistic 

One needs to consider what question can be put to the experiment 
in order to extract information about the parameter of interest. The 
function of the data-the statistic-that would be canonical in tests 
about the parameter p is the proportion or relative frequency of successes 
in the n experimental trials X. The statistic X condenses each n-fold 
outcome into a single quantity. Whether any information about p is 
lost by this condensing process is an important question that cannot be 
gone into here. It turns out that X is an example of a statistic containing 
all the information in the sample concerning p. It is a sufficient statistic. 

In specifying the experimental model we must decide upon the 
number of samples, n. Suppose we let n = 100.12 The lady will be given 
100 cups of tea to test her discriminatory powers. Thus the test (or 
nUll) hypothesis, Ho, essentially asserts that the experimental process 
is like that of 100 tosses with a fair coin. More specifically, Ho says that 
the probability of r percent successes in 100 trials with the tea-tasting 
lady is the same as the probability of r percent successes in 100 trials 
of tosses of a fair coin (where success is identified with the outcome 
heads). In other words, the experimental statistic X has the same distri­
bution as the proportion of heads in 100 (independent) tosses of a fair 
coin (Le., the probability of heads on each toss is .5). This is the experi­
mental distribution. 

Data Model 

The data of the canonical Binomial experiment may be modeled 
in different ways. That is, the same data may be considered as belong­
ing to a number of different experimental populations, each corre­
sponding to a different way of cutting up or partitioning the possible 

12. Fisher used much smaller sample sizes in presenting the lady tasting tea 
example. The use of sample size 100 is to simplify each of the calculations as well 
as to ensure the assumption of Normality of the sample means. 
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experimental outcomes or sample space. When learning about param­
eter p, the relevant set of experimental outcomes consists of the differ­
ent possible proportions of successes in 100 trials. (There are 101 such 
results, one for each possible number of successes out of 100 trials.) 
On a single realization of the experiment, only one of the members of 
the sample space is obtained, that is, only one list of 100 outcomes 
is recorded, 

where Xi is the result of trial i. Each is condensed into a single value: 
the observed proportion (or relative frequency) of successes. Say, for 
example, that 60 percent successes are recorded. Then we have X = .6. 

The probability of any such result could be calculated if one knew 
the value of the parameter p, the probability of success on each trial. 
But that is what we are trying to find out. However, for any hypothe­
sized value of p, the probability of each outcome may be calculated, 
which is all that is required for testing claims such as Bo. Still, this 
calculation assumes that the actual experiment really is a Binomial ex­
periment-that the realized data are a model of the data. With respect 
to the actual experiment, this formal assumption corresponds to satis­
fying the experimental assumptions. 

The worry about experimental assumptions occurs at the level of 
the data model in the hierarchy. However, the work that goes into 
satisfying the experimental assumptions would be placed at the levels 
below the data model. In the ideal experimental design, all the cups of 
tea are exactly alike except in the factor of interest: the order in which 
the tea and milk are placed in the cup. Such a requirement, as always, 
is impossible. A good deal of experimental design and data analysis 
have been developed to construct experiments that, although not liter­
ally controlled, allow arguing as if they are. Thanks to these methods, 
one may secure data that are as accurate and reliable as if the experi­
ment were controlled, and the degrees of accuracy and reliability can 
be made precise. 

Some sources of relevant differences in the tea-tasting experiment 
might be the amount of milk or tea in each cup, the amount of sugar, 
if any, the type or color of the cup, and the temperature of the mixture. 
Once specified, it may be possible to largely avoid the difference and 
so control for the given factor. But it would typically be impossible to 
check each of the possible factors that might influence a result in a 
given experiment. This leads some to object that auxiliary hypotheses 
can never fully be ruled out in pinpointing the source of an experimen­
tal result. Two things must be noted: First, it is a mistake to suppose 
that the elimination of disturbing factors is necessarily desirable. Anal-
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yses based on deliberately ignoring certain factors are often as or more 
reliable and accurate than those that eliminate them. One of the aims 
of statistical methods of experimental design is to tell us which factors 
are worth controlling for and to what extent. Second, it matters only 
that the ability to learn from the experiment not be impeded by such 
disturbing factors. 

One possible strategy in this example would be to randomly assign 
50 of the 100 cups to the group that is to have tea poured in the cup 
first and let the remaining 50 have tea poured second. In this way, 
each cup has the same chance of being in the "tea-first" group.13 These 
aspects of the theory of the experimental design, we see once again, 
refer to the pretrial methods to satisfy experimental assumptions. For 
each of the assumptions of the Binomial experiment there are sepa­
rate, after-trial statistical tests to check whether they are satisfied. Of­
ten more than one test will be carried out to test a single assumption, 
say, of independence. Naturally, the tests of assumptions will them­
selves have assumptions, but they may be designed to be extremely 
easy to satisfy (e.g., as with distribution-free tests). Moreover, since 
different tests have different assumptions, if none detect that a given 
assumption is violated, then that will give excellent grounds for taking 
the assumption as satisfied. Notice once again that we are arguing from 
error: there is a very high probability that at least one of the tests of 
assumptions would detect a violation, say, in independence, if one 
were committed. So if none do, the assertion "independence is satis­
fied" passes a severe test. 

Do we have to take additional samples to carry out separate tests 
of assumptions? Possibly, but in the canonical experimental models a 
typical strategy is to use the same data set and model it differently. That 
is why many different data models may be utilized in the context of a 
single experimental inquiry. 

Experimental Tests 

It is time to say more about how data models can be used to answer 
primary questions by means of tests. I locate this link between data 
models and a primary question in the experimental model. A test will 
always be defined within a context of an experimental inquiry. A for­
mal statistical test is generally defined with respect to a single data set 
and a single question. When we talk about the severity of tests of sub-

13. In Neyman's discussion of this case, each trial consists of a pair of cups­
differing only in the order of the tea and milk infusion. Although this pairwise 
design seems more satisfactory, I keep my diSCussion closer to the simpler design 
used by Fisher. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:12:48.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



158 CHAPTER FIVE 

stantive hypotheses, however, we will generally be referring to the test 
provided by the experimental inquiry as a whole-where this gener­
ally includes several tests. (For example, we will speak of the 1919 
eclipse test of Einstein's gravitational theory.) Just now, however, I am 
focusing on a single statistical test. The notion of an experimental test 
statistic is a neat way to define tests. 

An experimental test statistic is a function of the experimental out­
come that links the (modeled) data (in this case, the sample mean X') 
with the null hypothesis Ho. This test statistic may be seen as a distance 
measure, or as a measure of fit (or, perhaps, misfit).14 It measures, for 
each possible experimental outcome, how far the data are from what 
is expected under Ho (in the direction of some alternative hypothesis 
H'). For example, in testing our hypothesis Ho: the lady tasting tea is 
just guessing, a s~nsible distance measure is the (positive) difference 
between the observed mean, X, and the expected mean, .5. 

Distance measure D(X) = X observed - X expected (Le., .5). 

In this example, the larger the value of difference D, the more indica­
tion there is that Ho is not true-that her pattern of successes is not like 
the pattern that would be expected if she were guessing. 

The significance level of a difference is a prime example of a formal 
distance measure, with this inversion: the smaller the significance level 
the greater the difference. When the experiment is run, some particu­
lar value of D is observed. Let us abbreviate the observed difference 
as Dobs. We can then define the statistical significance level associated 
with Dobs: 

Statistical significance level of the difference Dobs (in testing Ho) = the 
probability of a difference as large as or larger than Dobs' given 
that Ho is true. 

Recall the discussion of the "significance question" in Galison's neutral 
current example in chapter 3. That analysis, as well as the birth­
control-pill example in this chapter, are spin-offs of the canonical ques­
tion articulated in the lady tasting tea exemplar. Recall that the signifi­
cance question asks, What is the probability that, if hypothesis Ho is 
true, a result even more distant (from Ho) than the observed result is 
would occur in trials of the experimental procedure? The experimental 
distribution provides the answer. 

Suppose that the observed proportion of successes in the tea-

14. The idea of a test statistic as a measure of distance or deviation is empha­
sized in Cramer 1974 and Kempthorne and Folks 1971. 
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.4 .45 .5 .55 .6 

FIGURE 5.2. The experimental distribution of the binomial statistic X with n = 

100, given that Ho is true. P(X ~ .6 I Ho) = .03 

tasting example equals .6. The difference from what is expected, under 
Ho (.5) is .1. Since the needed significance probability is under the as­
sumption that p equals .5 in a Binomial experiment, it is easy to calcu-, 
late this value. The probability of a result 'even further (from .5) than 
.6 is .03. A graph of the experimental distribution with 100 trials is 
shown in figure 5.2. 

Figure 5.2 makes plain why the Significance level is often referred 
to as a "tail-area" probability. It gives the probability of outcomes at 
the tail end of the distribution. 

The test can simply report the observed significance level or set a 
cutoff point beyond which the null hypothesis Ho is rejected. A plaus­
ible cutoff point might be 60 percent successes (out of 100 trials), cor­
responding to a significance level of about .03. 

Error Probabilities 

Suppose that the test rejects Ho just in case the difference between 
hypothesized and observed proportions of successes exceeds .6. To re­
ject Ho when in fact Ho is true is an error-in particular it is a type I 
error. To reject Ho only if a significance level of .03 is reached is to have 
a test with a .03 probability of committing a type I error. The methodol­
ogy of experimental testing, in the standard (Neyman-Pearson) ap­
proach, specifies tests, not only with an eye toward a low type I error. 
It also considers the probability the test has of detecting a real effect if 
it exists. If the test makes it so hard for the lady to demonstrate her 
power, it ~ay have little or no chance of detecting it even if it exists. 
That is, we also want to avoid what is called a type II error, failing to 
detect an effect (accepting Ho) even when an effect exists. For each 
possible value of p in excess of .5 (for each particular value contained 
in alternative H') we can calculate the probability that a given test 
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160 CHAPTER FIVE 

would fail to detect it, even if it existed. Before the trial, we can specify 
the test so that it has a sufficiently high probability of correctly de­
tecting effects of interest. It should, in the Neyman-Pearson terminol­
ogy, have sufficiently high power. 

I will put off discussing these two formal errors further until chap­
ter II. By then we will have a clear understanding of the notion of 
severity, which will enable us to understand the role and rationale of 
error probabilities in experimental arguments. 

Let us summarize. A (null) hypothesis Ho that hypothesizes that it 
would be an error to consider her ability better than .5 says, in effect: 
any better-than-guessing performance is due to chance. There is a dis­
tance measure, D, that measures the difference between what is ex­
pected, assuming that Ho is true, and an actual experimental outcome. 
In simple significance tests only the associated significance level is re­
ported. Alternatively, a test may report "Ho fails" or "reject Ho" when­
ever this distance exceeds some specified value. The minimum distance 
that results in Ho failing is specified so that Ho would rarely be rejected 
erroneously. In statistics, rejecting Ho erroneously is called a type I er­
ror. The test is specified so that the probability of a type I error is low. 
At the same time the test is chosen to have a suitably high probability 
of detecting departures from Ho if they exist. After the trial, these two 
error probabilities are crucial for interpreting the test result. In order 
to do so correctly, however, it is necessary to consider a test's severity 
with regard to a particular hypothesis. We will take this up explicitly 
later. 

Checking Data Models: The Testability of Experimental Assumptions 

A statistical significance test may also be used to check that the 
data satisfy the assumptions of the experimental model. The null hy­
pothesis would now assert that a given assumption is met by the data, 
and the data would now be the actual, not the condensed, data set.· 
Suppes describes the pattern of (goodness-of-fit test) reasoning as 
follows: 

For each possible realization Z of the data, we define a statistic T(Z) 
for each question [about assumptions]. This statistic is a random vari­
able with a probability distribution .... We "accept" the null hypothe­
sis if the obtained value of the statistic T(Z) has a probability equal to 
or greater than some significance level a on the assumption that in­
deed the null hypothesis is true. (Suppes 1969, 29) 

The kind of analysis that Suppes describes is quite typical in testing 
assumptions. It was, for instance, the mode of testing extraneous fac-
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tors in the study on the pill and blood clotting. It can perhaps be seen 
from this brief sketch why I have separated out mistakes of experimen­
tal assumptions in my proposed list of key error types (section 1.5, 
error type d). First, the appeals are to very low level, very often 
distribution-free, methods, and second, when it comes to ruling out 
these mistakes, it is sufficient to accept (or fail to reject) a null hypothe­
sis. In other words, it is generally sufficient here to be able to say that 
the actual data are not too far from what would be expected if the 
assumption in question holds. In well-designed experiments, in canon­
ical inquiries, assurances of that order are sufficient for the key goal­
obtaining a severe test of a primary hypothesis (or of hypotheses relat­
ing to a primary one). Threats that would call for a more substantive 
inquiry should already have been taken care of by choosing well­
understood and well-tested procedures of data generation. 

At this point, two contrasts with the subjective Bayesian Way bear 
noting. First, the statistical significance tests for checking data-model 
assumptions are part of the battery of standard statistical methods. "For 
the purposes of this paper," Suppes remarks, "it is not important that 
some subjectivists like L. J. Savage might be critical of the unfettered 
use of such classical tests" (Suppes 1969, 30). One wishes he had elabo­
rated. For our purposes it is important, and it highlights the real and 
substantial difference in the positions of standard error statistics and 
subjective Bayesianism. 

Second, the ability and need to test the experimental-model as­
sumptions are an important part of why standard statistical methods 
are often referred to as "objective." The "skeptical experimenter," as 
Suppes calls him (p. 30), can always charge that data may pass all the 
tests of assumptions and still be guilty of violating them. Suppes points 
out, however, that the properties of actual procedures and checks have 
been thoroughly investigated, which "makes such a dodge rather dif­
ficult" (ibid.). In the terms I have been developing, it can often be ar­
gued that passing a battery of tests is overwhelmingly improbable if 
assumptions are violated by more than a specified extent. In any event, 
experimental assumptions are part of the statistical report and can be 
challenged by others; they are not inextricably bound up with subjec­
tive degrees of belief in the final sum-up. 

5.5 MODELS OF PROBABILITY, RELATIVE FREQUENCY, 

AND EXPERIMENTATION 

The statistical theory of experiment deals only with certain kinds of 
experiments insofar as their behavior may be characterized by certain 
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parameters. A characteristic of key interest is the relative frequency 
with which an outcome occurs, or would occur, in a sequence of appli­
cations of the experiment in question. IS (Note that in the Binomial 
experiment, the average number of successes in n trials, i.e., the mean 
X, is the same as the relative frequency of success.) It is because of the 
interest in relative frequencies that probabilistic or statistical models 
arise in learning from error. 

The Relevance of Relative Frequencies 

There are several reasons why relative frequencies in series of ex­
periments, often hypothetical, are of interest. In chapter 4 I advanced 
a frequentist construal of claims about the probable success of hypoth­
eses and contrasted it to that of Salmon and Reichenbach. What is of 
interest and is really obtainable, I said, was information about the rela­
tive frequency with which a series of applications of the hypothesis 
H would yield results in accordance with what H asserts. A specific 
description of a successful outcome could be given by way of a suitable 
measure of fit or distance. This kind of relative frequency knowledge 
describes one thing that experimental data teach us about the physical 
system at the top of the hierarchy. That is, we learn about a hypothesis 
by learning about how well and how often it would succeed in a se­
quence of applications of interest. (This is experimental knowledge.) 
On the way to obtaining that kind of knowledge, relative frequencies 
of outcomes also playa central role in experimental inquiry. 

Raw experimental data, we know, are finite, and are distorted by 
errors and "noise" from extraneous factors. A chief role for statistics is 
to estimate the likely extent to which extraneous factors influence re­
sults in the experiment at hand. We can then "subtract them out" to 
see the effects of the parameters of interest. In the case of the lady 
tasting tea we are effectively subtracting out the effect of mere guess­
ing. Discriminating backgrounds, signal from noise, real effect from ar­
tifact, we said, is the cornerstone of experimental knowledge. Begin­
ning with canonical examples such as the lady tasting tea, one arrives 
at spin-off strategies for accomplishing these ends in diverse fields. 

Recall our discussion of Galison's neutral currents case. The experi­
mental result was the recorded ratio of muonless to muonful events, 
namely, 54/56. We want to know whether observing so many muon­
less events (in this one experiment) may be due to something other 

15. In some cases repetitions of the same experiment are of interest, in others 
a sequence of applications of different experiments with the same distribution is 
of interest. 
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than the existence of neutral currents (e.g., escaping muons). We 
would like this one result to reveal its system of origin. We ask, Did 
you come from a system where there are neutral currents? by asking, 
Are you a fairly typical product of an experiment where there are no 
neutral currents? This is what the significance question addresses. As 
we saw, the significance question is, How often, in a series of experi­
ments such as the one done by the HWPF group, would as many mu­
onless events be expected, given no neutral currents? If this is the sort 
of occurrence that is rather typical even if no neutral currents exist, 
then it should not be regarded as good grounds for the existence of 
neutral currents. 

But what is typical if no neutral currents exist? This question led 
to the Monte Carlo simulation to estimate the effect of the escaping 
muons (the effect of the artifact). The estimate supplied by this simula­
tion plays precisely the role that .5 plays in the lady tasting tea ex­
ample-it is the expected effect due to an error of interest (guessing, 
and escaping muons, respectively). The test or null hypothesis asserts 
that the error is committed in the experiment at hand. We can use our 
new apparatus to capture the highlights of the neutral current exper­
iment. 

The null (or test) hypothesis asserts that no neutral currents exist, 
and the predicted or "calculated" number of muonless events is arrived 
at by assuming that the null hypothesis is true. The calculated or ex­
pected number (stemming from the simulation) of muonless events, 
was 24, giving an expected ratio of 24/56. Next there is the distance 
measure, in this case the observed ratio minus the calculated ratio. If 
the experimental procedure used in obtaining the observed ratio were 
to be repeated, different values of this distance measure would result. 
However, the probability with which different values would occur is 
fairly well known because the distance statistic has a known distribu­
tion. Hence the significance question was answerable. This, in turn, 
answers the question we initially put to the data: how often (Le., how 
frequently), in experiments such as this one, would as impressive a 
result as you represent be expected (Le., one with as many muonless 
events), even if there are no neutral currents (and the real reason for 
the recorded muonless events is that muons fail to reach the detector)? 

With this we have hit upon the central role of the concept of rela­
tive frequencies of an observed difference in a hypothetical series of repeti­
tions of an experiment (whether they are actually performed or not). 
A single experiment gives just one value of a statistic of interest, here 
the difference statistic. But because the distance statistic is a function 
of the data and a hypothesized answer (H) to a primary question (e.g., 
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a distance measure), the experimental distribution of this statistic lets 
the data speak to how typical or rare its appearance would be, if the 
answer (H) were true. And it allows doing so without already knowing 
the answer. It does so by telling us, approximately, the relative fre­
quency with which so large a difference would occur in a hypothetical 
sequence of experiments, were H correct. 

The reason why the theory of probability has so important a role 
in the current approach to experimental learning is that probabilistic 
models afford very effective tools for approximating the relative fre­
quencies in hypothetical series of experiments of the sort that are of 
interest. I am talking of the entry of probability in experimental learn­
ing, not in science altogether. For the task of experimental learning, 
the chief reason that probabilistic models are of value is that they are apt tools 
for asking about key errors that need to be addressed in learning from experi­
ments. 

Both the examples of the lady tasting tea and of neutral currents 
address questions of an effect's being due to something other than the 
factor of interest, guessing rather than discrimination, escaping muons 
rather than neutral currents. Probabilistic models are apt tools for tell­
ing us what it would be like if the experiment were one in which it would 
be a mistake to attribute the effect to one factor rather than another. 
In the lady tasting tea example, the familiar paradigm of coin tossing 
(with an unbiased coin) tells us, in the experiment at hand, what it 
would be like if she were merely guessing. In the neutral currents ex­
ample, the Monte Carlo simulation tells us what it would be like if the 
muonless events were due .only to escaping muons. In both cases the 
"what it would be like" question is answered in terms of the relative 
frequency with which certain results would occur in a (hypothetical) 
series of experiments. It is answered by "displaying" a probability dis­
tribution. Having such answers is of value because of their links to the 
corresponding statistical tools of analysis (tests and estimation 
methods). 

How do we know that probabilistic models are able to inform in 
these ways about relative frequencies? The notion of probability em­
bodied in these models and its uses in the standard error statistics ap­
proach are often called frequentist probability and frequentist statistics, re­
spectively. The probability of an experimental result is understood as 
the relative frequency of that result in a hypothetical long run of appli­
cations or trials of the experiment. Probabilistic models serve the roles 
just outlined because it turns out that they are excellent models for 
certain types of experiments that we can actually perform. One need 
not look any deeper to justify their use. 
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Real Random Experiments and the Empirical Law of Large Numbers 
Jerzy Neyman paid a lot of attention to the empirical basis for the 

use of statistical models of experiment in the frequentist approach. Al­
though my interest here is solely with the use of statistical models in 
experiment, let us look at what Neyman says in general about the 
source and substance of frequentist ideas. 

Neyman (1952) begins by noting that there are real experiments 
that "even if carried out repeatedly with the utmost care to keep condi­
tions constant, yield varying results" (p. 25). These are real, not hypo­
thetical, experiments, he stresses. He cites examples such as a roulette 
wheel (electrically regulated), tossing coins with a special machine 
(that gives a constant initial velocity to the coin), the number of disin­
tegrations per minute in a quantity of radioactive matter, experiments 
based on random sampling numbers, and the tendency for properties 
of organisms to vary despite homogeneous breeding. Although we 
cannot predict the outcome of such experiments, a certain pattern of 
regularity emerges when they are applied in a long series of trials. 
("Long" here does not mean infinitely long or even years, but that 
they are applied often enough to see a pattern emerge.) The pattern of 
regularity concerns the relative frequency with which specified results 
occur. The regularity being referred to is the long-run stability of rela­
tive frequencies. The mathematical theory of probability, Neyman says, 
applies to any data that may be modeled as the result of such random 
experiments. 

In the beginning (and for quite some time) there were only relative 
frequency distributions, that is, records of different results and the rela­
tive frequency with which they were observed to occur. Probability 
models came later. Studying the observed relative frequency distribu­
tions revealed that relative frequencies of specified results tended to be 
stable in long series of trials (performed as uniformly and as indepen­
dently of each other as possible). This stability of relative frequencies 
(e.g., of means) observed in a wide variety of domains just happens to 
be well modeled by the same models used to capture the canonical 
random experiments from games of chance. 

It is this empirical fact of long-run stability, Neyman explains, that 
gives the mathematical models of probability and statistics their appli­
cability. "It is a surprising and very important empirical fact that when­
ever sufficient care is taken to carry out" a large number of trials as 
uniformly as possible, the observed relative frequency of a specified 
outcome, call it "a success," is very close to the probability given by 
the Binomial probability model (Neyman 1952, 26). As Hodges and 
Lehmann (1970) put it, "Conceptually, the probability p of success [in 
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a Binomial experiment] represents in the model this stable frequency" 
(p. 209). Indeed, one can determine the number of trials so that, with 
high probability, the observed relative frequency is within a specified 
distance e from p. This is of key relevance in specifying experiments. (I 
shall come back to this shortly.) 

Our warrant for such a conceptual representation is captured by 
the law of large numbers (LLN). While this law applies quite generally 
(see note 16), it is typically introduced by reference to the Binomial 
model, and I shall proceed this way as well. Listen to Neyman: 

The justification for speaking of the [mathematical notion of probabil­
ity] ... in terms of imaginary random experiments lies in the empiri­
cal fact which Bortkiewicz insisted upon calling the "law of large 
numbers." This law says that, given a purely mathematical definition 
of a probability set . . . we are able to construct a real experiment, 
possible to carry out in any laboratory, with a certain range of possible 
results and such that if it is repeated many times, the relative frequen­
cies of these results and their different combinations in small series 
approach closely the values of probabilities as calculated from the 
definition .... Examples of such real random experiments are pro­
vided by the experience of roulette. (Neyman 1952, 18) 

"These examples show," Neyman continues, "that random experi­
ments corresponding in the sense described to mathematically defined 
probability sets are possible. However, frequently they are technically 
difficult. . . . Whenever we succeed in arranging the technique of a 
random experiment, such that the relative frequencies of its different 
results in long series approach" sufficiently the mathematical probabil­
ities in the sense of the LLN, we can say that the probabilistic model 
"adequately represents the method of carrying out the experiment" 
(pp. 18-19). That is, the actual experiment adequately satisfies the 
probabilistic model of experiment. Hodges and Lehmann (1970) put it 
thus: "Long-run stability is an empirical fact. The law of large numbers 
merely asserts that our model for probability is sufficiently realistic to 
agree with this fact" (p. 2lO). 

Teddy Seidenfeld (1979a) offers a good discussion of these same 
passages from Neyman. Neyman's appeal to the law of large numbers, 
Seidenfeld observes, is to "guarantee that knowledge of the empirical 
frequencies" is available (p. 33). Given the random experiment for 
generating experimental outcomes, the LLN shows that we can use the 
probabilities given from the probability model of the experiment to 
approximate the relative frequencies of outcomes in a long sequence 
of trials (p. 33). 
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Consider the canonical example of Binomial trials, say in coin toss­
ing by an appropriate mechanism. The formal statement of the law of 
large numbers says that if each trial is a Binomial trial with a constant 
probability of success equal to p, then the relative frequency of success 
(Le., sample mean) will, with high probability, be (specifiably) close to 
p in a long series of trials. In actual coin tossings performed by a mecha­
nism judged adequate, the accordance between observed relative fre­
quencies and p is repeatedly found to hold: the sample mean varies 
from p about as often as the LLN says it would. The Binomial model, 
therefore, is an excellent model of this coin-tossing mechanism and 
can be used to estimate the expected relative frequencies. In general, 
Neyman concludes, if in repeatedly carrying out a series of random 
experiments of a given kind we find that they always conform to the 
empirical law of large numbers, then we can use the calculus of proba­
bility to make successful predictions of relative frequencies. 

We are allowed to describe or model the results of such real canon­
ical experiments as random samples from the population given by the 
probability model. If we remember that this is merely a convenient 
formal abbreviation for a lengthy statement about an experiment's 
conforming to the law of large numbers, we can see the reason for 
calling experimental variables used to model such experiments random 
variables. They are called random variables, in effect, because their results 
are (or can be modeled as being) determined by the results of (real) random 
experiments. The term random variable is not the misnomer it is often 
thought to be. 

From the study of real random experiments-in which the canoni­
cal assumptions needed for randomness hold-we have learned to de­
velop tools to check experimental assumptions when they are not 
known to hold. By varying a known Binomial (or other) process so as 
to violate one of the assumptions deliberately (e.g., cause it to violate 
independence), we can observe the pattern of outcomes that results. 
Tests can then be developed that would very probably detect such a 
violation should it occur. All kinds of relevant properties of these tests 
may be recorded in the "tool kit" of experimental checks. The appro­
priate test can then be selected and relied on to test a given assumption 
in experiments where it is not known to hold. 

Now for more about how Monte Carlo studies work. 16 They are 
often based on so-called random number tables, created by a procedure 
known to give each number from 0 to 9 an equal chance of being 
selected. Computers, rather than tables, are now more commonly 

16. See, for example, Snedecor and Cochran 1980. 
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used. But the interesting part of their use is this: We can use the ran­
dom number table to select successive samples of a specified sIze, say 
10, from a population that we know. Say, for instance, that we know 
the mean value J.L of some characteristic in a population. For each sam­
pIe selected we can calculate the sample mean. We might draw 100 
random samples, each of size 10, thereby calculating 100 sample 
means. We can then consider the relative frequency of the different 
values of the sampling mean. This yields the frequency (i.e., relative fre­
quency) distribution of sample means. This tells us how frequently sam­
ple means (in these 100 samples) differ from the known population 
mean by different amounts. We can use this knowledge in applying 
the random number table or generator to cases where the population 
J.L is unknown. When the frequency distributions obtainable by such 
Monte Carlo methods can be approximated using probability models, 
we can avoid the laborious process of studying the actual frequency 
distribution associated with a given method of data generation. We can 
just compute them from the probability models. 

This should also clarify the relationship between the law of large 
numbers construed as an empirical law and as a mathematical law 
whose proof is given in many textbooks on probability. (Richard von 
Mises [1957] discusses these two construals at some length.) The 
mathematical law is proved for experiments where the assumptions 
hold, where the experimental trials constitute an idealized random 
sample. But there are certain types of actual experiments, as Neyman 
emphasizes, that are well approximated by the mathematical law, as 
shown, for example, in Monte Carlo studies. Moreover, for a given real 
experiment the question of whether it obeys the law is open to an 
empirical test along the lines of the tests of experimental assumptions 
(at the level of data models). Ronald Giere's terminology for relating 
hypotheses to real systems is apt: The empirical law of large numbers 
asserts that certain real experiments are similar to probabilistically 
modeled ones in the respects stipulated in the law. This similarity may 
be demonstrated by means of statistical tests. And for certain experi­
ments the law is found to hold. 

Neyman is talking quite generally about the empirical justification 
of probabilistic models. The use of such models in our area of interest­
standard experimental testing-turns out to be even less onerous to 
justify. We will see this in the consideration of two famous results, the 
law of large numbers and the central limit theorem (CLT). While I am 
striving to keep formal results to an absolute minimum, our discussion 
would be incomplete without some discussion of these two remark­
able results. 
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TWo Remarkable Results 

The Binomial Law of Large Numbers. The law of large numbers, credited 
to James Bernoulli, can be simply stated with respect to the Binomial 
model. It shows that with a sufficiently large sample size n, the relative 
frequency of success will, with as high a probability as one likes, be 
specifiably close to the probability p in the Binomial model. But it does 
more. It also lets us calculate the sample size n that will work.!' 

Let Xn be the relative frequency of success in n independent Bino­
mial trials, with probability p of success at each trial. (This is the same 
as the mean number of successes out of n trials.) I am inserting the 
sample size n as a subscript now, rather than just writing X because 
we want to make some claims about the relationship between nand 
certain error bounds. Consider the difference, in either direction, be­
tween Xn and p: Let IDI abbreviate this difference, that is, IDI = the 
absolute value of the difference between Xn and p. Now IDI is a statistic 
and may take on different values. Consider the event that this statistic 
exceeds some value c, as small as one likes. 

IDI exceeds c. 

The Binomial LLN sets an upper bound to the probability of this result. 
It can be stated as follows: 

PODI exceeds c) :5 p(l - p). 
nc2 

This upper bound reaches its highest value when p = .5. Therefore, we 
can state, even without knowing p:18 

17. There are several good discussions of the LLN. Here I follow the discussion 
in Parzen 1960. Suppose that Xn is the mean value of n independent samples from 
a population distribution with mean /-L. As we have already said, Xn itself has a 
mean (or expected) value equal to /-L. (The average value of Xn is equal to /-L.) The 
standard deviation of Xn is also related in a known way to the standard deviation 
of the population distribution. In particular, the standard deviation of Xn equals the 
population standard deviation divided by the square root of n (the sample size). 
From this it follows that the standard deviation of the sample mean Xn gets smaller 
and smaller as the sample size n gets bigger. That is, the larger the sample size, the 
less the sample mean differs on average from the population mean. From a result 
called Chebychev's inequality, it follows that by taking a large enough sample size 
n, the sample mean is approximately equal to the population mean with a probabil­
ity as close to 1 as desired. 

18. That is because for any value of p, the quantity p(l - p) :5 !. Note that 
4 

p(l - p) is the variance of Xn• So its maximum value is~. 
n 4n 
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CHAPTER FIVE 

In words, it says that the probability that the difference between the 
sample mean Xn and parameter p exceeds c is less than or equal to 

1 

4nc2' 
The LLN can be used to tell us how to ensure that the relative 

frequency of success will, with high probability, be within a specified 
distance from the population mean p. Although much lower bounds 
can almost always be calculated (using the central limit theorem), it is 
quite magical that bounds can be set altogether. Here's a typical home­
work probleml9 for a conservative specification for n: 

Example 5.3: How many (independent) trials of a Binomial experi­
ment should be performed to ensure a .95 or better probability that 
the observed relative frequency of success will differ from the proba­
bility of success p (on each trial) by no more than .027 

The formula for the answer is 

1 n 2:: -----
4c2(1 - u), 

where (1 - u) is the desired probability that the observed relative fre­
quency will differ from p by no more than a preset distance c. Substitut­
ing .95 for (1 - u) and .02 for c, we get n 2:: 12,500. 

From the LLN, we know that Xn is well approximated by p, the 
probability of success at each trial in the sense that Xn is expected to be 
close to p in the long run. While "being expected to be close in the long 
run" might seem a complicated kind of property, it is precisely what 
frequentist statistical methods are designed for. We know that Xn will 
be close to its mean, whatever it is, in the long run. Statistical methods 
use a single value of Xn to learn about the value of Xn to be expected 
in the long run. The value of Xn expected in the long run equals p, 
whatever it is. So a single value of Xn can be used to learn about p, 
whatever it is. It should be noted that the more general LLN asserts 
that with increasing n, a random variable becomes increasingly close 
to its mean. In the case of the Binomial random variable Xn, the mean 
is identical to the parameter p. 

A much more powerful result for both pretrial specification of sam­
ple size and inference to population means is the central limit theorem. 

19. See, for example, the text by Parzen (1960, 231). 
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The (Astonishing) Central Limit Theorem (CLT). Textbooks are not known 
for using exalted language in their statements of theorems of probabil­
ity and statistics-with one exception: the central limit theorem. The 
central limit theorem tells us that the sample mean Xn is approximately 
Normally distributed regardless of the underlying (population) distri­
bution of variable X. The mean of this distribution of Xn equals the 
mean of X itself, and its standard deviation is the standard deviation of 
X divided by the square root of n. What makes probability and statistics 
texts refer to this result as "remarkable" and "astonishing" is that 
it holds regardless of the underlying distribution of the random 
variable:20 

Centra/limit theorem (CLT): Let Xn be the arithmetic mean of n inde­
pendent random variables, each variable X from a distribution with 
mean fL and finite nonzero variance S2. Then Xn is approximately 

normally distributed with mean jJ. and standard deviation --In' 

For most cases of interest (where the underlying distribution is not 
terribly asymmetrical), the Normal distribution gives a good approxi­
mation even for small sample sizes-it is generally quite good with 
samples of around 30. The CLT actually holds for many cases that do 
not satisfy the above conditions of randomness (Le., that each Xi is 
independent and identically distributed).21 The finite nonzero variance 
assumption is practically no restriction at all, and even this has been 
shown to be capable of being relaxed. 

Using the Normal approximation yields a much smaller required 
sample size than the rough bounds given using only the LLN. The cor­
responding problem in example 5.3 requires a sample size of only n 
2: 2,500. 

The CLT is at the heart of why the distribution of the sample mean 
(the relative frequency) is so central in the experimental model. It is 
what links a claim or question about a statistical hypothesis (a popula­
tion distribution) to claims about what relative frequencies would be 
expected in a hypothetical sequence of applications of the experiment. 
Owing to this link, we can answer the significance question with re­
gard to a great many problems about errors. For any observed Xn we 
can ask it to tell us what values of the population parameter it is im-

20. The rate at which X approaches Normality, however, is influenced by the 
underlying distribution. 

21. See Feller 1971 and Cramer 1974. 
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probably far from, which it is typical of, and so on. This is the basis of 
ampliative inference. 

The Standardized Difference. Let us state the CLT in its more useful form, 
which will also allow me to define an important notion: the standard­
ized distance. 

Let D be the difference between the sample mean Xn and the popu­
lation mean: D equals Xn - jL. It is extremely useful to put D in standard 
units, that is, to express it in units of the standard deviation of Xn • This 
yields a standard distance, abbreviated by D*: 

Standardized distance D*: Xn - jL • 
standard deviation of Xn 

The CLT says that D* is approximately Normally distributed with 0 
mean (so the curve is centered on 0) and standard deviation 1. This 
is called the standard Normal distribution, and because we can always 
standardize a Normal variable, it suffices to use tables of standard Nor­
mal distributions to look up probabilities. Hence, the value of canonical 
Normal tables. 

Specifying the Long-Run Series 

Which of the canonical models is appropriate depends upon the 
specified procedure for generating experimental outcomes and the 
way those outcomes are to be modeled. This dependency on the data 
generation procedure is the error statistician's way of addressing the 
familiar problem of the reference class. The reference class, upon 
which probabilities of experimental results are based, consists of the 
possible outcomes of the data generation procedure. The need to spec­
ify such a procedure and the fact that probability is always relative to 
how the procedure is modeled are often a source of criticism of the 
use of frequentist probabilities. But those criticisms pertain to a use of 
frequency probability quite different from how it is used in frequentist 
statistics. The criticism arises, for example, if the goal is to assign a 
probability to a particular case and detach the resulting claim (e.g., the 
probability that Roger is from Leuven). But the use of probability in 
frequentist statistics-which refers to inferences based on frequentist 
probability models-always has them attached to the experimental 
processes or test procedures they characterize. (It is a testing approach, 
not an E-R approach.) 

As for choosing how to model the experimental procedure, this 
will depend upon the twin considerations of what one wants to learn 
(e.g., the type of canonical error being investigated) and the kinds of 
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data it is reasonable to collect. We have already seen how different 
ways to model data from an experiment arise in different types and 
stages of inquiry (e.g., in using n coin-tossing trials to test a hypothe­
sized value of p as opposed to testing assumptions of that test). The 
ability to vary data models, to use several even in a single inquiry, is 
not a hindrance but precisely what allows error statistical methods to 
check their own assumptions and to accord so well with the needs of 
scientific practice. We shall explore this further in the experiments on 
Brownian motion (chapter 7) and in revisiting statistical tests (chap­
ter II). 

Avoiding Statisticism 

In section 5.5 I have attempted to take some of the mystery out of 
the idea of random experiments and their modeling by way of random 
variables. This should free us to use these and other notions from prob­
abilistic models of experiments, remembering, as Neyman stresses, that 
they are really only "picturesque" ways of talking about actual experi­
ments. When I speak of the chance of a result or a chance occurrence 
I am simply appealing to a statistical model of an experiment, and do 
not mean to impute any chance agency to the situation although at 
times that would be apt. We must be wary of what P. D. Finch (1976) 
refers to as "statisticism." The aim of representing variable quantities 
(quantities that can take on different values) by means of random vari­
ables, he stresses, "is simply to describe one type of variability in terms 
of another more familiar one" (p. 9)-one whose variability is known. 
Statistical models of e~periments may be used so long as the experi­
ments accord with them in the right ways. It just so happens that cer­
tain real random experiments or, more correctly, questions that can be 
posed about them are well modeled by the same statistical models that 
fit games of chance. This gets to the heart of the justification for the 
use of these statistical models and methods in experimental inference. 
When we're ready to wrap up our story, we will return to the issue of 
justification (chapters 12 and 13). 

Next Step 

We are ready to explore in detail the notion of a severe test defined 
within a hierarchy of models of an experimental inquiry. In so doing 
we will take up a central problem that has been thought to stand in 
the way of ever saying a test is truly severe-namely, the possibility of 
alternative hypotheses that pass the test equally well. 
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CHAPTER SIX 

Severe Tests and Methodological 
Underdetermination 

The basic trouble with the hypothetico-deductive inference is that 
it always leaves us with an embarrassing superabundance of 
hypotheses. All of these hypotheses are equally adequate to the 
available data from the standpoint of the pure hypothetico­
deductive framework. 

- W. Salmon, The Foundations of Scientific Inference, p. 115 

A MAJOR PROBLEM that has been thought to stand in the way of an 
adequate account of hypothesis appraisal may be termed the alternative 
hypothesis objection: that whatever rule is specified for positively apprais­
ing H, there will always be rival hypotheses that satisfy the rule equally 
well. Evidence in accordance with hypothesis H cannot really count in 
favor of H, it is objected, if it counts equally well for any number of 
(perhaps infinitely many) other hypotheses that would also accord 
with H. 

This problem is a version of the general problem of underdetermina­
tion of hypotheses by data: if data cannot unequivocally pick out hy­
pothesis H over alternatives, then the hypotheses are underdetermined 
by evidence. Some have considered this problem so intractable as to 
render hopeless any attempt to erect a methodology of appraisal. No 
such conclusion is warranted, however. There is no general argument 
showing that all rules of appraisal are subject to this objection: at most 
it has been successfully waged against certain specific rules (e.g., the 
straight rule, simple hypothetico-deductivism, falsificationist accounts). 
Since chapter 1 I have been hinting that I would propose utilizing a 
test's severity to answer the underdetermination challenge. It is time 
to make good on this promise. Doing so demands that we be much 
clearer and more rigorous about our notion of severity than we have 
been thus far. Indeed, by exploring how an account of severe testing 
answers the alternative hypothesis objection, we will at the same time 
be piecing together the elements needed for understanding the severity 
notion. In anticipation of some of my theses, I will argue that 

174 
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SEVERE TESTS AND METHODOLOGICAL UNDERDETERMINATION 175 

1. the existence of hypotheses alternative to H that entail or ac­
cord with evidence e (as well as or even better than H) does not 
prevent H from passing a severe test with e; 

2. computing a test's severity does not call for assigning probabili­
ties to hypotheses; 

3. even allowing that there are always alternative hypotheses that 
entail or fit evidence e, there are not always alternatives equally 
severely tested bye. 

As important as many philosophers of science regard the alterna­
tive hypothesis challenge, others dismiss it as merely a " philosopher's 
problem," not a genuine problem confronting scientists. In the latters' 
view, scientists strive to find a single hypothesis that accounts for all 
the data on a given problem and are untroubled by the possibility of 
alternatives. Granted, there are many examples in which it is generally 
agreed that any alternative to a well-tested hypothesis H is either obvi­
ously wrong or insignificantly different from H, but this enviable situa­
tion arises only after much of the work of ruling out alternatives has 
been accomplished. Anyone seeking an account adequate to the task 
of building up experimental knowledge, as I am, must be prepared to 
deal with far more equivocal situations. Moreover, an adequate philo­
sophical account should be able to explain how scientists are war­
ranted, when they are, in affirming one hypothesis over others that 
might also fit the data. 

Grappling with the alternative hypothesis objection will bear other 
fruit. Appealing to a test's severity lets us see our way clear around 
common misinterpretations of standard statistical tests. In section 6.5, 
for example, the question of how to interpret statistically insignificant 
differences is addressed. 

6.1 METHODOLOGICAL UNDERDETERMINATION 

The "alternative hypothesis objection" that concerns me needs to be 
distinguished from some of the more radical variants of underdetermi­
nation. Some of these more radical variants are the focus of a paper by 
Larry Laudan (1990a), "Demystifying Underdetermination." "[O]n the 
strength of one or another variant of the thesis of underdetermina­
tion," Laudan remarks, "a motley coalition of philosophers and sociol­
ogists has drawn some dire morals for the epistemological enterprise." 
Several examples follow. 

Quine has claimed that theories are so radically underdetermined by 
the data that a scientist can, if he wishes, hold on to any theory he 
likes, "come what may." Lakatos and Feyerabend have taken the un-

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:13:02.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



176 CHAPTER SIX 

derdetermination of theories to justify the claim that the only differ­
ence between empirically successful and empirically unsuccessful 
theories lay in the talents and resources of their respective advo­
cates .... Hesse and Bloor have claimed that underdetermination 
shows the necessity for bringing noncognitive, social factors into play 
in explaining the theory choices of scientists. (Laudan 1990a, p. 268) 

Laudan argues that the Quinean thesis that "any hypothesis can 
rationally be held come what may" as well as other strong relativist 
positions are committed to what he calls the egalitarian thesis. "It insists 
that: every [hypothesis] is as well supported by the evidence as any of its rivals" 
(p. 271). Nevertheless, Laudan maintains that a close look at underde­
termination arguments shows that they at most sustain a weaker form 
of underdetermination, which he calls the nonuniqueness thesis. "It holds 
that: for any [hypothesis H] and any given body of evidence supporting [H], 
there is at least one rival (i.e., contrary) to [H] that is as well supported as [H]" 
(p. 271). Laudan denies that the nonuniqueness thesis has particularly 
dire consequences for metho!iology; his concern is only with the ex­
treme challenge "that the project of developing a methodology of sci­
ence is a waste of time since, no matter what rules of evidence we 
eventually produce, those rules will do nothing to delimit choice" (p. 
281). I agree that the nonuniqueness thesis will not sustain the radical 
critique of methodology as utterly "toothless," but I am concerned to 
show that methodology has a severe bite! 

Even if it is granted that empirical evidence serves some role in 
delimiting hypotheses and theories, the version of underdetermination 
that still has to be grappled with is the alternative hypothesis objection 
with which I began, that for any hypothesis H and any evidence, there 
will always be a rival hypothesis equally successful as H. The objection, 
it should be clear, is that criteria of success based on methodology and 
evidence alone underdetermine choice. It may be stated more explic­
itly as the thesis of methodological underdetermination (MUD): 

Methodological underdetermination: any evidence taken as a good test of 
(or good support for) hypothesis H would (on that account of testing 
or support) be taken as an equally good test of (or equally good sup­
port for) some rival to H. 

While not alleging that anything goes, it is a mistake to suppose that 
the MUD thesis poses no serious threat to the methodological enter­
prise. The reason formal accounts of testing and confirmation ran into 
trouble was not that they failed to delimit choice at all, but that they 
could not delimit choice sufficiently well (e.g., Goodman's riddle). 
Moreover, if hypothesis appraisal is not determined by methodology 
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SEVERE TESTS AND METHODOLOGICAL UNDERDETERMINATION 177 

and evidence, then when there is agreement in science, it would seem 
to be the result of extraevidential factors (as Kuhn and others argue). 

The existence of alternative hypotheses equally well tested by evi­
dence need not always be problematic. For example, it is unlikely to be 
problematic that a hypothesis about a continuous parameter is about as 
well tested as another hypothesis that differs by only a tiny fraction. In 
the following discussion of my account of severe testing, I will focus 
on the seemingly most threatening variants of the MUD challenge. 

Clearly, not just any rule of appraisal that selects a unique hypoth­
esis constitutes an adequate answer to the challenge. Not just any sort 
of rule is going to free us from many of the most troubling implications 
of MUD. That is why the Bayesian Way does not help with my prob­
lem. Its way of differentially supporting two hypotheses that equally 
well entail (or otherwise fit) the data is by assigning them different 
prior probabilities. l But, as I argued in chapter 3, prior probabilities, 
except in highly special cases, are matters of personal, subjective 
choice-threatening to lead to the relativism we are being challenged 
to avoid (inviting a MUD-slide, one might say). 

Summary of the Strategy to Be Developed 

How does appealing to the notion of severity help? While there 
are many different conceptions of severe tests, such accounts, broadly 
speaking, hold the following general methodological rule: 

Evidence e should be taken as good grounds for H to the extent that 
H has passed a severe test with e. 

What I want to argue is that the alternative hypothesis objection loses 
its sting once the notion of severity is appropriately made out. 

It is easy to see that the alternative hypothesis objection instanti­
ated for a method of severe testing T is more difficult to sustain than 
when it is waged against mere entailment or instantiation accounts of 
inference. The charge of methodological underdetermination for a 
given testing method, which I equate with the alternative hypothesis 
objection, must show that for any evidence test T takes as passing hypothesis 
H severely, there are always rival hypotheses that T would take as passing 
equally severely. While MUD gets off the ground when hypothesis ap­
praisal is considered as a matter of some formal or logical relationship 

1. Indeed, if two hypotheses entail the evidence, then the only way they can 
be differently confirmed by that evidence by Bayes's theorem is if their prior proba­
bility assignments differ. 
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178 CHAPTER SIX 

between evidence or evidence statements and hypotheses, this is not 
so in our experimental testing framework. 

The cornerstone of an experiment is to do something to make the 
data say something beyond what they would say if one passively came 
across them. The goal of this active intervention is to ensure that, with 
high probability, erroneous attributions of experimental results are 
avoided. The error of concern in passing H is that one will do so while 
H is not true. Passing a severe test, in the sense I have been advocating, 
counts for hypothesis H because it corresponds to having good reasons 
for ruling out specific versions and degrees of this mistake. 

Stated simply, a passing result is a severe test of hypothesis H just to the 
extent that it is very improbable for such a passing result to occur, were H false. 
Were H false, then the probability is high that a more discordant result 
would have occurred. To calculate this probability requires considering 
the probability a given procedure has for detecting a given type of er­
ror. This provides the basis for distinguishing the well-testedness of two 
hypotheses-despite their both fitting the data equally well. Tvvo 
hypotheses may accord with data equally well but nevertheless be 
tested differently by the data. The data may be a better, more severe, 
test of one than of the other. The reason is that the procedure from 
which the data arose may have had a good chance of detecting one 
type of error and not so good a chance of detecting another. What is 
ostensibly the same piece of evidence is really not the same at all, at 
least not to the error theorist. 

This underscores a key difference between the error statistics ap­
proach and the Bayesian approach. Recall that for the Bayesian, if two 
hypotheses entail evidence e, then in order for the two hypotheses to 
be differently confirmed there must be a difference in their prior prob­
abilities. In the present approach, two hypotheses may entail evidence 
e, while one has passed a far more severe test than the other. 

6.2 THE (ERROR)-SEVERITY REQUIREMENT 

The general requirement of, or at least preference for, severe tests is 
common to a variety of approaches (most commonly testing ap­
proaches), with severity taking on different meanings. To distinguish 
my notion from others, I will sometimes refer to it as error-severity. 

a. First requirement: e must "fit" H. Even widely different approaches 
concur that, minimally, for H to pass a test, H should agree with or in 
some way fit with what is expected (or predicted) according to H. We 
can apply and contrast our definition with that of other approaches by 
allowing "H passes with e" to be construed in many ways (e.g., His 
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supported, e is more probable on H than on not-H, e is far from the 
denial of H on some distance measure, etc.2 ). Minimally, H does not fit 
e if e is improbable under H. 

b. Second requirement: e 's fitting H must constitute a good test o/H. Those 
who endorse some version of the severity requirement concur that a 
genuine test calls for something beyond the minimal requirement that 
H fits e. A severity requirement stipulates what this "something more" 
should be. 

Following a practice common to testing approaches, I identify 
"having good evidence (or just having evidence) for H" and "having a 
good test of H." That is, to ask whether e counts as good evidence for 
H. in the present account, is to ask whether H has passed a good test 
with e. This does not rule out quantifying the goodness of tests. 3 1t does 
rule out saying that" e is a poor test for H" and, at the same time, that 
"e is evidence for H." 

c. The severity criterion (jor experimental testing contexts). To formulate 
the pivotal requirement of severe tests, it is sufficient to consider the 
test outputs-" H passes a test T with experimental outcome e" or "H 
fails a test T with experimental outcome e." I am assuming that the 

2. This allows us to state the first requirement for H to pass a test with e as 

a. H fits e, 

with the understanding that a suitable notion of fit, which may vary, needs to be 
stipulated for the problem at hand. While some accounts of testing construe the fit 
as logical entailment (with suitable background or initial conditions), except for 
universal generalizations this is rarely obtained. One way to cover both universal 
and statistical cases is with a statistical measure of fit, such as e fits H to the extent 
that P(e I H) is high. (The entailment requirement results in P(e I H) being 1.) Be­
cause P(e I H) is often small, even if H is true, passing a test is commonly defined 
comparatively. Evidence e might be said to fit H if e is more probable under H than 
under all (or certain specified) alternatives to H. 

There is nothing to stop the hypothesis that passes from being composite (dis­
junctive). For example, in a Binomial experiment H may assert that the probability 
of success exceeds .6, i.e., H: p > .6. The alternative H' asserts that p :5 .6. In such 
cases, e fits H might be construed as e is further from alternative hypothesis H' than 
it is from any (simple) member of H, where "further" is assessed by a distance mea­
sure as introduced in chapter 5. 

3. The question of whether H's passing a test with result e provides a good test 
of H may alternately be asked as the question of whether e provides confirmation 
or support for H. However, when the question is put this way within a testing 
approach it should not be taken to mean that the search is for a quantitative mea­
sure of degree of support-or else it would be an evidential-relationship and not a 
testing approach. Rather, the search is for a criterion for determining if a passing 
result provides good evidence for H-although the goodness of a test may itself be 
a matter of degree. 
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180 CHAPTER SIX 

underlying assumptions or background conditions for a test-what­
ever they are-are located in the various data models of an experimen­
tal inquiry, as delineated in chapter 5. This frees me to characterize the 
severity requirement by itself. The severity requirement is this: 

Severity requirement: Passing a test T (with e) counts as a good test of 
or good evidence for H just to the extent that H fits e and T is a severe 
test of H, 

and the severity criterion (SC) I suggest is this: 

Severity criterion la: There is a very high probability that test procedure 
T would not yield such a passing result, if H is false. 

By "such a passing result" I mean one that accords at least as well with 
H as e does. Its complement, in other words, would be a result that 
either fails H or one that still passes H but accords less well with H than 
e does. It is often useful to express SC in terms of the improbability of 
the passing result. That is: 

Severity criterion Ib: There is a very low probability that test procedure 
T would yield such a passing result, if H is false. 

One may prefer to state the SC in terms of the measure of accordance 
or fit. (la) and (lb) become 

Severity criterion 2a: There is a very high probability that test procedure 
T would yield a worse fit, if H is false. 

Severity criterion 2b: There is a very low probability that test procedure 
T would yield so good a fit, if H is false. 

While the a versions express severity in terms of the test's high proba­
bility to detect the incorrectness of H, the equivalent b versions express 
severity in terms of the low probability of its failing to detect the incor­
rectness of H. 

d. The Severity Criterion in the Simplest Case (SC*): A Test as a Binomial 
Statistic. Standard statistical tests are typically framed in terms of only 
two possible results: H passes and H fails, although "accept" and "re­
ject" are generally the expressions used rather than "pass" and "fail." 
This reduction to two results is accomplished by stipulating a cutoff 
point such that any particular result e that differs from H beyond this 
cutoff point is classified as failing H; all others pass H. The test, in short, 
is modeled as a Binomial (or pass-fail) procedure. The severity criterion 
for this special case is simpler to state than for the general case: 
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(SC*) The severity criterion for a Hpass-fail" test: There is a very high 
probability that the test procedure T fails H, given that His false.4 

Modeling tests in this "Binomial" manner may be sufficient for speci­
fying a test with appropriate error probabilities. However, it is often 
too coarse grained for interpreting a particular result, which is why its 
use leads to many criticisms of standard error statistics-a point to be 
explained in chapter 11. The trick is to be able to calculate the severity 
achieved by some specific outcome among those the test would take as 
passing H. That is the reason for my more cumbersome definition.5 
Nevertheless, the severity criterion for the pass-fail (or Binomial) test 
(SC*), because of its simplicity, is the one I recommend keeping in 
mind even in arguing from a specific passing result. One need only be 
clear on how it may be used to arrive at the general SC, the calculation 
we really want. Let us illustrate. 

That H passes with a specific outcome e may be regarded as H hav­
ing passed with a given score, the score it gets with outcome e, just like 
a score on an exam. Suppose we want to calculate the severity associ­
ated with that particular passing score e. We can divide the possible 
scores into two: scores higher than the achieved score e, and those as 
low as or lower than e. We have now (re)modeled our test so that it 
has only two results, and we can apply the simple severity calculation 
for a pass-fail test. We have 

SC*: The probability is high that test Twould not yield so high a score 
for Has e, given that H is false. 

Alternatively, in terms of the complement (b) we have 

SC*: It is very improbable that Hwould have passed with so successful 
a score as e, given that H is false. 

We have arrived at 'the calculation that the more general severity crite­
rion (SC) demands. 

How to understand the probabilities referred to in our severity cri­
terion is a question whose answer may be found in the discussion of 
frequentist probability in the last chapter. A high severity assignment 
asserts that were we experimenting on a system where H is false, then 
in a long series of trials of this experiment, it is extremely rare (infre­
quent) that H would be accorded such a good score; the overwhelming 

4. Calculating SC* considers the probability that an outcome would reach the 
cutoff for failing H, even if H is false. 

5. This will be clarified further in distinguishing severity from Hpower" in chap­
ter 11. 
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182 CHAPTER SIX 

preponderance of outcomes would accord H a worse fit or a lower 
score. 

Minimum (0) and Maximum (1) Severity 

We can get at the commonsense rationale for desiring high severity 
and eschewing low severity by considering extreme cases of violating 
or satisfying severity. Here the probabilities of H not passing when false 
may be shown to be 0 and 1 (or practically so), respectively. I begin 
with the first extreme case, that of a minimally severe or a zero-severity 
test. 

Passing a minimally severe (zero-severity) test: H passes a zero-severity test 
with e if and only if test T would always yield such a passing result 
even if H is false. 

In the present account, such a test is no test at all. It has no power 
whatsoever at detecting the falsity of H. If it is virtually impossible for 
H to receive a score less than e on test T, even if false, then H's receiving 
score e provides no reason for accepting H; it fails utterly to discriminate 
H being true from H being false. 

That a test would always pass H even if H is false does not entail 
that H's passing is always erroneous or that H is false. H may be true. I 
may even have a warrant for accepting H, on other grounds. It is just 
that passing with a zero-severity test itself does not warrant such an 
acceptance. (That is, one can be right, but for the wrong reasons.) 

These remarks accord well with familiar intuitions about whether 
passing marks on an exam warrant merit of some sort. Consider a test 
to determine whether a student can recite all the state capitals in the 
United States; say the hypothesis H is that the subject can correctly 
recite (aloud) all fifty. Suppose that a student passes the test so long 
as she can correctly assert the capital of anyone state. That a person 
passes this test is not much of a reason to accept H. because it is not a 
very severe test. Suppose now that a student passes the test so long as 
she can recite anything aloud. Granted, being able to recite all fifty capi­
tals entails being able to speak aloud (H entails e), but this test is even 
less severe than the first. It is easier (more probable) for a pass to occur, 
even if the student is not able to recite all the state capitals (H is false). 6 

Alternatively, if a student passes a test where passing requires recit­
ing all fifty capitals correctly, certainly that is excellent support for hy­
pothesis H, that the student can correctly recite them all. This identifies 
the other extreme, that of a maximally severe test: 

6. Popper (1979, 354) also uses an exam analogy to make this point. 
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Passing a maximally severe (100 percent severity) test: H passes a maximally 
severe test with e if and only if test T would never yield results that 
accord with H as well as e does, if H is false. 

A test is maximally severe if the results that the test takes as pass­
ing H cannot occur (in trials of the given experimental test), given that 
hypothesis H is false. It is a maximally reliable error probe for H. That 
passing a maximally severe test warrants accepting H may seem too 
obvious to merit noting. After all, in such a test passing with e entails 
H! Nevertheless, as will be seen in chapter 8, not all accounts of testing 
countenance maximally severe tests as good tests. 

Let us move from 100 percent severity to merely high severity and 
see whether the reasoning still holds. Consider two tests, Tl and Tz• 

Tl is known to have a very high, say a .99, probability of failing a 
student (giving her an F grade, say) if the student knows less than 90 
percent of the material. That is, 99 percent of the time, students igno­
rant of 10 percent of the material fail test T1• 

Test Tz' let us suppose, is known to have only a 40 percent proba­
bility of failing a student who knows less than 90 percent of the ma­
terial. 

Tl is obviously a more severe test than Tz in our ordinary use of 
that term, and likewise in the definition I have given. Passing the more 
severe test Tl is good evidence that the student knows more than 90 
percent of the material. (For, if she were to know less than 90 percent, 
test Tl would, with high probability, .99, have detected this and failed 
her.) Clearly, all else being equal, better evidence of the extent of a 
student's knowledge is provided by the report "She passes test Tl''' than 
by the report "She passes test Tz." Passing test Tz is an altogether com­
mon occurrence (probability .6) even if the student knows less than 
90 percent of the material. 

An Analogy with Diagnostic Tools 

Tools for medical diagnoses (e.g., ultrasound probes) offer other 
useful analogies to extract these intuitions about severity: If a diagnos­
tic tool has little or no chance of detecting a disease, even if it is present 
(low severity), then a passing result-a clean bill of health-with that 
instrument fails to provide grounds for thinking the disease is absent. 
That is because the tool has a very high probability of issuing in a clean 
bill of health even when the disease is present. It is a highly unreliable 
error probe. Alternatively, suppose a diagnostic tool has an extremely 
high chance of detecting the disease, just if present-suppose it to be 
a highly severe error probe. A clean bill of health with that kind of tool 
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provides strong grounds for thinking the disease is not present. For if 
the disease were present, our probe would almost certainly have de­
tected it. 

It is important to stress that my notion of severity always attaches 
to a particular hypothesis passed or a particular inference reached. To 
ask, How severe is this test? is not a fully specified question until it is 
made to ask, How severe would a test procedure be, if it passed such 
and such a hypothesis on the basis of such and such data? A procedure 
may be highly severe for arriving at one type of hypothesis and not 
another. To illustrate, consider again a diagnostic tool with an ex­
tremely high chance of detecting a disease. Finding no disease (a clean 
bill of health) may be seen as passing hypothesis HI: no disease is pres­
ent. If HI passes with so sensitive a probe, then HI passes a severe test. 
However, the probe may be so sensitive that it has a high probability 
of declaring the presence of the disease even if no disease exists. De­
claring the presence of the disease may be seen as passing hypothesis 
H2: the disease is present. If H2 passes a test with such a highly sensitive 
probe, then H2 has not passed a severe test. That is because there is a 
very low probability of not passing H2 (not declaring the presence of 
the disease) even when H2 is false (and the disease is absent). The se­
verity of the test that hypothesis H2 passes is very low. 

Some further points of interpretation are in order. 

Severity and Arguing from Error 

Experimental learning, I have been saying, may be addressed in a 
formal or informal mode, although those might not be the best terms. 
In its formal mode, experimental learning is learning about the proba­
bilities (relative frequencies) of specified outcomes in some actual or 
hypothetical series of experiments-it is learning about an experimental 
distribution. In its informal mode, experimental learning is learning of 
the presence or absence of errors. Experimental learning, in its formal 
mode, is learning from tests that satisfy the severity criterion (SC). In 
its informal mode, it is learning by means of an argument from error, 
one variant of which was given in section 3.2. Here are two versions: 

It is learned that an error is absent when (and only to the extent 
that) a procedure of inquiry (which may include several tests taken 
together) that has a very high probability of detecting an error if (and 
only if 7) it exists nevertheless detects no error. 

7. The "only if" clause is actually already accommodated by the first require­
ment of passing a severe test, namely, that the hypothesis fit the data. If the fit 
required is entailment, then the probability of passing given the hypothesis is true 
is maximal. 
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It is learned that an error is present when a procedure of inquiry that 
has a very high probability of not detecting an error if (and only if) 
none exists nevertheless detects an error. 

That a procedure detects an error does not mean it definitely finds the 
error. It is generally not known whether the procedure gets it right. 
It means that a result occurs that the procedure takes as passing the 
hypothesis that an error is present. An analogous reading is intended 
for detecting no error. 

In the canonical arguments from error, the probabilistic severity 
requirement may capture the argument from error so well that no dis­
tinction between so-called formal and informal modes is needed. In 
general, however, asserting that a hypothesis H passed a highly severe 
test in this formal sense is but a pale reflection of the actual experimen­
tal argument that sustains inferring H. The purpose of the formal char­
acterization is to provide a shorthand for the actual argument from 
error, which necessarily takes on different forms. The formal severity 
criterion may be seen to represent a systematic way of scrutinizing the 
appropriateness of a given experimental analysis of a primary question. 
Referring to the Suppean hierarchy of models from the last chapter, it 
is a critique at the level of the experimental testing model. 

On the one hand, the informal and often qualitative argument 
from error takes central stage in applying our severity criterion to ac­
tual experiments. On the other hand, there are many features of the 
formal characterization of severity that offer crucial guidance in doing 
so. This latter point is as important as it is subtle, and to explain it is 
not as simple as I would wish. Let me try. 

In an informal argument from error one asks, How reliable or se­
vere is the experimental procedure at hand for detecting an error of 
interest? To answer this question, it is essential to be clear about the 
(probabilistic) properties of the experimental procedure. Our informal 
thinking about such things may be anything but clear, and formal ca­
nonical models (from standard random experiments) may come to the 
rescue. For example, at the heart of a number of methodological con­
troversies are questions about whether certain aspects of experimental 
design are relevant to appraising hypotheses. Does it matter whether a 
hypothesis was constructed to fit the data? Does it matter when we 
decide how much data to collect? These are two examples that will be 
taken up in later chapters. 

The formal severity criterion, by reminding us that the test proce­
dure may be modeled as a random variable, comes to our aid. For we 
know that we cannot determine the distribution of a random variable 
without being clear on what it is that is being taken to vary from trial 
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to trial. Is it just the sample mean that varies (e.g., the different propor­
tions of heads in n trials)? Or is the very hypothesis that a test proce­
dure winds up testing also varying? Formally modeled (canonical) ex­
periments demonstrate how error probabilities and, correspondingly, 
severity can be altered-sometimes dramatically-by changing what 
is allowed to vary. (Doing so is tantamount to changing the question 
and thereby changing the ways in which answers can be in error.) 
Carrying a few of the formally modeled test procedures in our experi­
mental tool kit provides invaluable methodological service. 

The distinction between the formal model and informal arguments 
from error also frees us to talk about a hypothesis being true without 
presuming a realist epistemology. Within a canonical experimental 
test, the truth of H means that H gives an approximately correct 
description or model of some aspect of the procedure generating ex­
perimental outcomes. Precisely what this statement of experimental 
knowledge indicates about the system of interest will vary and will 
have to be decided on a case by case basis. The main thing to note is 
that our framework allows numerous interpretations to be given to the 
correctness of H, as well as to the success of H. Realists and nonrealists 
of various stripes can find a comfortable home in error testing. Aside 
from varying positions on realism, a variety of interpretations of "H is 
true" (and, correspondingly, "evidence indicates that H is true") are 
called for because of the very different kinds of claims that may be 
gleaned from experiments. (The Kuhnian normal scientist of chapter 
2, for example, may view" H is true" as asserting that H is a satisfactory 
solution to a normal problem or puzzle.) 

Despite this room for diversity, there is uniformity in the pattern 
of arguments from error. We can get at this uniformity, I propose, by 
stating what is learned from experiment in terms of the presence or 
absence of some error (which may often be a matter of degree). For 
example, a primary hypothesis H might be 

H: the error is absent, 

and not-H, that the error is present. (Alternatively, H can be construed 
as denying that it would be an error to assert H.) When an outcome is 
in accordance with H and (appropriately) far from what is expected 
given not-H, then the test passes H. Error now enters in a second way. 
The error of concern in passing H is that one will do so while H is not 
true, that the error will be declared absent though actually present. 

When a test is sufficiently severe, that is, when an argument from 
error can be sustained, the passing result may be said to be a good indica­
tion of (or good grounds for) H. The resulting knowledge is experimen~ 
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tal knowledge-knowledge of the results to be expected were certain 
experiments carried out. 

We now have to tackle the "other hypothesis" objection. For the 
existence of alternative hypotheses that accord equally well with test 
results may be thought to strangle any claim purporting that a test's 
severity is high. 

6.3 Is THE OTHER HYPOTHESIS OBJECTION AN 

OBJECTION TO SEVERITY? 

The thrust of the "other hypothesis" objection is this: the fact that data 
fit hypothesis H fails to count (or to count much) in favor of H because 
the data also fit other, possibly infinitely many, rival hypotheses to H. 
The above characterization of severe tests suggests how this objection 
is avoidable: mere fitting is not enough! If hypotheses that fit the data 
equally well were equally well supported (or in some way credited) by 
the data, then this objection would have considerable weight. But the 
very raison d'etre of the severity demand is to show that this is not so. 

Still it might be charged that demanding severity is too demanding. 
This is Earman's (1992) criticism of me. Examining his criticism allows 
me to address an anticipated misunderstanding of the severity crite­
rion, namely, the supposition that it requires what I called the Bayesian 
"catchall" factor (section 4.3). 

Earman's Criticism of Error-Severity 

In order for hypothesis H to pass a severe test, the test must have 
a low probability of erroneously passing H. (This alludes to the b forms 
of SC.) Earman's criticism of my severity requirement seems to be that 
it requires a low probability to the Bayesian catchall factor. The Bayes­
ian catchall factor (in assessing H with evidence e), recall, is 

P(e I not-H). 

However, satisfying SC does not require computing the Bayesian 
catchall factor. 

The catchall, not-H, refers to all possible hypotheses other than H, 
including those that may be conceived of in the future. Assessing the 
probability of e on the catchall requires having a prior probability as­
signment to the catchall. Assigning a low value to the Bayesian factor 
on the catchall, while all too easy for a personalist-it is sufficient that 
he or she cannot think of any other plausible explanation for e-is 
too difficult for a tempered subjectivist or frequentist Bayesian, for it 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:13:02.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



188 CHAPTER SIX 

requires, recalling Salmon's remark, that we "predict the future course 
of the history of science" (Salmon 1991, 329). 

Earman grants the desirability of a low assignment to the Bayesian 
catchall factor, because, as we said, the lower its value, the more Bayes­
ian confirmation accrues to H. The difficulty he sees is in obtaining it. 
While I agree that this presents an obstacle for the Bayesian approach 
to support, satisfying the severity criterion SC does not require com­
puting the Bayesian catchall factor. Because of this, alternatives in the 
catchall that might also fit the evidence are not the obstacle to ob­
taining high severity that Earman thinks they are. 

Consider the example Earman raises in this connection (I substi­
tute e for his E to be consistent with my notation): 

If we take H to be Einstein'S general theory of relativity and e to be 
the outcome of the eclipse test, then in 1918 and 1919 physicists were 
in no position to be confident that the vast and then unexplored space 
of possible gravitational theories denoted by -,GTR does not contain 
alternatives to GTR that yield the same prediction for the bending of 
light as GTR. (Earman 1992, 117) 

In fact, he continues, there is an endless string of such alternative theo­
ries. The presumption is that alternatives to the GTR that also predict light 
bending would prevent high severity in the case of the eclipse test. 

But alternatives to the GTR did not prevent the eclipse results from 
being used to test severely the hypotheses for which the eclipse experi­
ments were designed. Those tests, to be taken up in chapter 8, pro­
ceeded by asking specific questions: Is there a deflection of light of 
about the amount expected under Einstein's law of gravitation? Is it 
due to gravity? Are alternative factors responsible for appreciable 
amounts of the deflection? Finding the answers to these questions in 
a reliable manner did not call for ruling out any and all alternatives to 
the general theory of relativity. 

Take the question of the approximate deflection of light. If this is 
the primary question of a given inquiry, then alternative answers to it 
are alternative values of the deflection, not alternatives to the general 
theory of relativity. If alternative theories predict the same results, so 
far as the deflection effects go, as Earman says they do, then these 
alternatives are not rivals to the particular hypotheses under test. If the 
endless string of alternative theories would, in every way, give the 
same answers to the questions posed in the 1919 tests, then they all 
agree on the aspects of the gravitation law that were tested. They are 
not members of the space of alternatives relative to the primary ques­
tion being addressed. 
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This reply depends on a key feature of my account of testing, 
namely, that an experimental inquiry is viewed as a series of models, 
each with different questions, stretching from low-level theories of 
data and experiment to higher level hypotheses and theories of inter­
est. In relation to the hypotheses about the deflection effect alterna­
tives to the general theory of relativity are on a higher level. The 
higher-level alternatives are not even being tested by the test at hand. 
Most important higher-level alternatives pose no threat to learning 
with severity what they needed to learn in the specific 1919 experi­
ments. 

For a silly analogy, consider a dialogue about what can be inferred 
from an exam (we assume cheating is ruled out): 

Teacher: Mary scored 100 percent on my geography final-she clearly knows 
her geography. 

Skeptic: How can you be so sure? 
Teacher: Well, it is possible that she guessed all the correct answers, but I doubt 

that any more than once in a million years of teaching would a student 
do as well as Mary by merely guessing. 

Skeptic: But there is an endless string of childhood learning theories that would 
predict so good a score. Perhaps it's the new text you adopted or our at­
tempts to encourage girls to compete or ... 

Teacher: My final exam wasn't testing any of those hypotheses. They might be 
fun to test some day, but whatever the explanation of her performance, 
her score on the final shows me she really knows her geography. 

The general lesson goes beyond answering Earman. It points up a 
strategy for dispelling a whole class of equally good fitting alternatives 
to a hypothesis H. The existence of alternatives at a higher level than 
H is no obstacle to finding high severity for H. The higher-level ques­
tions, just like the question about the correctness of the whole of the 
GTR, are simply asking the wrong question. 

Testing versus Learning About 

Saying that the eclipse tests were not testing the full-blown theory 
of general relativity does not mean that nothing was learned about the 
theory from the tests. What was learned was the extent to which the 
theory was right about specific hypotheses, for example, about the pa­
rameter >.., the deflection of light. 

This points up a key distinction between experimental learning in 
the present approach and in the Bayesian approach, which may ex­
plain why Earman thinks that error-severity founders on the alterna­
tive hypothesis objection. For a Bayesian, learning about a hypothesis 
or theory is reflected in an increase in one's posterior probability as-
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signment to that hypothesis or theory. For a result to teach something 
about the theory, say the GTR, for a Bayesian, that theory must have 
received some confirmation or support from that result. But that 
means the theory, the GTR, must figure in the Bayesian computation. 
That, in turn, requires considering the probability of the result on the 
negation of the GTR, that is, the Bayesian catchall factor. That is why 
Earman's criticism raises a problem for Bayesians.8 

For the error theorist, in contrast, an experiment or set of experi­
ments may culminate in accepting some hypothesis, say about the ex­
istence of some deflection of light. This can happen, we said, if the 
hypothesis passes a sufficiently severe test. That done, we are correct 
in saying that we have learned about one facet or one hypothesis of 
some more global theory such as the GTR. Such learning does not re­
quire us to have tested the theory as a whole. 

Our approach to experimental learning recommends proceeding 
in the way one ordinarily proceeds with a complex problem: break it 
up into smaller pieces, some of which, at least, can be tackled. One is 
led to break things down if one wants to learn. For we learn by ruling 
out specific errors and making modifications based on errors. By using 
simple contexts in which the assumptions may be shown to hold suf­
ficiently, it is possible to ask one question at a time. Setting out all possible 
answers to this one question becomes manageable, and that is all that 
has to be "caught" by our not-H. 

Apart from testing some underlying theory (which may not even 
be in place), scientists may explore whether neutral currents exist, 
whether dense bodies are real or merely artifacts of the electron micro­
scope, whether F 4 and F5 chromosomes play any part in certain types 
of Alzheimer's disease, and so on. In setting sail on such explorations, 
the immediate aim is to see whether at least one tiny little error can 
be ruled out, without having to worry about all the ways in which one 
could ever be wrong in theorizing about some domain, which would 
only make one feel at sea. 

Within an experimental testing model, the falsity of a primary hy­
pothesis H takes on a specific meaning. If H states that a parameter is 
greater than some value c, not-H states that it is less than c; if H states 
that factor x is responsible for at least p percent of an effect, not-H 
states that it is responsible for less than p percent; if H states that an 
effect is caused by factor f, for example, neutral currents, not-H may 

8. These remarks do not encompass all the ways that the error-severity calcu­
lation differs from calculating the Bayesian catchall factor. They simply address the 
point that was at the heart of Earman's criticism. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:13:02.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



SEVERE TESTS AND METHODOLOGICAL UNDERDETERMINATION 191 

say that it is caused by some other factor possibly operative in the ex­
perimental context (e.g., muons not making it to the detector); if H 
states that the effect is systematic-of the sort brought about more 
often than by chance-then not-H states that it is due to chance. How 
specific the question is depends upon what is required to ensure a good 
chance of learning something of interest (much like ensuring satisfac­
tion of the Kuhnian demarcation criterion of chapter 2). 

I am not denying the possibility of severe tests of higher-level theo­
retical hypotheses. When enough is learned from piecemeal studies, 
severe tests of higher-level theories are possible. Kuhn was right that 
"severity of test-criteria is simply one side of the coin whose other face 
is a puzzle-solving tradition." The accumulated results from piecemeal 
studies allow us at some point to say that several related hypotheses 
are correct, or that a theory solves a set of experimental problems cor­
rectly. 

Earman (1992, p. 177) discusses for a different reason the progress 
that has been made in a program by Thorne and Will (1971) to classify 
theories of gravity, those already articulated as well as other possible 
theories satisfying certain minimal requirements.9 Such a program 
shows which available experiments can eliminate whole chunks of 
theories (e.g., so-called nonmetric theories of gravity) and which sets 
of theories are still not distinguished by known experiments, and it 
indicates how progress might be made by devising experiments to fur­
ther discriminate between them (e.g., making cosmological observa­
tions). Something like this kind of program of partitioning and elimi­
nating chunks of theories is what the present program would call for 
at the level of large-scale theories. 

Much more work is also needed to show how learning in large­
scale inquiries proceeds by piecemeal canonical questions. Later I will 
focus on specific cases, but the philosopher of experiment's search is 
not for a uniform analysis of high-level testing-at least not in the 
way that has ordinarily been understood. Still, there are some general 
strategies for getting at larger questions by inquiring, piecemeal, into 
smaller errors: testing parameters, estimating the effects of background 
factors, distinguishing real effect from artifact, and so on with the other 
canonical errors. There are also general methodological rules for speci­
fying an experimental test from which one is likely to learn, based on 

9. The aim of the program Earman describes is "the exploration of the possibil­
ity space, the design of classification schemes for the possible theories, the design 
and execution of experiments, and the theoretical analysis of what kinds of theories 
are and are not consistent with what experimental results" (Earman 1992, 177). 
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background knowledge of the types of errors to be on the lookout for, 
and strategies for attaining severe tests with limited information. 

My concern just now is to get small again, to proceed with some 
standard tools for severe tests in the experimental models laid out in 
chapter 5. While they may enable us to take only baby steps, they 
enable us to take those baby steps severely. Such baby steps are at the 
heart of the experimenter's focus on what we variously referred to as 
"topical hypotheses" (Hacking) and "normal puzzles" (Kuhn). More­
over, what these baby steps accomplish will be sufficient for the prob­
lem of this chapter: methodological underdetermination. For the rea­
son that argument~ about evidence underdetermining hypotheses 
appear to go through is that we have not bothered to be very clear 
about what specific evidence is being talked about, what specific 
hypotheses are being tested, and what specific models of experiment 
and data are available to constrain inferences. 

6.4 CALCULATING SEVERITY 

To determine what, if anything, is learned from an experimental result, 
we must ask, What, if anything, has passed a severe test? Consider our 
Binomial experiment for the tea-tasting example (example 5.2, section 
5.4). We would pass hypothesis H' -that the probability of successfully 
discriminating the order of tea and milk in an infusion, p, exceeds .5-
by failing or rejecting the null hypothesis Ho: P = .5 (Le., the lady is 
merely guessing). Here, notice that Ho is the denial of the hypothesis 
H' that we pass. 

The question concerned the population parameter p. The possible 
answers, the parameter space, consists of all the possible proportions 
for p from 0 to 1, but the question asked divides it into two spaces, p = 
.5 and p > .5. A different inquiry might have tested Ho against a specific 
alternative, say p > .8. With minor modifications (of test specifica­
tion10), this calls for the same basic test as in our original partition. So 
that is a good place to start. It is just this kind of rough and simple 
question that provides a standard for distinguishing between experi­
mental effects and backgrounds. 

In this test the tea-tasting lady scored 60 percent successes in 100 
trials. That is, the distance (in the positive direction) between the ob­
served proportion or relative frequency of successes and the hypothe­
sized proportion of successes (.5) equals 2, in standard deviation units 

10. In this case we would need to increase the sample size beyond 100 to take 
a rejection of the null hypothesis as severely indicating p > .8. I return to such 
considerations in chapter 11. 
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(one standard deviation being .05). We ask ourselves: Suppose we 
were to pass H' (assert that she does better than chance) whenever the 
experiment results in 60 percent or more successes. How severe would 
that test procedure be? Would it often lead to mistaking chance effects 
for systematic or "real" ones? 

The test procedure can be written in several ways. One is 

Test procedure T (in Binomial experiment 5.2): Pass hypothesis H': p 
> .5) (fail Ho) if at least 60 percent out of the (100) trials are suc­
cessful. 

We then ask the above questions more formally in terms of our "sig­
nificance question": What is the probability of the experiment produc­
ing so large a difference from what is expected under the null hypothe­
sis Ho' if in fact the null hypothesis is true? The answer, we said, was 
.03-quite easily calculated using the Normal distribution. II We have 

P(test Tpasses H', given that H' is false [Ho is true]) = .03. 

This is the probability of erroneously passing H': the b variant of the 
severity criterion. The state of affairs "such a passing result would not 
have occurred" refers to all of the (1 OO-fold) experimental trials that 
result in less than 60 percent successes. The probability of this event is 
1 minus the probability of erroneously passing H', namely, .97. So the 
severity for H' is high (.97). This means that in a series of repetitions 
of the experiment (each with 100 trials), 97 percent of the outcomes 
would yield less than 60 percent successes, were we in fact experi­
menting on a population where the probability of success was only .5. 
We can picture this as the area under the Normal curve to the left of 
.6, assuming the null hypothesis Ho to be true (fig. 6.1). By rejecting 
the null hypothesis Ho only when the significance level is low, we auto­
matically ensure that any such rejection constitutes a case where the 
nonchance hypothesis H' passes a severe test. Such a test procedure T 
can be described as follows: 

Test Procedure T: Pass H' whenever the statistical significance level of 
the difference (between X and Ho) is less than or equal to IX (for some 
small value of IX)." 

11. A standard chart on the Normal distribution tells us that a sample mean 
exceeds the population mean by as much as 2 standard deviations less than 3 per­
cent of the time. The central limit theorem ensures that the Normal approximation 
is more than adequate. 

12. Because of the adequacy of using the Normal approximation it does not 
matter if we use "less than" or "less than or equal to IX." That is because it is a 
continuous distribution. 
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.S .6 

X (observed result) 

FIGURE 6.1. The severity for passing H' with X = .6 equals the probability that 
test T would yield a result closer to Ho (i.e., .5) than .6 is, given that Ho is true. 

Calculating severity means calculating 1 minus the probability of such 
a passing result, when in fact the results are due to chance, that is, 
when Ho is true. By definition, 

P( T yields a result statistically significant at a level ::5 a, given that 
Ho is true) = a. 

So the severity of the test procedure T for passing H' is 1 - a. 
As might be expected, were the observed success frequency even 

higher than 60 percent-say she scored 70 percent or 80 percent suc­
cesses-the severity for H' would be even higher than .97. Here it is 
enough to see that the severity of passing H' with result .6 (the 2-
standard-deviation cutoff) gives a minimum boundary for how severe 
the test is for H', and that minimum boundary is high. What is indi­
cated in affirming the nonchance hypothesis H' is that the effect is 
systematic, that the subject's pattern of correct discernments is not the 
sort typically brought about just by guessing. Granted, to learn this is 
typically just a first step in some substantive inquiry. Having found a 
systematic effect, subsequent questions might be: How large is it (per­
haps to subtract it out from another effect)? What causes it? and so on. 
The aim just now was to illustrate how the current framework allows 
splitting off one question at a time. 

Calculating Severity with Infinitely Many Alternatives 

In the Binomial experiment above, the hypothesis that passes the 
test (the nonchance hypothesis H') had only one alternative hypothe­
sis (the "guessing" hypothesis Ho: P = .5),13 In many cases there are 

13. That Ho' the null hypothesis, plays the role of the alternative here should 
cause no confusion despite the fact that it is H' that would generally be called the 
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SEVERE TESTS AND METHODOLOGICAL UNDERDETERMINATION 195 

several, even infinitely many, alternatives to the primary hypothesis H 
for which severity is being calculated. In those cases the "not-H" is a 
disjunction of hypotheses, HI or H2 or H3 or. ... How, it will be asked, 
can severity be made high in such cases? How can we assess the proba­
bility that H does not pass, given either HI or H2 or H3 or ... ? 

The probability of an outcome conditional on a disjunction of alter­
natives is not generally a legitimate quantity for a frequentist. Its calcu­
lation requires a prior probability assignment to each hypothesis Hi' 
Lest readers declare, "Aha, you are being Bayesian after all!" I had 
better explain what SC requires in such cases. It requires that the se­
verity be high against each such alternative. In other words, the mini­
mum severity against each of these alternative hypotheses needs to 
be high (the maximum error probability needs to be low), and prior 
probability assignments are not required to calculate them. 

Consider testing the value of a discrete or continuous parameter 
IL. Specific examples that will arise later are the mean value for Avo­
gadro's number (chapter 7) and the mean deflection of light (chapter 
8). The hypothesis H: IL exceeds some value IL', has as its alternative 
the complex hypothesis made up of all the values less than IL'. That is, 
"H is false" here means that IL is one of the infinitely many values less 
than or equal to IL'. Consider the highest of these values, the one that 
just makes H false, namely, IL'. This corresponds to the simple alterna­
tive hypothesis H': IL equals IL'. The probability that the test would 
not pass H, given that this highest valued alternative, H', were true, is 
calculated in the usual way. A good test (one with a sensible measure 
of distance from H) yields even higher severity values for each of the 
alternative IL values less than IL'. In other words, in a good test, if the 
test has a high chance of detecting that H is just barely false, it has an 
even higher chance of detecting that H is even more false. This allows 
us to say that the severity is high against all alternatives. Good error 
statistical tests provide just such guarantees. Actual experiments can 
and often do take their lead from these canonical tests. I return to this 
in chapter 11. 

It may be objected that with substantive questions all the possible 
alternative hypotheses cannot be set out in the manner of alternative 
values of a parameter. We may not even know what they are. Even 
where this is so, it does not present an insurmountable obstacle to ex­
perimental testing. In such cases what often may be managed is to find 
a more general or less precise hypothesis such that when it is severely 

"alternative" in formal statistics. When calculating the severity of a test that passes 
the non-null hypothesis H', the alternative to H' is the null hypothesis Ho' 
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196 CHAPTER SIX 

tested, there are at the same time grounds for rejecting all the alterna­
tives in a manner meeting the severity requirement. The idea is to par­
tition the possible alternatives to learn about the features that any se­
verely tested hypothesis will affirm. What we try to do, in short, is 
emulate what is possible in canonical experimental tests. 

I can rule out the killer's being over six-feet tall without scrutiniz­
ing all six-footers. A single test may allow ruling out all six-footers. 
Using a similar strategy Jean Perrin was able to rule out, as causes of 
Brownian motion, all factors outside a certain liquid medium. He did 
so by arguing that if the observed Brownian motion were due to such 
external factors-whatever they might be-the motion of Brownian par­
ticles would follow a specified coordinated pattern. His experimental 
tests, Perrin argued, would almost surely have detected such a pattern 
of coordination, were it to exist; but only uncoordinated motion was 
found. In this way, a whole set of extraneous factors was ruled out. 
This example will be explored in chapter 7. 

6.5 USING SEVERITY TO AVOID MISINTERPRETATIONS OF STATISTICAL 

TESTS: THE CASE OF NEGATIVE RESULTS 

I intend the severity criterion to provide a way of scrutinizing what 
has been learned from applying standard statistical tests. This scrutiny 
allows us to go beyond merely following the standard conventions of, 
say, rejecting the null hypothesis on the basis of a statistically signifi­
cant result. As such, assessing severity is a tool for avoiding common 
misinterpretations of standard error statistics. Severity considerations, 
we can say, serve the "metastatistical" function of scrutinizing error 
statistical results. They can be used to develop standard tools for 
avoiding canonical mistakes of interpretation (see section 11.6). These 
mistakes run to type. 

A type of mistake particularly appropriate to consider in the pres­
ent context concerns statistically insignificant results-that is, results 
where the null hypothesis is not rejected by the conventional signifi­
cance test. A classic flaw we need to be on the lookout for in interpre­
ting such "negative" results is the possibility that the test was not sensi­
tive (severe) enough to detect that Ho was in error in the first place. 
(The test, it would be said, has too Iowa power.) In that case, just be­
cause the test detects no error with hypothesis Ho is no indication that 
the error really is absent. I discuss this well-known error in detail else­
where (e.g., Mayo 1983, 1985a, 1985b, 1989, 1991b), and will address 
it in discussing statistical tests in chapter 11. Here my concern is to tie 
our handling of this canonical error with our avoidance of the alterna-
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tive hypothesis objection. In particular, it will become clear that a hy­
pothesis (e.g., a null hypothesis of no difference) may accord quite well 
with data (e.g., a negative result) and yet be poorly tested and poorly 
warranted by that data. 

Learning from Failing to Find a Statistically Significant 
Difference: The Case of the Pill 

A good example is offered by the randomized treatment-control 
trial on birth-control pills, sketched in example 5.1 (section 5.2). The 
question of interest concerned parameter a, the difference in rates of 
clotting disorders among a population of women. The question in this 
study concerned the error of supposing Ho (no increased risk) when in 
fact H' is true-there is a positive increase in risk. That is, we tested 
Ho: a = a against H': a> o. 

The actual difference observed in the Fuertes study was not statisti­
cally significant. In fact, the (positive) difference in disease rates that 
was observed has a statistical significance level of .4. That is to say, 40 
percent of the time a difference as large as the one observed would 
occur even if the null hypothesis is true. (See note 14.) 

However, failing to find a statistically significant difference with a 
given experimental test is not the same as having good grounds for 
asserting that Ho is true, that there is a zero risk increase. The reason is 
that statistically insignificant differences can frequently result even in 
studying a population with positive risk increases. The argument from 
error tells us that we may not declare an error absent if a procedure 
had little chance of finding the error even if it existed. The severity 
requirement gives the formal analog of that argument. 

Of course, the particular risk increase (a value) that is considered 
substantively important depends on factors quite outside what the test 
itself provides. But this is no different, and no more problematic, than 
the fact that my scale does not tell me what increase in weight I need 
to worry about. Understanding how to read statistical results, and how 
to read my scale, informs me of the increases that are or are not indi­
cated by a given result. That is what instruments are supposed to do. 
Here is where severity considerations supply what a textbook reading 
of standard tests does not. 

Although, by the severity requirement, the statistically insignifi­
cant result does not warrant ruling out any and all positive risk in­
creases-which would be needed to affirm Ho: a = a-the severity 
requirement does direct us to find the smallest positive increase that 
can be ruled out. It directs us to find the value of a' that instantiates 
the following argument: 
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Arguing from a statistically insignificant increase: Observing a statistically 
insignificant (positive) difference only indicates that the actual popu­
lation increase, /1, is less than /1' if it is very probable that the test 
would have resulted in observing a more significant difference, were 
the actual increase as large as /1'. 

The Nif clause" just says that the hypothesis asserting that Ll is less than 
Ll' must have passed a severe test. 

Using what is known about the probability distribution of the sta­
tistic here (the difference in means), we can find a Ll value that would 
satisfy the severity requirement. Abbreviate the value that is found as 
Ll *. The above argument says that the statistically insignificant result 
indicates that the risk increase is not as large as Ll*. That is, the hypoth­
esis that severely passes, call it H*, is 

H*: Ll is less than Ll *. 

Let RI be the statistic recording the observed risk increase (the positive 
difference in disorder rates among treated and untreated women). 
Then the severity requirement is satisfied by setting Ll* = RI + 2 stan­
dard deviations (estimated). For example, suppose that the particular 
risk increase is some value RIobs and that this result is not statistically 
significant. Then the hypothesis 

H*: Ll is less than RIobs + 2 standard deviations 

would pass a severe test with RIobs.14 The severity is .97. 
Notice that the test result severely rules out all increases in excess 

of Ll* (Le., all smaller values pass severely). It thereby illustrates the 
circumstance discussed in the last subsection-how severely ruling out 
one hypothesis may entail severely ruling out many others as well. 
(I return to this example and the question of interpreting statistically 
insignificant results in chapter II.) 

6.6 SEVERITY IN THE SERVICE OF ALTERNATIVE 

HYPOTHESIS OBJECTIONS 

The standard examples of the last two sections have shown both how 
to obtain and how to argue from high severity. These standard ex­
amples, 1 believe, let us make short work of the variants of the alterna­
tive hypothesis objection. For starters, these cases demonstrate the 

14. In the Fuertes et al. (1971) experiment, 9 of the approximately 5,000 
treated and 8 of the approximately 5,000 untreated women showed a particular 
blood-clotting disorder at the end of the study. The observed difference is 115,000. 
For a discussion, see Mayo 1985b. 
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point I made in grappling with Earman's criticism in section 6.3. We 
can avoid pronouncing as well tested a whole class of hypotheses that, 
while implying (or in some other way fitting) a given result, are never­
theless not part of the hypothesis space of the primary test. They are 
simply asking after the wrong question, so far as the given test is con­
cerned. 

Alternatives That Ask the Wrong Question 

Regarding the Binomial experiment on the tea-tasting lady, ex­
amples of wrong question hypotheses would be the variety of hypoth­
eses that might be adduced to explain how the lady achieves her 
systematic effect, such as psychophysical theories about sensory dis­
crimination, or paranormal abilities. That these other hypotheses pre­
dict the pattern observed does not redound to their credit the way the 
results count in favor of H', that she does better than guessing. This 
shows up in the fact that they would not satisfy the severity criterion. 

The procedure designed to test severely whether the effect is easily 
explained by chance is not automatically a reliable detector of mistakes 
about the effect's cause. With regard to questions about the cause of a 
systematic effect, a whole different set of wrong answers needs to be 
addressed. At the same time, the existence of these alternative (causal) 
hypotheses do not vitiate the severity assignment regarding hypothe­
ses for which the test is well designed. 

This same argument can be made quite generally to deal with al­
ternatives often adduced in raising the alternative hypothesis objec­
tion. While these alternatives to a hypothesis H also fit or accord with 
the evidence, they may be shown to be less well tested than is H. Often 
these alternatives are at a higher level in the hierarchy than the pri­
mary hypothesis under test (e.g., hypotheses about parameter values 
when the primary question is about a correlation, questions about the 
direction of a cause when the primary question is about the existence 
of a real correlation). There are two main points: First, these alternative 
hypotheses do not threaten a high severity assignment to the primary 
hypothesis. Second, it can be shown that these alternatives are not 
equally severely tested. Because they ask a different question, the ways in 
which they can err differ, and this corresponds to a difference in severity. More­
over, if the primary hypothesis is severely tested, then these alterna­
tives are less well tested. It is not that the nonprimary hypotheses 
themselves cannot be subjected to other severe tests, although there is 
certainly no guarantee that they can be. It is simply that they are not 
tested by the primary test at hand. It follows that hypotheses that entail 
well-tested hypotheses need not themselves be well tested. 

A scientific inquiry may involve asking a series of different primary 
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questions, and each will (typically) require its own hierarchy of experi­
mental and data models. One cannot properly scrutinize hypotheses in 
isolation from the specific framework in which they are tested. 

Alternative Primary Hypotheses 

It will be objected that I have hardly answered the alternative hy­
pothesis objection when it becomes most serious: the existence of al­
ternative hypotheses to the primary hypothesis. This is so. But we can 
handle such cases in much the same fashion as the previous ones-via 
a distinction in severity. 

One point that bears repeating is that I am not aiming to show that 
all alternatives can always be ruled out. Experimental learning is never 
guaranteed. What I do claim to show, and all that avoiding MUD re­
quires, is that there are not always equally well tested alternatives that 
count as genuine rivals, and that there are ways to discriminate 
hypotheses on grounds of well-testedness that get around alternative 
hypothesis objections. 

Maximally Likely Alternatives. A type of alternative often adduced in rais­
ing the alternative hypothesis objection is one constructed after the 
fact to perfectly fit the data in hand. By perfectly fitting the data, by 
entailing them, the specially constructed hypothesis H makes the data 
maximally probable (Le., P(e I H) = 1). Equivalently, e makes H maxi­
mally likely. The corresponding underdetermination argument is that 
for any hypothesis H there is a maximally likely alternative that is as 
well or better tested than His. 

The '"curve-fitting problem" is really an example of this: for any 
curve connecting sample points, infinitely many other curves connect 
them as well. (The infamous Grue problem may be seen as one vari­
ant.) The problem of maximally likely alternatives was also a central 
criticism of the account of testing that Ian Hacking championed in 
Hacking 1965. 15 In this account, evidence e supports hypothesis HI 
more than hypothesis H2 if e is more probable given HI than given H2.16 

The trouble is, as Barnard (1972) pointed out, '"there always is such a 
rival hypothesis, viz. that things just had to turn out the way they actu­
ally did" (p. 129). 

A classically erroneous procedure for constructing maximally likely rivals: 

15. It was one of the reasons he came to reject the account. See, for example, 
Hacking 1972. 

16. The probability of e given HI' P(e I HI)' is called the likelihood of HI. So 
Hacking's rule of support can also be stated as e supports HI more than H2 if the 
likelihood of HI exceeds the likelihood of H,. 
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gellerization. Clearly, we are not impressed with many maximally likely 
hypotheses adduced to explain given evidence, but the challenge for 
an account of inference is to provide a general and satisfactory way of 
marking those intuitively implausible cases. Bayesians naturally appeal 
to prior probabilities, and for reasons already addressed this is unsatis­
factory to us. Moreover, at least from the present point of view, this 
misdiagnoses the problem. The problem is not with the hypothesis it­
self, but with the unreliability (lack of severity) of the test procedure 
as a whole. Infamous examples-both formal and informal-serve as 
canonical cases of how maximally or highly likely hypotheses can be 
arrived at in ways that yield tests with low or minimal severity. I call 
them "gellerized" hypothesis tests. 

An informal example is that of the Texas sharpshooter. Having shot 
several holes into a board, the shooter then draws a target on the board 
so that he has scored several bull's-eyes. The hypothesis, H, that he is 
a good shot, fits the data, but this procedure would very probably yield 
so good a fit, even if H is false. A formal variant can be made out with 
reference to coin-tossing trials: 

Example 6.1: A gellerized hypothesis test with coin-tossing trials. The ex­
perimental result, let us suppose, consists of the outcomes of n coin­
tossing trials-where each trial yields heads or tails. Call the outcome 
heads a success and tails a failure. For any sequence of the n dichoto­
mous outcomes it is possible to construct a hypothesis after the fact 
that perfectly fits the data. The primary hypothesis here concerns the 
value of the parameter p-the probability of success on each coin­
tossing trial. The standard null hypothesis Ho is that the coin is "fair"­
that p is equal to .5 on each coin-tossing trial. Thus any alternative 
hypothesis about this parameter can be considered an alternative pri­
mary hypothesis. In any event, this is what our imaginary alternative­
hypothesis challenger alleges. 

Let G(e) be some such hypothesis that is constructed so as to per­
fectly fit data e. (G(e) is constructed so that P[e I G(e)] = 1.) Suppose 
that G(e) asserts that p, the probability of success, is 1 just on those 
trials that result in heads, and 0 on the trials that result in tails. 17 It 

17. For example, suppose that e, the result of four tosses of a coin, is heads, 
tails, tails, heads. That is, e = s,f,f,s where s,fare the abbreviations for "success" and 
"failure," respectively. Then G(e) would be: the probability of success equals 1 on 
trials one and four, 0 on trials two and three. The null hypothesis, in contrast, 
asserts that the probability of success is .5 on each trial. Another G hypothesis that 
would do the job would assert that the observed pattern of successes and failures 
will always recur in repeating the n-fold experiment. lowe this second example to 
I. J. Good. 
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matters not what if any story accompanies this alternative hypothesis. 
This hypothesis G(e) says that 

G(e): p equals 1 on just those trials that were successes, 0 on the 
others. 

The test procedure, let us suppose, is to observe the series of however 
many trials, find a hypothesis G(e) that makes the result e maximally 
probable, and then pass that hypothesis. In passing G(e), the test rejects 
the null hypothesis Ho that the coin is fair. 

Test procedure T (in example 6.1): Fail (null) hypothesis Ho and pass 
the maximally likely hypothesis G(e) on the basis of data e. 

The particular hypothesis G(e) erected to perfectly fit the data will vary 
in different trials of our coin-tossing experiment, but for every data set, 
some such alternative may be found. Therefore, any and all experi­
mental results are taken to fail null hypothesis Ho and pass the hypoth­
esis G(e) that is constructed to fit data e-even when G(e) is false and 
Ho is true (Le., even when the coin is "fair"). In a long-run series of 
trials on a fair coin, this test would always fail to correctly declare the 
coin fair. Hence the probability of passing G(e) erroneously is maxi­
mal-the severity of this test procedure is minimal. 

To calculate severity in cases where the hypothesis is constructed 
on the basis of data e, it is important to see that two things may vary: 
the hypothesis tested as well as the value of e. One must include, as 
part of the testing procedure, the particular rule that is used to deter­
mine which hypothesis to test. When the special nature of this type of 
testing procedure is taken into account, Our severity criterion SC be­
comes 

SC with hypothesis construction: There is a very high probability that test 
procedure T would not pass the hypothesis it tests, given that the hy­
pothesis is false. 

To ascertain whether SC is satisfied, one must consider the particular 
rule for designating the hypothesis to test. 

Let the test procedure T be the one just described. The hypothesis 
that Ttests on the basis of outcome e is G(e). There is no probability that 
test Twould not pass G(e), even if G(e) were false. Hence the severity is 
minimal (Le., 0). In other words, the test procedure T is a maximally 
unreliable probe when it comes to detecting the relevant error (the 
error of rejecting Ho when Ho is true). This amounts to the defining 
characteristic of what I call a gellerized hypothesis-or, more precisely, a 
gellerized hypothesis-testing procedure. With a gellerized procedure, 
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the hypothesis selected for testing is one that is constructed to provide 
an excellent fit for the data, but in such a way that the constructed 
hypothesis passes a test with minimal (or near minimal) severity. 

The manner in which the severity criterion eliminates such geller­
ized alternatives is important for it hinges on the distinctive feature of 
error statistical approaches-the centrality of error probabilities. How 
this contrasts with other approaches will become much clearer later 
(in chapters 8-11). It should be stressed that gellerized hypotheses are 
deemed poorly tested by my account not because they are constructed 
after the fact to fit the data. As I shall argue (in chapter 8), such after­
trial constructions ("use-constructed" hypotheses) can pass with max­
imal severity. They are deemed poorly tested because in gellerized 
constructions the tactic yields a low or 0 severity test. A primary hy­
pothesis that fits the outcome less well than this type of rigged alterna­
tive may actually be better, more severely, tested. 

The example of gellerization (which comes in several forms), then, 
is a canonical example of a minimally severe test~ As with all canonical 
examples, it is a basis for criticizing substantive cases that while less 
obviously fallacious are quite analogous. 

Practically Indistinguishable Alternatives. What about alternatives that 
cannot be distinguished from a primary hypothesis H on the grounds 
of severity because they differ too minutely from H? This occurs, for 
example, when H is an assertion about a continuous parameter. My 
quick answer is this: if there are alternatives to H that are substantive 
rivals-one differing merely by a thousandth of a decimal is unlikely 
to create a substantive rival-and yet they cannot be distinguished on 
the grounds of severity, then that is grounds for criticizing the experi­
mental test specifications (the test was insufficiently sensitive). It is not 
grounds for methodological underdetermination. 

Empirically Equivalent Alternatives. We have yet to take up what some 
might consider the most serious threat to a methodology of testing: the 
existence of rival primary hypotheses that are empirically equivalent 
to H, not just on existing experiments but on all possible experiments. 
In the case where the alternative H' was said to ask the wrong ques­
tion, it was possible to argue that the severity of a test of primary hy­
pothesis H is untouched. (If the ways in which H can err have been 
well probed and ruled out, then H passes a severe test. There is no 
reason to suppose that such a test is any good at probing the ways in 
which H' can err.) But the kind of case we are to imagine now is not 
like that. Here it is supposed that although two hypotheses, Hand H', 
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204 CHAPTER SIX 

give different answers to the same primary question, both have the 
same testable consequences. Does it follow that a severity assessment 
is unable to discriminate between any tests they both pass? 

That depends. If it is stipulated that any good test is as likely to 
pass H, although H' is true, as it is to pass H' although H is true-if it 
is stipulated that any test must have the same error probabilities for 
both hypotheses-then it must be granted. In that case no severe test 
can indicate H as opposed to H'. The best example is mathematical, the 
two hypotheses being Euclidean and non-Euclidean geometry. But 
apart from certain, not entirely uncontroversial cases in physics, there 
is no reason to suppose such pairs of rivals often exist in science. IS 

Moreover, even if we grant the existence of these anomalous cases, 
this would fail to sustain MUD, which alleges that the problem exists 
for any hypothesis. There is no reason to suppose that every hypothesis 
has such a rival. 

We can go further. When one looks at attempts to argue in general 
for the existence of such empirically (or testably) equivalent rivals, one 
finds that severity considerations discriminate among them after all. In 
fact, one finds that such attempts appeal to tactics remarkably similar 
to those eschewed in the case of gellerized hypotheses. They too turn 
out to be "rigged" and, if countenanced, lead to highly unreliable test 
procedures. 

Richard Miller (1987) gives a good example in objecting to alleged 
empirically equivalent, "just-as-good" alternatives. He asks, "What is 
the theory, contradicting elementary bacteriology, that is just as well 
confirmed by current data?" (p. 425) Granted, an alternative that can 
be constructed is "that bacteria occasionally arise spontaneously but 
only when unobserved." The severe testing theory dismisses such a 
general tactic the same way it dismisses an alleged parapsychologist's 
claim that his powers fail when scientists are watching. Such a tactic 
(gellerization again!) allows the alternative hypothesis to pass the test, 
but only at the cost of having no (or a low) chance of failing, even if it 
is false-at the cost of adopting a minimally severe test. I condemn 
such tests because one cannot learn from them. 

But, the alternative hypothesis objector may persist, doesn't the 
existence of such an alternative prevent a high -severity assignment to 
the hypothesis of elementary bacteriology? No. The grounds for as­
sessing how severely this hypothesis passes are a separate matter. It 

18. Earman (1993) suggests that the existence even of exotic empirically indis­
tinguishable rivals is enough to make us worry that only a lack of imagination 
keeps us from recognizing others "all over the map" (p. 31). 
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passes a severe test to the extent that there are good grounds for ar­
guing that were the bacteriology hypothesis false, then it almost surely 
would have been found to be false. Such grounds mayor may not exist 
(in the bacteriology case, as Miller notes, it seems that they do). What 
matters is that no obstacle to such grounds is presented by a rigged 
alternative, R. Hypothesis R, in effect, makes the following assertion: 

Rigged hypothesis R: a (primary) alternative to H that, by definition, 
would be found to agree with any experimental evidence taken to 
pass H. 

Consider the general procedure of allowing, for any hypothesis H, that 
some rigged alternative or other is as warranted as H. Even where H 
had repeatedly passed highly severe probes into the ways H could err, 
this general procedure would always sanction the following argument 
against H: all existing experiments were affected in such a way as to 
systematically mask the falsity of H. That argument procedure is highly 
unreliable. It has a very high (if not a maximal) probability of erron­
eously failing to discern the correctness of H. 

Alternatives about Experimental Assumptions 

One way of challenging the claim to have severely tested H is by 
challenging the experimental assumptions. Assigning a high severity 
to a primary hypothesis H assumes that the experimental assumptions 
are approximately met. In fact, the key feature of well-specified experi­
mental tests is that the only nonprimary hypotheses that need to be 
worried about, for the sake of answering the single question at hand, 
are challenges to the assumptions of the experimental model. Chapter 
5 discusses how to handle these assumptions (they were placed at the 
stage of checking the data models yet lower down in the hierarchy), 
so a sketch should suffice. 

Again, the procedures and style of argument for handling experi­
mental assumptions in the formaL canonical inquiries are good stan­
dards for learning in actuaL informal experiments. These experimental 
procedures fall into two main groups. The first consists of the various 
techniques of experimental design. Their aim is to satisfy experimental 
assumptions before the trial is carried out. The second consists of pro­
cedures for separately testing experimental assumptions after the trial. 
Often this is done by means of the "same" data used to pass the primary 
hypothesis, except that the data are modeled differently. (For instance, 
the same sequence of trials may be used to answer questions about the 
assumptions of the Binomial experiment-e.g., is the cause of the ef­
fect the color of the cups? The data set is remodeled to ask a different 
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question.) With respect to the statistical assumptions of the two tests 
studied earlier (the pill and tea-tasting experiments), a whole battery 
of separate statistical tests is available, often with trivial assumptions. 
Moreover, we know from the central limit theorem (chapter 5) that 
with such a large sample size (100), the Normal approximation to the 
Binomial experiment in the tea-tasting test is easily justified without 
further checks. 

Recall that I initially separated out the error of violating experi­
mental assumptions (the fourth canonical error [error d] in section 1.5) 
because in general a far less demanding type of argument is needed 
here. A rough idea of the distribution of the experimental test statistic 
suffices to say, approximately, how often it is likely to be further from 
hypothesized values. A host of virtually assumption-free checks often 
does the job. 

In other cases it may be necessary to generate additional data to 
rule out possible auxiliary factors, such as when the ceteris paribus 
conditions become suspect. In yet other cases alternative hypotheses 
may be rejected on the basis of evidence from earlier experiments, now 
part of the background knowledge, or because they force inconsistent 
assignments to physical constants. Chapter 7, on Brownian motion, 
and the discussion of the eclipse experiments in chapter 8 contain illus­
trations of both types of strategies. 

All of this of course requires astute experimental design and/or 
analysis. By means of the experimental planning, the logically possible 
explanations of results are effectively rendered actually or practically 
impossible. The experimentalist whose aim is to get it right does not 
appeal to hard cores, prior probabilities, or the like; he or she appeals 
to the various techniques in the experimentalist's tool kit. 

To reiterate, I do not hold that relevant alternatives can always 
successfully be put to rest in these ways. If the threats cannot be ruled 
out satisfactorily, then the original argument alleging H to be indicated 
is vitiated. Even so, it does not follow that this alternative hypothesis 
is itself well tested. To say that the alternative is well tested requires a 
separate argument showing that it has passed a severe test. 

6.7 SEVERITY, POPPERIAN STYLE 

In appealing to severity to answer the other hypothesis objection, it is 
clear that the probability in SC does not just fall out from some logical 
relationships between statements of evidence and hypotheses. We 
must look at the particular experimental context in which the evidence 
was garnered and argue that its fitting a hypothesis is very improbable, 
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if that hypothesis is false. This probability refers to the variable behav­
ior of the test rule in (actual or hypothetical) repetitions of the experi­
ment, and the falsity of the hypothesis refers to the presence of some 
specific error. This relativity to an experimental testing model and the 
focus on (frequentist) probabilities of test procedures distinguish my 
account, particularly from others that likewise appeal to probabilities 
to articulate the criterion for a good or severe test-even from ac­
counts that at first blush look similar, most notably Popper's. 

It is important to distinguish Popperian severity from ours because, 
like the case of the straight rule, Popperian testing has been success­
fully criticized as open to the alternative hypothesis objection. I ex­
plained in chapter 1 why earning a "best tested so far" badge from 
Popper would not suffice to earn a "well-tested" badge from me. There 
are, however, several places in which Popper appears to be recom­
mending the same kind of severity requirement as I am. I suspect that 
Popper's falsification philosophy is congenial to so many scientists be­
cause they suppose he is capturing the standard error-testing principles 
that are at the heart of experimental practice. Less advertised, and far 
less congenial, is Popper's negativism, that, as he admits, corroboration 
yields nothing positive, and that it never warrants relying on well­
tested hypotheses for future applications. But Popper's most winning 
slogans are easily construed as catching the error-severity spirit. Here 
are a few: 

Mere supporting instances are as a rule too cheap to be worth having; 
they can always be had for the asking; thus they cannot carry any 
weight; and any support capable of carrying weight can only rest 
upon ingenious tests, undertaken with the aim of refuting our hy­
pothesis, if it can be refuted. (Popper 1983, 130; emphasis added) 

The theoretician will therefore try his best to detect any false theory 
... he will try to "catch" it. That is, he will ... try to think of cases or 
situations in which it is likely to fail, if it is false. Thus he will try to 
construct severe tests, and crucial test situations. (Popper 1979, 14) 

It is not difficult to hear these passages as echoing the goal of se­
vere tests in the sense of SC. Nevertheless, this goal is not accomplished 
by means of the logical relationships between evidence and hypothesis 
that Popper calls for. (The particular mathematical formulas Popper 
offered for measuring the degree of severity are even more problematic 
and they will not be specifically considered here.) Popper kept to the 
logical notion of probability, although no satisfactory account of that 
concept was ever developed. He failed to take what may be called the 
"error probability turn." 
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In the next passage, and elsewhere, Popper describes the type of 
context that he takes as providing grounds for calling a test severe. 

A theory is tested ... by applying it to very special cases-cases for 
which it yields results different from those we should have expected without 
that theory, or in the light of other theories . .. those crucial cases in which 
we should expect the theory to fail if it is not true. (Popper 1962, 112; 
emphasis added) 

Here Popper plainly states that the reason he thinks that hypothesis 
H can be expected to fail if false is that background and alternative 
hypotheses predict not-e-e being the result taken to corroborate H. 
That is to say, for Popper, a nonfalsified hypothesis H passes a severe 
test with e if all alternatives to H that have so far been considered or 
tested entail not-e (or render not-e highly probable). A weaker con­
strual requires only that the alternatives say nothing about whether e 
or not-e will occur. 

Later we will see that the general question of what counts as a 
severe test is alternately put in terms of the question of what counts as 
novel evidence for a hypothesis. The answer given by Popper's require­
ment here is tantamount to requiring that e be novel in the sense Alan 
Musgrave calls theoretically novel. The evidence taken to pass H is theo­
retically novel if it is not already derivable from background theories. 
Lakatos and Musgrave (at times) endorsed both weak and strong con­
struals: 

According to this [theoretical] view, a new theory is independently 
testable (or predicts a "novel fact") if it predicts something which is 
not also predicted by its background theory. Hence there are two 
kinds of independent or novel predictions, tests of which are se­
vere .... First, there are predictions which conflict with the predictions 
of the background theory-tests of these will be crucial tests between 
the new theory and the old. Second, there are predictions concerning 
phenomena about which the background theory predicts nothing at 
all-tests of these will also be independent tests and severe ones. 
(Musgrave 1974,15-16) 

In this view, the requirement for a predicted fact e to count as a severe 
test of H may be understood either in the strong form-e disagrees 
with what would be expected given each alternative H' -or in the 
weak form-H' says nothing about e. I will continue to take the for­
mer, stronger version, as the one Popper champions. 19 That is, 

19. Popper confirmed that this was his view in a private communication. If H 
may be constructed after the data, then so long as H' does not entail not-e it is easy 
to see how this condition can be satisfied while the test of H nevertheless has low 
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Popperian severity: 
1. H entails e (P( e I H) = 1) or e is very probable given H 
2. Each available H' alternative to H counterpredicts e. 

Since it is not clear whether condition 2 requires that the consid­
ered alternatives entail not-e or simply that each renders e very im­
probable, saying that H' counterpredicts e denotes either, except where 
specifically noted. We might state Popperian severity as follows: e is a 
severe test of H if H predicts e, while e is anomalous for all other known 
alternative hypotheses. 

There is no demand that a specific testing context be delineated, 
there are just these two requirements in terms of the logical relation­
ships between statements of evidence and hypotheses. In contrast with 
the present account, the relevant hypotheses need not be answers to 
some primary question; they can be anything at all. It is easy to see 
how the alternative hypothesis objection gets off the ground. Adolf 
Griinbaum (1978) gets it off quite well. 

Griinbaum's "Alternative Hypothesis" Objection to Popperian Severity 

Referring to Popper's statement above (Popper 1962, 112), Griin­
baum rightly asks how 

qua pure deductivist, can Popper possibly maintain without serious 
inconsistency, as he does, that successful results [of tests severe in his 
sense] should "count" in favor of the theory ... in the sense that in 
these "crucial cases ... we should expect the theory to fail if it is not 
true"? (Griinbaum 1978, 130) 

Passing a severe test in Popper's sense, Griinbaum claims, would leave 
"the truth of the 'infinitely' weaker disjunction ... of ALL and only 
those hypotheses which individually entail [e]" (p. 130).20 And Popper 
himself acknowledges the existence of infinitely many alternatives. 

In other words, suppose that outcome e is observed. The hypothe­
ses that entail not-e are rejected, and H, which entails e, passes the test. 
True, H has not yet been refuted-but neither have the infinitely many 
not-yet-considered other hypotheses that also entail e. Evidence e, it 

severity. A version of the so-called tacking paradox will serve this function. Simply 
let H = H' and e. Here H perfectly fits e (Le., it entails e). But since this can be done 
for any hypothesis H', such an agreement may be assured whether or not H is false. 
This criticism appears in Worrall 1978, 330. 

20. He asks "of what avail is it to Popper, qua deductivist, that by predicting C, 
H is one of an infinitude of theories ... incompatible with those particular theories 
with which scientists had been working by way of historical accident?" (Griinbaum 
1978,131). 
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seems, counts as much for these other alternatives as it does for H. As 
Grtinbaum puts it (using C for outcome e), 

according to Popper's definition ... the experiment E which yielded 
the riskily predicted C does qualify as a "severe test" of H. But surely 
the fact that H makes a prediction C which is incompatible with the 
prior theorie§- constituting the so-called "background knowledge" B 
does not justify the following contention of Popper's: A deductivist is 
entitled to expect the experiment E to yield a result contrary to C, 
unless H is true. (P. 131) 

For even if H is false, its falsity is not weeded out. That is because some 
true (but not yet considered) hypothesis predicts the same outcome 
that allows H to pass. Given the Popperian definition of severity, and 
given the assumption that there are always infinitely many hypotheses 
that entail evidence, Grtinbaum's worry is well founded. Nor is the 
situation ameliorated by the additional requirement Popper often ad­
vanced, that the hypotheses precede the data (that the data be "tempo­
rally novel," to use a term taken up in chapter 8).21 

The error-severity requirement, in contrast, exists only as part of 
an experimental account whose central mission is to create situations 
and specify procedures where we are entitled to expect the experiment 
to fail H, if H is false. It is easy to see that satisfying Popper's severity 
criterion is not sufficient to satisfy ours. One example will suffice. 

Cancer Therapies 

Each chemotherapeutic agent hypothesized as being the single­
bullet cure for cancer has repeatedly failed to live up to its expecta­
tions. An alternate, unorthodox treatment, let us imagine, accords 
with all the available evidence. Let us even imagine that this nonche­
motherapeutic hypothesis predicts the chemotherapeutic agents will 
fail. As such, it may be accorded (one of) Popper's "well-tested" badges. 
On the error-severity account, the existing data from tests of chemo­
therapeutic agents provide no test at all of the alternative treatment, 
because these tests have not probed the ways in which claims made 
for this alternative treatment can be in error. To count an alternate 
cancer treatment as well tested simply because it accords with the re-

21. For Popper, evidence e cannot count as a severe test of H if e is already 
explained by other hypotheses. In reality, however, the very newness of a phenom­
enon may count against the first hypothesis to explain it because one suspects 
there may be lots of other untried explanations. Until there is some work on the 
matter, there are not yet grounds to think that H would have failed if it were false. 
I return to this in chapter 8. 
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sults of chemotherapeutic trials is to follow a demonstrably unreliable 
procedure. 

Here are the bare bones of this kind of example: A given hypothe­
sis H predicts that there will be a significant correlation between A 
(e.g., a cancer drug) and B (the remission rate). Alternative hypothesis 
H' predicts that there will be no significant correlation between factors 
A and B in the experimental trials. For example, H' may assert that 
only a new type of laetrile treatment can help. The data, let us suppose, 
are just what H' predicts-no significant correlation between A and B 
(e.g., in remission rate). H' passes a Popperian severe test, but for the 
error-tester it has passed no genuine test at all (or at best a very weak 
one). 

My criticism of Popperian severity is not merely that credit cannot 
accrue to currently passing hypotheses because there are, invariably, 
not-yet-considered alternatives that also would pass. It is rather that, 
as we have just seen, a good test is not constituted by the mere fact 
that a hypothesis fits the evidence counterpredicted by existing alter­
natives.22 Often we can go further and argue that the test is poor be­
cause it did not guard against the types of errors that needed to be 
guarded against. 

If H and H' are the only possible alternatives-and H' entails not­
e while e occurs-then e is a maximally severe test of H in our sense 
(and presumably everyone else's). But, in general, Popperian severity 
is not sufficient for severity in our sense. Neither is Popperian severity 
necessary for error-severity. To consider Popperian severity necessary 
for a good test would seem to prevent any data already entailed by a 
known hypothesis to count as severely testing a new hypothesis. (This 
is argued in Worrall 1978a, 330-31.) 

This should finish up the problem with Popperian corroboration 
first posed in chapter 1. Corroboration, passing a test severe in Popper's 
sense, says something positive only in the sense that a hypothesis has 
not been found false-this much Popper concedes. But Popper also 
suggests that the surviving hypothesis H is the best-tested theory so 
far. I have argued that Popperian tests do not accomplish this. After all, 
as Popper himself insists, for a hypothesis to be well tested it must have 

22. Determining if SC is met by Popper's criterion requires asking, "What is 
the probability of the conditions for H's passing a Popperian severe test being satis­
fied (in the case at hand) even if H is false?" SC requires two things of any test rule: 
first, that we be able to approximately determine the probability that it results in 
H's passing everi if H is false; and second, that this probability is determined to be 
low. But Popper's severity condition does not provide grounds for assigning a low 
probability to erroneously passing H. 
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been put through the wringer. One needs to be able to say that H had 
little chance of withstanding the inquiry if false. It is a mistake to con­
sider a result counterpredicted by known alternatives to H as automati­
cally putting H through the wringer. 

Looking at the problem in terms of the logical relationships be­
tween evidence and hypotheses ignores all of the deliberate and active 
intervention that provides the basis for arguing that if a specific error 
is committed, it is almost certain to show up in one of the results of 
a given probe (series of tests). By such active intervention one can 
substantiate the claim that we should expect (with high probability) 
hypothesis H to fail a given test, if H is false. And we can do so even if 
we allow for the possibility of infinitely many alternative hypotheses. 

Granted, arguing that a hypothesis is severely tested takes work. 
In many cases the most one can do is approximate the canonical cases 
that ground formal statistical arguments. But often it can be argued 
that a hypothesis is severely tested-even if it means modifying (weak­
ening) the hypothesis. By deliberate and often devious methods, ex­
perimenters are able to argue that the test, in context, is severe enough 
to support a single answer to a single question. 

6.8 My REPLY TO THE ALTERNATIVE HYPOTHESIS OBJECTION 

Let us recapitulate how my account of severe testing deals with alter­
native hypothesis objections that are thought to be the basis for MUD. 
The MUD charge (for a method of severe testing 1) alleges that for any 
evidence test T takes as passing hypothesis H severely, there is always 
a substantive rival hypothesis H' that test T would regard as having 
passed equally severely. We have shown this claim to be false, for each 
type of candidate rival that might otherwise threaten our ability to say 
that the evidence genuinely counts in favor of H. Although H' may 
accord with or fit the evidence as well as H does, the fact that each 
hypothesis can err in different ways and to different degrees shows up 
in a difference in the severity of the test that each can be said to have 
passed. The same evidence effectively rules out H's errors-that is, 
rules out the circumstances under which it would be an error to affirm 
H-to a different extent than it rules out the errors to affirming H'.23 

This solution rests on the chief strategy associated with my experi­
mental testing approach. It instructs one to carry out a complex inquiry 

23. This strategy for distinguishing the well-testedness of hypotheses can also 
be used to resolve the philosophical conundrums known as the Grue paradox and 
the Ravens paradox. 
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SEVERE TESTS AND METHODOLOGICAL UNDERDETERMINATION 213 

by breaking it down into pieces, at least some of which will suggest a 
question that can be answered by one of the canonical models of error. 
(In some cases one actually carries out the statistical modeling, in oth­
ers it suffices to do so informally, in ways to be explained.) With regard 
to the local hypotheses involved in asking questions about experimen­
tal mistakes, the task of setting out all possible answers is not daunting. 
Although it may be impossible to rule out everything at once, we can 
and do rule out one thing at a time. 

Naturally, even if all threats are ruled out and H is accepted with a 
severe test, H may be false. The high severity requirement, however, 
ensures that this erroneous acceptance is very improbable, and that in 
future experiments the error will likely be revealed. 

The thrust of experimental design is to deliberately create contexts 
that enable questions to be asked one at a time in this fashion. In focus­
ing too exclusively on the appraisal of global theories, philosophers 
have overlooked how positive grounds are provided for local hypothe­
ses, namely, whenever evidence counts as having severely tested them. 
By attempting to talk about data and hypotheses in some general way, 
apart from the specific context in which the data and hypothesis are 
generated, modeled, and analyzed to answer specific questions, philos­
ophers have missed the power of such a piecemeal strategy, and under­
determination arguments have flourished. 

Having set out most of the needed machinery-the hierarchy of 
models, the basic statistical test, and the formal and informal argu­
ments from severe tests-it is time to explore the themes here ad­
vanced by delving into an actual scientific inquiry. This is the aim of 
the next chapter. 
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CHAPTER SEVEN 

The Experimental Basis from Which to Test 
Hypotheses: Brownian Motion 

My major aim in this was to find facts which would guarantee as 
much as possible the existence of atoms of definite finite size. In 
the midst of this I discovered that, according to atomistic theory, 
there would have to be a movement of suspended microscopic 
particles open to observation, without knowing that observations 
concerning the Brownian motion were already long familiar. 

-Albert Einstein, Albert Einstein: Philosopher-Scientist, p. 47 

I have sought in this direction for crucial experiments that should 
provide a solid experimental basis from which to attack or defend 
the Kinetic Theory. 

-Jean Perrin, Atoms, p. 89 

7.1 BROWNIAN MOTION: SOME INTRODUCTORY REMARKS 

A more full-blown example from science can now best elucidate the 
machinery I have assembled-the hierarchy of models in an experi­
mental inquiry, the simple statistical test, the piecemeal check for er­
rors by splitting off local questions, the use of canonical models of 
error, and the strategies for arriving at severe tests. An example often 
discussed by philosophers is the appraisals of hypotheses surrounding 
the phenomenon of Brownian motion. 

Brownian motion, discovered by the botanist Robert Brown in 
1827, refers to the irregular motion of small particles suspended in 
fluid, a motion that keeps them from sinking due to gravitation. Brown 
thought the particles were alive until he found that the motion oc­
curred in inorganic as well as organic substances. l Attempts to explain 

1. Brown discovered a piece of quartz in which a drop of water had been 
trapped for millions of years. Observing it under a microscope, he saw numerous 
particles in ceaseless, irregular motion. 

214 
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this phenomenon link up with the atomic debates of the late­
nineteenth and early-twentieth centuries. The atomic debate being too 
broad to be taken up here, I restrict my focus to the testing of the 
Einstein-Smoluchowski (ES) theory of Brownian motion by Jean Per­
rin. Perrin, who received the 1926 Nobel Prize in physics, provided the 
long sought after evidence in favor of the molecular-kinetic theory of 
gases against classical thermodynamics. 

Brownian Motion and Paradigm Shifts 

This case lends itself not only to explicating the present program 
of breaking down substantive inquiries into piecemeal canonical ques­
tions but also to the exploration of the key role of experimental knowl­
edge in larger scale theory change. The debates about the cause of 
Brownian motion correlate with a number of disputes between what 
might be regarded as rival paradigms or disciplinary matrices, as dis­
cussed in chapter 2. The disputes were between molecular and phe­
nomenological or energeticist ontologies, mechanical and phenome­
nological explanation, atomic and continuous metaphysics, statistical 
and nonstatistical models, realism and instrumentalism, and still oth­
ers. Correspondingly, the acceptance of the ES theory of Brownian mo­
tion led to the changing of the key elements that compose paradigms 
or disciplinary matrices. It led to a change in beliefs about fundamental 
entities, the existence of molecules, and the particulate nature of mat­
ter. It also led to a change in scientific methodology: a new limit to 
experimental accuracy due to Brownian fluctuations and "noise" in 
measuring systems was introduced along with corresponding canoni­
cal models of error. The entry of statistical validity into physics also 
conflicted with the cherished philosophical conception that physics 
discovers wholly exact laws. (New applications of models from 
Brownian motion continue up to the present time.2 ) 

Nevertheless, the dynamics of these changes bore no resemblance 
to the Kuhnian picture of holistic change, as discussed earlier. At each 
step of the way experimental methodology and shared criteria of relia­
bility and severity constrained the appraisal. What we see are prac­
titioners from ostensibly rival paradigms learning from and communi­
cating by means of experimental arguments. We cannot make good on 
these claims, however, until we have properly considered Perrin's 

2. Statistical models based on Brownian motion are used to understand star 
clustering, the evolution of ecological systems, and even the fluctuation of retail 
prices. 
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216 CHAPTER SEVEN 

much more local work on Brownian motion. It is here that one really 
finds the locus of the action. 

Molecular Reality and Arguments from Coincidence 

The Perrin case often has been taken to exemplify variants of the 
"argument from coincidence" discussed in chapter 3. Gilbert Harman 
(1965) uses it to introduce inference to the best explanation, Wesley 
Salmon (1984) to illustrate his argument to a common cause, Nancy 
Cartwright (1983) to illustrate her inference to the most probable 
cause. Hacking (1983) ties the Perrin example to his discussion of the 
argument from coincidence. 

They take the Perrin case to illustrate an argument from co­
incidence because experiments on many distinct phenomena (e.g., 
gases, Brownian motion, blue of the sky) gave estimates for Avogadro's 
number, N (the mean number of molecules per gram molecule), of a 
similar order of magnitude. 3 Salmon argues: 

If there were no such micro-entities as atoms, molecules, and ions, 
then these different experiments designed to ascertain Avogadro's 
number would be genuinely independent experiments, and the strik­
ing numerical agreement in their results would constitute an utterly 
astonishing coincidence. To those who were in doubt about the exis­
tence of such micro-entities, the "remarkable agreement" constitutes 
strong evidence that these experiments are not fully independent­
that they reveal the existence of such entities. (Salmon 1984, 220) 

Cartwright argues along similar lines: 

We have thirteen phenomena from which we can calculate Avo­
gadro's number. Anyone of these phenomena-if we were sure 
enough about the details of how the atomic behaviour gives rise to 
it-would be good enough to convince us that Avogadro is right. Fre­
quently we are not sure enough; we want further assurance that we 
are observing genuine results and not experimental artefacts. This is 
the case with Perrin .... But he can appeal to coincidence. Would it 
not be a coincidence if each of the observations was an artefact, and 
yet all agreed so closely about Avogadro's number? (Cartwright 
1983,84) 

Salmon and Cartwright view these arguments as supporting realist 
conclusions. I think their accounts do capture the crux of the argu­
ments that are given for the reality of atoms or to "molecular reality," 
as Mary Jo Nye (1972) puts it. Those arguments, however, were dis-

3. Actually, close estimates of N had already been given many years before 
Perrin's work. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:13:24.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



EXPERIMENTAL TESTING OF HYPOTHESES 217 

tinct from the experimental arguments Perrin and others grappled 
with in learning from their experiments. Of course, the arguments for 
the reality of molecules depended upon the successful inquiries into 
Brownian motion, but the success of those inquiries did not hinge on 
the agreement of estimates of Avogadro's number across the thirteen 
phenomena. For example, the possible error of experimental artifacts 
was put to rest by Perrin quite apart from the work on the other phe­
nomena (blue of the sky, radiation, etc.). Otherwise he could not have 
arrived at a reliable estimate of Avogadro's number in the first place. 
The same was the case for learning the statistical nature of the second 
law of thermodynamics. 

This is not to deny that Perrin utilized arguments from the coinci­
dence of many distinct results-he certainly did. He repeatedly empha­
sized that one could only put faith in calculations arrived at in several 
different ways. The several different ways served two functions: to 
check errors in rather precarious measurements, and to arrive at stan­
dard estimates of error (needed for statistical analysis). But first and 
foremost, Perrin was arguing from coincidence to obtain experimental 
knowledge of the Brownian movement (of microscopic grains). Molecu­
lar reality came later. His arguments are really stunning illustrations of 
the development and use of canonical models of error and of experi­
mental arguments for learning from error. 

In the opening passage, Perrin declares himself searching for cru­
cial experiments, but his idea does not fit the mold of a Popperian 
severe or crucial test. Brownian motion was not only known long be­
fore it was used in testing the kinetic against the classical accounts, but 
it was also accounted for in a number of other ways. Moreover, only 
after the interesting experimental work had been done could it be seen 
that the kinetic and classical theories give conflicting predictions. Let 
us turn to the interesting experimental work. 

7.2 SOME BACKGROUND: THE FLURRY OF EXPERIMENTS 

ON BROWNIAN MOTION 

From its initial discovery in 1827, each inquiry into the cause of 
Brownian motion has been a story of hundreds of experiments. The 
experiments are of two main classes: experiments that (arrive at and) 
test hypotheses that attribute Brownian motion either to the nature of 
the particle studied or to various factors external to the liquid medium 
in which the Brownian particles are suspended (e.g., temperature dif­
ferences in the liquid observed, vibrations of the object glass); and ex­
periments that test the quantitative theory of Brownian motion put 
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218 CHAPTER SEVEN 

forward by Einstein and (independently) by M. von Smoluchowski 
(the ES theory). 

Each molecular-kinetic explanation of Brownian motion (first 
qualitatively proposed by Christian Wiener in 1863) spurred a flurry 
of experiments by biologists and physicists aiming to refute it. Each 
nonkinetic hypothesis tried, as by devising a novel way of explaining 
it by temperature differences, would trigger a new set of experiments 
to refute the challenge. The enormous variety of organic and inorganic 
particles studied includes sulphur, cinnabar, coal, urea, India ink, and 
something called gamboge. Equally numerous were the treatments to 
which such particles were subjected in the hope of uncovering the 
cause of Brownian motion-light, dark, country, city, red and blue 
light, magnetism, electricity, heat and cold, even freshly drawn hu­
man milk. 

The scientists working on this problem (e.g., Brown, Wiener, Ram­
say, Gouy, Perrin, and Smoluchowski) began by c<trrying out experi­
ments to exclude all exterior causes-checking and rechecking even 
those suspected factors that already had been fairly well ruled out. 
(Even after Perrin's work and the general acceptance of molecular the­
ory, experiments using ever-improving methods to observe hundreds 
of thousands of microscopic grains continued.4 ) By the end of the nine­
teenth century the most favored explanations in some way attributed 
Brownian motion to heat (e.g., the theories of Exner, Dancer, Quin­
cke). The need for a molecular explanation began to take hold only at 
the start of the twentieth century. Ironically, the fact that the same 
Brownian particles could be used over and over again, sometimes con­
served on slides for twenty years, compelled those who had been 
searching for nonkinetic explanations to admit this as strong evidence 
for the kinetic explanation. It indicated that the motion was "eternal 
and spontaneous," in accordance with the kinetic account. Even so, 
most researchers required many more quantitative experiments before 
abandoning nonkinetic explanations. 

Only by keeping in mind that a great many causal factors were 
ruled out experimentally before Perrin's tests (around 1910) can his 
experiments be properly understood. This will become apparent only 
when we explicitly consider how Perrin handled the problems of ex­
perimental design and control. We can follow the central experimental 
arguments by means of the hierarchy of models for an experimental 
inquiry delineated in chapter 5. Except where noted, all references to 
Perrin are to Perrin [1913] 1990. 

4. An excellent sourcebook detailing these modern experiments is Wax 1954. 
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7.3 MODEL OF THE PRIMARY THEORETICAL HYPOTHESIS: 

THE DISPLACEMENT DISTRIBUTION 

The central problem with appraising the kinetic account of Brownian 
motion was how to formulate testable predictions. The problem was 
that for many years experimenters were measuring the wrong thing. 
What they thought had to be checked was whether the molecular ef­
fects on the velocity of Brownian particles accorded with that hypothe­
sized by the kinetic theory. But this average or mean velocity had been 
ascertained by trying to follow the path of a Brownian particle, inevita­
bly yielding a measured path much simpler and shorter than the actual 
path, which changes too fast. An important advantage of the ES theory 
was that it provided a testable prediction that made no reference to 
this unmeasurable velocity. At the same time the ES theory explained 
why the earlier attempts to measure it had failed. 

Values obtained for the mean velocity of agitation by attempting 
to follow the path of a grain as nearly as possible gave the grains a 
kinetic energy 100,000 times too small. According to Einstein'S theory, 
mean velocity in an interval of time t is inversely proportional to the 
square root of t; it increases without limit as the time gets smaller. The 
meaningless results were just what the ES theory says would be ex­
pected. As Stephen Brush (1977, 369) remarks, "One can hardly find 
a better example in the history of science of the complete failure of 
experiment and observation, unguided (until 1905) by theory, to un­
earth the simple laws governing a phenomenon." 

While Einstein's theory apparently served that guiding role, this 
does not mean that the tests of the ES theory depended on already 
accepting Einstein's theory. (I think some people mistakenly suppose 
that it does.) The reason attempts to measure a particle's velocity were 
in error was independent of the ES theory. The error turned on a 
(now) standard statistical point that had been articulated in other con­
texts but was overlooked. In particular, the point had been made in 
1854 by William Thomson (Lord Kelvin) about the problem of laying 
the Atlantic cable. 

Thomson calculated that unless the Atlantic cable is made very 
thick the transmission of messages between Britain and America 
would be very slow (Brush 1977, 369). For economic reasons, engi­
neers were unhappy with this recommendation. In addition, attempts 
to measure the velocity of electricity achieved widely varying results, 
some appearing to contradict Thomson's prediction. Thomson de­
fended his theoretical prediction: the diverse measurements of the ve­
locity of electricity, he explained, were due to the time spent making 
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the measurements. The time it takes an electric signal to cover a dis­
tance is proportional not to the distance itself, but to the square of the 
distance. (This is Thomson's law of squares.) The greater the length of 
wire used, the less the apparent velocity of electricity would seem. No 
wonder the values varied, measured as they were under different con­
ditions. Brush (1977, 369-70) remarks: 

Apparently the scientists who attempted to measure the velocity of 
particles in Brownian movement later in the nineteenth century had 
not followed the dispute about Thomson's law of squares in the elec­
tric telegraph problem, and they obtained a similar collection of 
wildly varying results, none of them in agreement with [what would 
be expected according to the kinetic theory]. 

Perhaps if a log of canonical experimental errors had been kept, this 
mistake could have been instructive rather than repeated! 

In any event, a key advantage of the ES theory was that it provided 
a testable prediction that made no reference to this unmeasurable ve­
locity. Instead it was put in terms of the expected (or mean) displace­
ment of particles. 

Neglecting, therefore, the true velocity, which cannot be mea­
sured, 

Einstein and Smoluchowski chose, as the magnitude characteristic of 
the agitation, the rectilinear segment joining the starting and end 
points [of a particle]; in the mean, this line will clearly be longer the 
more active the agitation. (Perrin [1913]1990,110) 

The displacement of a Brownian particle is the total distance it travels 
in any direction (say along the x-axis of a graph) as it weaves its zig­
zagged path. It is a distance that could be measured using the micro­
scopes of the day. (See figure 7.1.) The measurement actually obtained 
from microscopic observations is the projection of this displacement 
onto a horizontal plane (e.g., the x-axis). By "observed displacement," 
I mean this projection onto the x-axis of the given segment. 

So the question of interest concerns the quantity (abbreviated as 
S,), the displacement (along the x-axis) after t minutes of a Brownian 
particle from its starting point. If molecular agitation (as described by 
the kinetic theory of gases) causes Brownian movement, then the dis­
placement of a Brownian particle about its mean (which by symmetry 
is 0) follows the Gaussian distribution, which is just the familiar Nor­
mal distribution. This distribution is given by two parameters, the 
mean (which is 0) and the variance. The variance is equal to 2Dt, 
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where D is the coefficient of diffusion and t is the time. 5 As with the famil­
iar "bell curve," if the displacement of a Brownian particle is Normally 
distributed around 0, then displacements near 0 are most probable, 
while those further from 0 are increasingly improbable.6 (How proba­
ble specific differences are is what the Normal distribution tells us­
we need only know D.) As Einstein states it, 

the probable distribution of the resulting displacements in a given 
time t is therefore the same as that of fortuitous error, which was to be 
expected. (Einstein [1926], 1956, 16; emphasis added) 

So the primary theoretical hypothesis is a hypothesized statistical dis­
tribution (of displacements of suspended particles): 

The primary hypothesis ?Ie: The displacement of a Brownian particle 
over time t, S" follows the Normal (or Gaussian) distribution with 
Il. = 0 and variance = 2Dt. 

Having provided this hypothesized distribution by which to test 
the kinetic theory which entails it, Einstein concludes his 1905 paper 
by remarking, "It is to be hoped that some enquirer may succeed 
shortly in solving the problem suggested here" (Einstein [1926] 1956, 
18). Perrin took up Einstein's challenge: 

It [Einstein's Theory] is well adapted to accurate experimental verifi­
cation, provided we are able to prepare spherules of measureable radius. 
Consequently, ever since I became ... acquainted with the theory, it 
has been my aim to apply to it the test of experiment. (Perrin, 114) 

It was Perrin's dogged efforts to prepare grains with measurable and 
highly uniform radius that made his experimental tests so successful. 
As we will see, this uniformity of grains was a key assumption of the 
experimental testing model. 

5. For the interested reader, S" the displacement after t minutes of a particle in 
Brownian motion, follows the Normal probability (density) function f: 

1 e-x214D' is/x) = (41TDT)1I2 

where D is a constant, the diffusion coefficient. D depends on the absolute tempera­
ture and friction coefficient of the surrounding medium. (Strictly speaking, this 
assumes that t is not too small.) 

The mean of S" E(S,), equals 0 and the variance of S" E[S/], equals 2Dt. E here 
abbreviates the mean or expected value. 

6. From our previous discussion we already know more than this. We know, 
for example, that it differs from its mean by more than 2 standard deviations (in 
either direction) less than 5 percent of the time. 
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7.4 EXPERIMENTAL AND DATA MODELS 

The prediction of the ES theory (for a given type of particle) can be 
stated as a predicted standard deviation7-the square root of the vari­
ance 2Dt. Since Avogadro's number, N, is a function of D, once D is 
estimated, Avogadro's number can be calculated. The calculated value 
can then be compared to the value hypothesized by the kinetic theory 
(N*).8 So the crux of Perrin's experimental test of the ES theory is eval­
uating the statistical hypothesis: 

H: The experimental displacement distribution is from a population 
distributed according to Gaussian distribution M with parameter 
value a function of N*. 

N* is the (probable) value for N hypothesized by the kinetic theory 
(approximately 70 X 1022 ). 

I do not want to be too firm about how to break down an inquiry 
into different models since it can be done in many ways. The central 
point is that a series of models of different types (as delineated in chap­
ter 5) is needed to link actual data with primary hypotheses from a 
theory.9 Hypothesis H is what the kinetic theory predicts with respect 

7. The standard deviation (square root of the variance) is the displacement in 
the direction of the x-axis that a particle experiences on average (root mean square 
of displacement). The importance of this statement of variance for the experimental 
determination of D is that it states that the mean square displacement of a 
Brownian particle is proportional to the time t. This suggests that a model for 
Brownian motion is provided by viewing a particle as taking a random walk. We can 
get a rough idea of how this model leads to the Normal distribution as follows. (1 
follow the derivation in Parzen 1960, 374-76.) 

Let Xi be the displacement of a Brownian particle at step i (projected onto a 
straight line). Consider the sum Sn where 

Sn = XI + X2 + ... + Xn· 

Sn represents the displacement of a Brownian particle from its starting point. Since 
it has the same chance of being displaced a given amount in the positive and the 
negative direction, the average value of Xi equals O. From the central limit theorem 
(chapter 5) we have that the sum of these Xi' namely, Sn' is approximately Nor­
mally distributed. 

8. The connection is this. Estimates of the diffusion coefficient D indicate the 
approximate rate at which a particle is moving, from which we ascertain the aver­
age number of collisions to which these Brownian particles must be subjected to 
have caused such diffusion. This indicates approximately how many molecules per 
unit area there must be, that is, N. 

9. Each individual task in an experimental inquiry can be seen as calling for a 
separate primary inquiry, with its own models of experiment and data. Then the 
full-blown experimental argument will string together different primary experi­
mental arguments. Alternatively, the full-blown argument can be viewed as a 
single primary experimental argument, but with subarguments needed at different 
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to a given experimental context E. It may be located one step below the 
primary theoretical model in our hierarchy: it is part of the experimen­
tal model. 

Note that hypothesis H makes two assertions: it is an assertion 
about the distribution M and about the values of parameters. The sam­
ple data from experiment E can be used to estimate or test values of 
N only if they can be seen (Le., modeled) as the results of observing 
displacements from the hypothesized Gaussian process. 

Correspondingly, I suggest we designate two primary questions 
that needed to be asked, one about the form of the distribution, the 
other about parameter values. Perrin's own discussion clearly distin­
guished between these two tasks, which I shall call step 1 and step 2. 
In a nutshell, step 1 consists of checking, for each experiment E, 
whether the results of the experiment actually performed follow the 
given statistical distribution M, and step 2 involves using estimates of 
D to estimate or test values of N (Avogadro's number). 

Philosophers who discuss this case tend to place the task of step 2 
at the forefront. Accordingly, they locate the impressive part of Perrin's 
argument in his estimates of Avogadro's number, which are close to 
what the kinetic account predicted. In fact, what made Perrin's results 
so impressive (at step 2) centered on his arguments for step 1: showing 
that the distribution of displacements was "completely irregular." 
Moreover, the argument against the nonstatistical version of the sec­
ond law of thermodynamics hinged on the results at this first step. (I 
return to this in section 7.7.) What does step 1 look like? 

Step 1: Manipulations on Paper 

This is a good example of a case where the substantive question is 
identified with testing a standard type of statistical hypothesis, one that 
asserts that the distribution of displacements is of the "chance" (or for­
tuitous or nonsystematic) variety. Since this statistical hypothesis is 
one piece of the investigation of H, we had better use a different letter 
(lower case, to indicate it is a portion of H). Take j: 

j: The data from E approximates a random sample from the (hypothe­
sized) Normal process M. 

The denial of j, denote it as j', roughly asserts that 

j': the sample displacements of data from E are characteristic of sys­
tematic (nonchance) effects. 

nodes of the experimental context. I choose to model the present example em­
ploying the latter way of modeling. 
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224 CHAPTER SEVEN 

It is noteworthy that here the hypothesis of chance, j, is not rejected 
but rather "passes" several tests. This is done by rejecting hypothesis j' . 

So we have split off from the full problem this one question about 
a low-level statistical hypothesisj. But appraising this low-level statisti­
cal hypothesis-far from being a preliminary side show-was the main 
event and feature attraction of Perrin's work. 

Affirming j, and ruling out j', corresponds to affirming the key as­
sumption about Brownian motion. As Perrin shows, Einstein's deriva­
tion of the displacement distribution depends on "making the single 
supposition that the Brownian movement is completely irregular" (p. 
112). So ruling out hypothesis j' was the centerpiece of Perrin's work. 
Asking aboutj' came down to asking whether factors outside the liquid 
medium might be responsible for the observed motion of Brownian 
particles. The general argument in ruling out possible external fac­
tors-even without being able to list them all-was this: if Brownian mo­
tion were the effect of such a factor, then neighboring particles would 
be expected to move in approximately the same direction. In fact, 
however, a particle's movement was found to be independent of that of 
its neighbors. To sustain this argument, Perrin called up experimental 
knowledge gleaned from several canonical cases of ("real") chance 
phenomena. 

Consider just one of Perrin's experimental tests of j against j'. It 
was based on an experiment E that consisted of observing 500 displace­
ments of grains of gamboge (a microscopic vegetable particle). 10 Perrin 
considered these particular grains to be among his most uniform 
grains. To get the displacements, the positions of the grains (observed 
with a camera lucida) are recorded every 30 seconds on paper with 
grids of squares. II The path of a single grain might look as in figure 7.1. 

The actual data consist of 500 scratch marks, each measuring the 
displacement of gamboge grains in 4 positions. To turn this into data 
that can answer questions posed in the experimental model regarding 
hypothesis j, the observations must be condensed and organized. This 
takes us to the level of models of the data. The idea is to do something 
that will enable the 500 actual outcomes (displacements) to be seen as 
a single random sample from the population of possible experimental 
outcomes (the sample space of the experimental model).12 If we can 

10. Perrin does not say if these 500 displacements are from a larger experimen­
tal run. 

11. Were the positions recorded at much shorter intervals, each single segment 
in the figure would be as complicated as the entire figure. 

12. If the experiment consists of marking off 500 displacements of a given type 
of gamboge grain (say at 3D-second intervals), then the sample space may be seen 
to refer to the different SOD-fold outcomes that could have resulted. Alternatively, 
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FIGURE 7.1. Tracing of horizontal projections of lines joining consecutive posi­
tions of a single grain every 30 seconds. 

perform this feat, then we can ask of this single sample of 500 displace­
ments whether it may be seen as a random sample from a population 
with the hypothesized Normal distribution. 

Needed is a characteristic of the data-a statistic-such that this 
statistic, whose value we can observe, will teach us about the parent 
population that we cannot. Each such statistic refers to a different 
modeling of the data, and Perrin delineates several such models. That 
he does so is what makes his work such a treasure for the philosopher 
of experiment. Here I shall discuss the one data model that Perrin 
claims gives a "still more striking verification" (p. 117) than the others. 
It is obtained by looking at the value obtained from shifting each (hori­
zontal) displacement to a common origin, and then counting how 
many are found at various distances from this common starting point. 
To sharpen the ability to distinguish betweenj andj', the data are con­
densed into 9 pigeonholes, each a different distance from the origin. 
As Perrin reasons, 

The extremities of the vectors obtained in this way should distribute 
themselves about that origin as the shots fired at a target distribute 
themselves about the bull's-eye. [See figure 7.2.] 
Here again we have a quantitative check upon the theory; the laws of 
chance enable us to calculate how many points should occur in each successive 
ring. (Perrin, 118; emphasis added) 

This is a quintessential example of what I mean by "manipulations 
on paper." Nothing like a bull's-eye is actually observed in experiment 

if the data are condensed into 9 pigeonholes, each a different size of displacement, 
then the sample space is the set of different numbers that could be observed in each 
of the 9 categories or rings. 
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226 CHAPTER SEVEN 

FIGURE 7.2. Manipulations on paper: displacements of 500 Gamboge grains. 

E, but rather the displacements at 30-second intervals of several gam­
boge grains. The bull's-eye picture results not from physical manipula­
tion of the grains, but from manipulations On paper. They serve much 
the same role in the experimental argument as physical instruments. 
They allow discerning patterns in the data hidden from an eye looking 
at 500 scratch marks. The manipulations on paper are warranted not 
because they represent actual experimental phenomena, but because 
Once they are accomplished (e.g., once the data are manipulated into 
bull's-eye rings), "the laws of chance enable us to calculate how many 
points should occur in each successive ring" (Perrin, llB). 

This tactic, so important yet so misunderstood, bears elaboration. 
The tactic is essentially this: Take a look at the handful of canonical 
models-in this case they are statistical distributions. In your tool kit 
are a bunch of random variables that have these distributions. Then 
think of ways of massaging and rearranging the data until you arrive 
at a statistic, which is a function of the data and the hypotheses of 
interest, and has one of the known distributions. (Your tool kit also 
contains standard ways of massaging and rearranging.) Nothing in 
front of you needs to actually have the distribution you arrive at, nor 
need it correspond directly to any actual event. It may simply be the 
distribution followed by the random variable arrived at through ma-
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Displacement 
Between 

o & first ring 
1st & 2nd rings 
2nd & 3rd rings 
3rd & 4th rings 
4th & 5th rings 
5th & 6th rings 
6th & 7th rings 
7th & 8th rings 
8th & 9th rings 

EXPERIMENTAL TESTING OF HYPOTHESES 

TABLE 7.1 (adapted from Perrin, p. 119) 

n 
Probability calculated 

.063 32 

.167 83 

.214 107 

.210 105 

.150 75 

.100 50 

.054 27 

.028 14 

.014 7 

227 

n 
found 

34 
78 

106 
103 
75 
49 
30 
17 
9 

nipulations on paper (e.g., averaging, dividing by or adding appropriate 
numbers, squaring). But that is all you need to assign probabilities to 
various outcomes on the hypotheses being tested. Once you have this, 
statistical tests can be run and their error probabilities calculated. And 
these error probabilities (e.g., severity) do refer to the actual experi­
mental test procedure. 

Students of theoretical statistics are familiar with this sort of home­
work problem: Starting with a random variable with an unknown dis­
tribution, find a way to alter it (making use of what I call manipula­
tions on paper) so as to arrive at a variable whose values vary in the 
manner of one of the known distributions. 

Perrin's bull's-eye manipulations in testing hypothesis j in the Per­
rin experiment exemplify this tactic. If the statistical hypothesis j holds 
for the actual experiment, then we can deduce the probability that a 
displacement would fall in each of the 9 rings. We can deduce the 
number of displacements expected to fall in each ring by multiplying 
this probability by the number of displacements (500). This number is 
termed Un calculated." That is, as shown in table 7.1 in the column 
labeled n calculated, the expected frequency of displacements falling 
between the ith and the i + 1 th ring is given by 500 multiplied by 
the probability of a displacement falling between the ith and the i + 
lth ring. 

This provides us with the ingredients for comparing the observed 
distribution of measurements (n found) with a set of hypothesized 
probable measurements (n calculated). The recipe comes from canoni­
cal arguments for asking: What should we make of the fit between 
observed and hypothesized? We want to know, especially when the 
differences between observed and expected are small, whether they 
may be merely the fluctuations typical of a sample of that size from a 
population of the assumed Normal distribution (as asserted in j), or 
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228 CHAPTER SEVEN 

whether a serious departure is indicated (as asserted in j'). We tackle 
this by asking what it would be like if j were a correct description of 
the experiment. A quantitative argument is given by a statistical sig­
nificance test much like the ones we have already sketched. 

Here the distance measure chosen is a function of the difference 
between the number found and the number calculated for each of the 
9 intervals: 

n found - n calculated2 

n calculated 

Summing these up yields a statistic that has a known probability distri­
bution (the chi-square distribution).13 

What matters is being able to sustain the argument of the signifi­
cance test (Le., answer the "significance question"). This we can do 
because we can determine the probability that a purely random sample 
of measurements taken from the hypothesized model distribution j 
would show worse agreement with the model j than is shown by the 
actual set. If the differences observed are of the sort frequently "caused 
by" chance (Le., if they are typical under j), then the sample data are 
in accord with the hypothesized experimental model. In Perrin's ex­
periment E above, it turned out that the observed differences, or one 
even larger, are not infrequent but rather are typical, assuming j. That 
is, the observed difference is not statistically significant from what is typi­
cal under j. Hypothesis j passes. 

Perrin's argument to this effect has weight only because he was 
able to argue further that if the model was inadequate (if j' was true), 
we would very often get differences statistically significant from what 
is typical under j. In other words, he needed to argue that j had passed 
a severe test. The multiple experiments for which Perrin stresses the 
need (e.g., Perrin, 96) are deliberately designed so that if one misses 
an error, another is likely to find it. The experiments are designed, to 
use David Hull's nifty phrase, to ensure that "errors ramify rapidly." 
The error of concern at this stage is that some regularity of Brownian 
motion has been concealed. 

As is typical, Perrin's argument for severity was substantiated by ref­
erence to other tests. The overall argument goes beyond any single statis­
tical Significance test. Here is where the multitude of deliberately varied 
additional tests plays a particularly important role. In fact, the number 
of tests, checks, and rechecks Perrin performed amounted to statistical 

13. The chi-square test, introduced by Karl Pearson in 1900, was actually in 
use before that. It was alluded to in testing assumptions in chapter 5. 
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EXPERIMENTAL TESTING OF HYPOTHESES 229 

overkill. He was not being overly cautious; he was well aware that others 
would unearth any weak point upon which to attack his arguments. 

To this end, Perrin describes numerous sets of statistical analyses. 
Some made use of the same 500 measured displacements, only mod­
eled in different ways; others involved further recorded displacements 
on the same gamboge preparation. Still others dealt with totally dis­
tinct gamboge experiments, where the key features were deliberately 
varied. (See table 7.2.) While the same question is being asked (Is j 
adequate?), by phrasing it differently each test is designed to check if 
there are mistakes in the answers from other analyses. 

Viewing Brownian Particles as Taking Random Walks 

Familiarity with standard chance mechanisms-quite independent 
of the ES theory-provided knowledge of experimental phenomena 
that are correctly described by hypothesis j, as well as phenomena 
more correctly described by j'. The experimental knowledge stemmed 
from the statistical theory of random walk phenomena (in one dimen­
sion). From this statistical theory about a very general type of fluctua­
tion phenomenon, strategies for the experimental and data models in 
testingj emerged. We see here just the sort of appeal to "real" random 
experiments that Neyman talked about (chapter 5). 

The question in step 1, whether the displacements of Brownian 
particles could be characterized as the hypothesized Gaussian process 
M (Le., whether j is adequate) is tantamount to asking, Can the dis­
placements be modeled as a problem concerning a simple random walk? 
Such random walk problems were understood at that time. Einstein 
([1926] 1956) had presented his derivation of the displacement distri­
bution in ']f, by means of a model of a random walk in one dimension 14 

(see notes 7 and 22). 
The displacement of a particle may be seen as the result of k steps 

where at each step the particle has an equal chance of being displaced 
by a given amount in either a positive or negative direction. (This is 
called a simple random walk). Since it has the same chance of being 
displaced a given amount in the positive and the negative direction, 
on average, after k steps, the displacement would be o. Occasionally, 
more steps will be in one direction than the other, yielding a nonzero 
total displacement. That the variance is proportional to the time (the 
number of steps) corresponds to the fact that the more steps taken, the 
larger the value this nonzero total displacement can have. 

14. For other clear derivations see Chandrasekhar 1954, 7 and Parzen 1960, 
374-76. 
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A second type of canonical random experiment was used in deriv­
ing the statistical distribution in the ES theory-this one from gam­
bling. Here one capitalizes on the fact that the displacement of 
Brownian particles is distributed like the winnings of a gambler who 
stands to win or lose a fixed amount x with equal probability on each 
game. The more games played, the larger the gambler's loss can be. 

There were yet other statistical derivations of the Normal distribu­
tion in the ES theory, all fascinating in their own right. I shall resist 
going into them here. My present purpose is to illuminate the strategy 
by which the hypothesized distribution in '1Je is linked with experimen­
tal tests of Hby way of tests of hypothesisj. For each of several different 
experiments, abbreviated as El' E2 , ••• , En' the predicted displacement 
distribution (in the experimental model) is given by hypothesis j. That 
is, for a given experiment Ei' we have 

j: the distribution of the n displacements in Ej is from a population 
distributed according to the Gaussian model M. 

In other words, if displacements of Brownian particles follow the ran­
dom walk model hypothesized in '1Je, then each experiment Ej is, in the 
relevant respects, just like experimenting on known chance mecha­
nisms. (This assumes of course that experimental assumptions are met, 
but we will deal with this separately in section 7.6.) 

This probabilistic linkage between '1Je and j has two main functions. 
First, it allows deriving, for each experiment Ei' the experimental dis­
placement distribution. This, recall, was the basis of the statistical sig­
nificance test of j. Second, it is the basis for using the different experi­
ments to cross-check and strengthen each test of j. 

These linkages are at the heart of Perrin's argument that j had 
passed a reliable (severe) test. The argument goes like this: if experi­
ment E was not correctly described by hypothesisj (Le., ifj' were true), 
there would not be an equal chance of being displaced by an amount 
in either direction for each particle: there would be some dependencies. 
But we know what it is like to interact with a mechanism with such 
dependencies. We know what would be expected in those sorts of ex­
periments-we can even "display" it. We can actually generate the 
(frequency) distribution of the outcomes from experiments (on ball 
rollings or other chance apparatus)-where, by design, the probability 
of being deflected to the right is not equal to that of the left. (This would 
be an example of Neyman's "real" random experiments.) Or we can 
simulate these results by Monte Carlo methods or (now) by computer 
simulations. If we are observing such dependencies, then, we calculate, 
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EXPERIMENTAL TESTING OF HYPOTHESES 231 

it should be fairly easy (frequent) to generate statistically significant 
differences in Perrin's various gamboge experiments from j'. 

So we can argue that were j', and not j, the case it is extremely 
improbable that none or even very few of the experiments EI' E2 , ••• , 

En would have indicated this. It is very probable that a few would have 
shown differences statistically significant from what is expected under 
j. That is to say, the test was severe for j-where "the test" includes the 
results from several individual experiments. The pattern of arguing 
from error is clear. The experiments conducted by Perrin and his re­
searchers had a very high probability of detecting a statistically signifi­
cant difference from j', were there dependencies in the motion, yet 
such differences were not detected. On the basis of such considera­
tions, j' was ruled out (j was affirmed) by Perrin and others. After 
describing several different experiments (see table 7.2), all of whichj 
passed, Perrin remarks: 

Further verifications of the same kind might still be quoted, but to do 
so would serve no useful purpose. In short, the irregular nature of 
the movement is quantitatively rigorous. Incidentally we have in this 
one of the most striking applications of the laws of chance. (Perrin, 
119) 

7.5 STEP 2: ESTIMATING AND TESTING AVOGADRO'S N 

Having found that hypothesis j passed the tests, Perrin then asks, "But 
does it lead to these values for the molecular magnitudes that we look 
for?" (p. 103). Because of what was accomplished in step 1, Perrin is 
again in a position to split off a manageable piece from the full-blown 
problem in carrying out step 2. The error of concern at step 2 is that 
the ES theory is mistaken about the values of the magnitudes (e.g., N). 
Having chosen each experimental displacement distribution E to be a 
function of the parameter of interest, Avogadro's number N, step 2 
becomes a standard problem of estimating the parameter governing 
the displacement distribution. More precisely, step 2 involves using 
data models to test a hypothesis about the statistical parameter govern­
ing the probability distribution affirmed in step I-the varianceY 

The variance of the distribution, recall, is 2Dt. Estimates of Dare 
experimentally obtained by calculating the mean-square displace-

15. To say that one or more parameters "govern" a statistical distribution 
means that if the values of the parameter(s) are given, then the probability of each 
possible outcome (Le., the probability distribution) can be calculated. 
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232 CHAPTER SEVEN 

ments of the numerous particles recorded. 16 Plotting the mean"square 
displacement against time on a graph yields a nearly straight line, 
whose slope is an experimental estimate of D. The remaining task, 
then, is to test a hypothesis about D which is a function of N, Avo­
gadro's number. (Since D varies for different grains, it is preferable to 
work with N.) Perrin remarks: 

To verify Einstein's diffusion equation, it only remains to see whether 
the number [obtained for N by substituting the estimate of D into the 

equation D = RT (_1_)] is near 70 X 1022 • (Perrin, 132)17 
N 6'TTa~ 

The value 70 X 1022 is the value for N that is hypothesized by the ES 
theory, abbreviated N*. So the single task of interest has been boiled 
down to testing a simple statistical hypothesis h expressed in the exper­
imental model 

h: N = N* (70 X 1022 ). 

The falsity of h, i.e., "not-h," asserts that Avogadro's number is not 
near N*. Given that Perrin wants to affirm h so long as the data indicate 
that N "is near," and not necessarily exactly equal to, N*, it might be 
thought that h should be an interval around N*. For mathematical rea­
sons it is easier to express h as a "simple" or "point" hypothesis, and 
then take the "nearness" into account in the testing rule. That is what 
the standard statistical test does. 

So step 2 may be broken down into an application of one or more 
canonical models for detecting errors in a parameter value. Although 
much of the modern apparatus for solving a standard estimation prob­
lem was not yet developed, Perrin's use of those notions that were 
available (e.g., probable errors) shows his argument to be based on 
standard error probability ideas. Perrin uses the data from each of the 
experiments E to derive estimates of N with known error properties 
(e.g., a known probable error I8 ). (There is certainly no attempt to state 
prior probabilities and multiply them by likelihoods to yield poste­
riors. ) 

Interestingly, the estimates at step 2 come from observations on 
the same grains that were prepared and used in performing step 1. 

16. The displacements of all the particles recorded in an experiment at some 
time t are squared and the arithmetic average or mean is calculated. This is the 
mean square displacement at time t (or the variance). The root mean square dis­
placement is the square root of this (or the standard deviation). 

17. ~ is the viscosity of the fluid; T, its absolute temperature; R, the gas con­
stant; a, the radius of the particles. 

18. The probable error is around. 7 of the standard deviation. 
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EXPERIMENTAL TESTING OF HYPOTHESES 233 

Only now a different question is asked of these grains and, correspond­
ingly, different data models are formed. Here one needs to count the 
relative number of grains observed at different levels of the emulsion. 
The canonical statistical model appealed to is the exponential distribu­
tion. A complete investigation of this step would elaborate further on 
the variety of statistical models Perrin uses here and the shrewd man­
ner by which he combines them to arrive at a reliable argument at step 
2. Perhaps for our purposes enough has been said. 

"As a matter of fact," Perrin reports, the number he obtains for N 
"is equal to 69 x 1022 to within ± 3 per cent" (p. 132). This is a good 
fit to N*. Referring to the good fit of estimates from a number of experi­
ments on Brownian motion (of emulsions) Perrin concludes: 

This remarkable agreement proves the rigorous accuracy of Einstein's 
formula and in a striking manner confirms the molecular theory. (P. 
123) 

In each case the "confirmation" of Einstein's hypothesis is based on a 
standard statistical argument. The difference between the estimated 
and hypothesized values of N is the distance measure. Because "the 
discrepancy is well below the possible error introduced by the some­
what loose approximations ... in making the calculations" (p. 127), 
hypothesis h passes the test. 

In describing the several sets of experiments from both steps 1 and 
2, Perrin emphasizes again and again the deliberate attempt to vary 
several aspects of the ~xperiment: 

I have carried out personally, or directed in others, several series of 
measurements, varying the experimental conditions as much as I was 
able, particularly the viscosity and the size of the grains. (P. 122) 

He summarizes them in the following (abridged) table (table 7.2). 
Nearly all the estimates of N from these experiments were (statisti­

cally) insignificantly far from that predicted by the kinetic theory, N* 
(Le., 70 X 1022). Perrin declares: 

It cannot be supposed that, out of the enormous number of values a 
priori possible, values so near to the predicted number have been ob­
tained by chance for every emulsion and under the most varied ex­
perimental conditions. (P. 105) 

It should be supposed, instead, that the reason values so close to the 
predicted value N* can be repeatedly generated is that N* is approxi­
mately correct. In terms of experimental knowledge, this means that 
in a (hypothetical) population or series of experiments, the mean value 
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234 CHAPTER SEVEN 

TABLE 7.2 (from Perrin, p. 123) 

Radius of 
the grains Mass Displacements N 

100~ Nature of the Emulsion J.L m X 1015 Recorded 1022 

I. Gamboge grains .50 600 100 80 
II. Gamboge grains .212 48 900 69.5 

4 to 5 III. The same grains in .212 48 400 55 
sugar solution 

1 IV. Mastic grains .52 650 1,000 72.5 
1.2 V. Very large grains 5.50 750,000 100 78 

(mastic) in urea 
solution 

125 VI. Gamboge grains in .385 290 100 64 
glycerine 

VII. Gamboge grains of .367 246 1,500 68.8 
very uniform 
equality (two 120 64 
series) 

~ = the mean value of the viscosity 

for Avogadro's number would be N*,19 and in actual experiments, the 
deviations from N* would be of the pattern ascribable to chance. 

Let us summarize the argument in step 2. Step 1 affirmed that the 
experimental distribution is the Gaussian one hypothesized inj. Given 
step 1, we know how to design experiments that make it very difficult 
to generate results close to N* unless we really are sampling from a 
population where N is approximately N*, that is, unless hypothesis h 
is true. This allows us to design an experimental test of h such that if h 
passes, then h has passed a severe test. 

The denial of hypothesis h asserts that there is genuine discord 
between the hypothesized value, N*, and the "true" value, where the 
true value refers to the mean or expected value for N in a population 
(or long series) of experiments. If there is such discord (the extent of 
which can be made rigorous), then our experiment has given it a good 
chance (often) to manifest itself. It would manifest itself by producing 
an observed discrepancy statistically significantly beyond the possible 
experimental error introduced in estimating N. So each experimental 
test itself is a reasonably severe test of h. The several experiments taken 
together are further checks and thereby strengthen the overall severity. 

The argument follows the pattern of arguing from error. If we are 
wrong in any single experiment that results in passing h, then it should 

19. That is because, on the average, our estimate of N equals the population 
mean N*. That is, the average (i.e., mean) value of our estimate equals the popula­
tion mean. This was discussed in chapter 5. 
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EXPERIMENTAL TESTING OF HYPOTHESES 235 

be very hard to reproduce results "close" to N* in experiments espe­
cially designed to display discordances (by revealing statistically sig­
nificant differences). But Perrin shows we can generate at will (very 
frequently) estimates of N near the hypothesized value N*. Therefore, 
he can argue for the overall reliability of the argument. In terms of a 
probability calculation, he can say that 

P (such good accordance in experiments EI' E2, ••• , En I h is 
false) = very low, 

meaning that h passes a severe test. 
The multiple experiments listed in table 7.2 rule out mistakes or 

"other hypotheses" in both steps 1 and 2, but the mistakes differ. In 
step 1 they were used to rule out systematic effects. In step 2, they 
improved the reliability of the estimates of N and in addition helped 
rule out mistakes having to do with generalizability. By being deliber­
ately varied in the experiments, any influences of the liquid, the tem­
perature, the nature and density of the grains, and so on would affect 
Perrin's estimates in all directions and so cancel each other out (in the 
mean), leaving an extraneous effect comparable to experimental or 
chance error. This is statistical control. These multiple experiments also 
check errors regarding the generalizability of results. Perhaps the ES 
theory applies only to particular grains or experimental circumstances. 
Appropriate variations let us rule this out. 

Now for the questions and problems that arise in checking experi­
mental assumptions. They correspond to problems and models that 
would be placed "below" the data models, and our analysis would be 
seriously incomplete if we did not address them. 

7.6 CHECKING EXPERIMENTAL ASSUMPTIONS: EXPERIMENTAL 

DESIGN AND DATA GENERATION 

A key problem I have placed at the level of data models in an experi­
mental testing context is that of checking that the various experimen­
tal assumptions are satisfied. Their violation may introduce alternative 
explanations for the results and may thereby vitiate experimental ar­
guments. Checking on experimental assumptions sends us to consider­
ations "below" the data models, to those of experimental design or data 
analysis. We have to look at how the experimental objects-grains in 
various solutions-were generated and measured to produce. raw data. 

In attending to the actual data-generation procedures, it becomes 
plain that to begin the analysis with the estimates of N (Avogadro's 
number) as the data is too simple. Estimating N calls for a full-blown 
inference in its own right. Each estimate of N depends on being able 
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236 CHAPTER SEVEN 

to obtain estimates of a number of other quantities, along with their 
associated errors. Most notably, the experiments turn on being able to 
accomplish an experimental tour de force-obtaining Brownian parti­
cles each with a fairly uniform radius. 

What makes Perrin's discussion so valuable for us is his careful 
explication of the labors required to justify experimental assumptions. 
He constantly stresses the need to search for and rule out errors by 
multiply-connected checks and tests. Here one finds ample illustration 
of before-trial procedures of experimental design (e.g., to ensure that 
the gamboge preparations are likely to be useful) and after-the-trial 
checks of whether assumptions are approximately met. It is impossible 
to appreciate the full force of Perrin's tests without delving into these 
details. Here are some highlights. 

Measuring Microscopic Grains of Gamboge 
After unsuccessful attempts to use the substances usually studied, 

Perrin hit upon gamboge: 

Gamboge (which is prepared from a dried vegetable latex) when 
rubbed with the hand under water (as if it were a piece of soap) 
slowly dissolves giving a splendid yellow emulsion, which the micro­
scope resolves into a swarm of spherical grains of various sizes. (P. 94) 

The force of Perrin's results, at bottom, hinged on his uncanny ability 
to ensure that the particles were of approximately the same size, that 
they could be counted and weighed, and that a host of extraneous 
factors could be controlled or "subtracted out"-even Einstein ex­
pressed surprise. Most impressive of all, perhaps, was the preparation 
of grains of uniform size. The key was the special technique Perrin 
developed for "fractional centrifuging." 

The emulsion having been obtained, it is subjected to an energetic 
centrifuging (as in the separation of the red corpuscles and serum 
from blood). (P. 94) 

A top layer of sediment is formed and poured off, and the grains are 
again suspended in (distilled) water. The centrifuging and pouring off 
processes are repeated again and again until the emulsion is practically 
pure water. 

But the purified emulsion contains grains of very various sizes, 
whereas a uniform emulsion (containing grains equal in size) is re­
quired. (pp. 94-95) 

By further centrifuging, it is possible to separate out the grains ac­
cording to size, the first layers of sediment containing the largest 
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EXPERIMENTAL TESTING OF HYPOTHESES 237 

grains. Getting an adequate separation in this manner was an ex­
tremely lengthy process. In his most careful measurements, Perrin tells 
us, he labored over his gamboge for several months of treatments: 

I treated I kilogramme of gamboge and obtained after several months 
a fraction containing a few decigrammes of grains having diameters 
approximately equal to the diameter I wished to obtain. (P. 95) 

Reliably Measuring the Density, Volume, and Weight of the Grains 

Numerous interconnected checks and rechecks were used in scru­
tinizing this and other assumptions. The key to ruling out errors was a 
deliberate variability. Ascertaining the volume of the gamboge grains 
exhibits the standard pattern: 

Here again, as with the density, it is possible, on account of the 
smallness of the grains, to place confidence only in results obtained 
by several different methods. (P. 96) 

The different methods desired are those that allow arguing that any 
error present is very likely to be detected by at least one method. 
When, through the several methods, Perrin obtained concordant re­
sults, he could rule out experimental artifacts. Here he is clearly ar­
guing from coincidence along the lines sketched in Hacking's example 
of dense bodies (chapter 3); at this stage there is no need for a formal 
assessment of the degree of severity. 

One of the methods used in measuring volume involved measur­
ing the radius of the grains in the camera lucida. 

Considerable error is involved in the measurement of isolated grains 
(owing to the magnification by diffraction ... ). This source of error is 
very considerably minimised if it is possible to measure the length of 
a known number of grains in a row. (P. 96) 

If Perrin could find a way to get his grains to line up in a row, he could 
appeal to a canonical technique for counting objects that had nothing 
to do with Brownian particles. He discovered that if he let a drop of 
the emulsion nearly evaporate, capillary forces made the grains run to­
gether 

and ... collect together into groups a single grain in depth and more 
or less in rows, in the same way that the shot are arranged in a hori­
zontal section through a pile of shot. (P. 97) 

It was then possible to count the number of grains lying in a row. 
This exemplifies another thread woven through Perrin's work. The 
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238 CHAPTER SEVEN 

counting procedure did double duty: it was also used to check a mea­
surement somewhere else. Perrin continues: 

At the same time a general check upon the uniformity of the grains 
sorted out by the operation of centrifuging is obtained. The method 
gives numbers that are perhaps a little too high (the rows not being 
quite perfect); but owing to its being so direct it cannot be affected by 
large errors. (P. 97) 

For Perrin to learn what he is after, he needs to count his carefully 
prepared grains. If he can make them arrange themselves like a pile of 
shot, he can not only count them but check on his centrifuging results. 
Perrin may be said to have invented his techniques for preparing and 
working with his grains, but the models for analyzing the errors were 
standard and did not belong to anyone domain. 

In some cases mistakes were made and later detected. For instance, 
one estimate of N, while close to the predicted value, was invalidated 
because it was noticed "during the course of some measurements on 
some preparations ... that the proximity of a boundary checked the 
Brownian movement. (Einstein'S theory presupposes an unlimited 
fluid.) ... These measurements will be repeated" (p. 124). In other 
experiments, Perrin deliberately exploited the phenomenon of grains 
sticking to the walls! 

I hope this suffices to get the flavor of how tactics of observation 
and measurement may be pieced together into an experimental argu­
ment that allows learning about primary hypotheses. The complexity 
of the hierarchy of models in an experimental inquiry can be grouped 
into two sets of arguments. One links data models with primary 
hypotheses (via severe tests), a second substantiates the assumptions 
of the data models. 

In addition to the checks of measurement errors, Perrin sought 
ways to check himself. To avoid a type of experimenter's bias when 
selecting which grain to follow at steps 1 and 2, Perrin explains that 

in order not to be tempted to choose grains which happened to be 
slightly more visible than the rest ... , which would raise the value 
of N a little, I followed the first grain that showed itself in the centre 
of the field of vision. (P. 124) 

He was trying to obtain a randomly selected grain. 
In this sketch of Perrin's experimental arguments two themes I 

have been tracing surface. First, knowledge of the ways in which one 
can go wrong leads to multiple procedures that allow errors to be cir­
cumvented or dealt with. At the level of data generation and measure-
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EXPERIMENTAL TESTING OF HYPOTHESES 239 

ment, in this example, the procedures refer more to actual physical 
manipulations (e.g., spinning the grains, lining them up, forcing some 
to get stuck on a barrier) than to the "manipulations on paper," which 
I said was the hallmark of data modeling. Second, validating experi­
mental assumptions is much less a matter of ensuring that errors are 
not made than it is of knowing how much error is likely to be intro­
duced by the various data generation procedures. Perrin's genius as an 
experimenter was largely a matter of his skill at catching himself and 
his students making mistakes, as well as knowing when they do not 
matter much. These two themes become even more pronounced in 
considering the ceteris paribus conditions. 20 

7.7 THE MOST RISKY DECISION OF ALL: CETERIS 

PARIBUS CONDITIONS 

Now for the ceteris paribus conditions, at the bottom of the Suppean 
hierarchy, those factors not included in the systematic checks of exper­
imental assumptions discussed above. The manifold factors, known 
and unknown, that are part of this soup are often thought to be the 
locus of a set of alternative hypotheses that cast an ever-present 
shadow on any primary inference. Given the way I have broken down 
experimental inquiries, this set of alternative hypotheses consists of 
threats to the experimental assumptions (or "initial conditions") of 
some primary inquiry. Because some such alternative ceteris paribus 
factors are assumed always to exist as threats to experimental assump­
tions, and because the ability to pinpoint what is learned hinges on 
these assumptions, ceteris paribus factors are thought to threaten the 
correct attribution of blame or credit to primary hypotheses. As La­
katos put it: 

The plight [of the methodological falsificationist] is most dramatic 
when he has to make a decision about ceteris paribus clauses, when he 
has to promote one of the hundreds of "anomalous phenomena" into 
a "crucial experiment," and decide that in such a case the experiment 
was "controlled." (Lakatos 1978, 27) 

20. Although in delineating the framework of models in chapter 5 I combined 
checking experimental assumptions with checking ceteris paribus conditions, it is 
often useful to make a distinction between the two within this level, as I am doing 
here. The former refer to those experimental assumptions that are amenable to 

formal statistical testing-as in the case of affirming the Normal distribution M. The 
latter (ceteris paribus factors) refer to the variety of influences that are either 
known to be controlled, are subtracted out, or are tested by more informal, 
domain-specific means. 
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Affirming the ES hypothesis about the distribution of Brownian par­
ticles did deny a nonstatistical version of the second law of thermody­
namics-something we will discuss in the next section. So the present 
example involves the very thing Lakatos worried most about: turning 
a mere anomaly into a severe test. 

Lakatos, recall, gives up on justifying control; at best we decide­
by appeal to convention-that the experiment is controlled. While I 
have no desire to revive "methodological falsification," I reject Lakatos 
and others' apprehension about experimental control. Happily, the im­
age of experimental testing that gives these philosophers cold feet bears 
little resemblance to actual experimental learning. Literal control is not 
needed to correctly attribute experimental results (whether to affirm 
or deny a hypothesis). Enough experimental knowledge will do. 
Nor need it be assured that the various factors in the experimental 
context have no influence on the result in question-far from it. A 
more typical strategy is to learn enough about the type and extent of 
their influences and then estimate their likely effects in the given ex­
periment. 

How was this problem dealt with in Perrin's experiments? First 
remember that a host of experiments on factors suspected of influenc­
ing Brownian motion had already been conducted before Perrin's tests 
(around 1910). (See section 7.2.) Much was already known about the 
influences of light, heat, magnetism, electricity, shaking, noises of vari­
ous sorts, and so on. Michael Faraday (in an 1829 lecture) and others 
recognized Brown's experiments as having ruled out all the causes of 
the motion suggested up until that time (e.g., unequal temperatures in 
the water, evaporation, air currents, heat flow, capillarity, motions of 
the observer's hands).21 It is worth noting that these early experiments 
on the possible cause of Brownian motion were not testing any full­
fledged theories. Indeed, it was not yet known whether Brownian mo­
tion would turn out to be a problem in chemistry, biology, physics, or 
something else. Nevertheless, a lot of information was turned up and 
put to good use by those later researchers who studied their Brownian 
motion experimental kits. 

As I am imagining it, in one's bag of experimental tricks, along 
with the experimental tools and past experimental mistakes, would 
be a log of the extant experimental knowledge of the phenomena in 
question. Astutely using the kind of log I have in mind, Perrin dispelled 
numerous threats to experimental control. An imaginary (but not far 
from actual) dialogue quoting Perrin might have gone like this (the 

21. See, for example, Jones 1870,403. 
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names in parentheses are those of the researchers who worked exten­
sively on the question of interest, and Perrin's lines are direct quotes): 

Questioner: How do you know your results are not due to variations in temper­
ature throughout the experimental emulsion? I believe there must be 
some temperature variations. 

Perrin: It makes no difference whether great care is taken to ensure uniformity 
of temperature throughout the drop; all that is gained is the suppression 
of the general convection currents, which are quite easy to recognise and 
which have no connection whatever with the irregular agitation under 
observation (Wiener, Gouy). (P. 84) 

Questioner: Might it not be something in the composition of your grains? 
Perrin: The nature of the grains appears to exert little influence, if any at all. 

In the same fluid two grains are agitated to the same degree if they are of 
the same size, whatever the substance of which they are composed and 
whatever their density (Jevons, Ramsay, Gouy). (P. 85) 

Questioner: What about vibrations of the glass containing the emulsion? Heavy 
vehicles passing by have made your table shake. 

Perrin: The Brownian movement, again, is produced on a firmly fixed support, 
at night and in the country, just as clearly as in the daytime, in town and 
on a table constantly shaken by the passage of heavy vehicles (Gouy). 
(P.84) 

Numerous other factors are likewise shown to be either irrelevant or 
accounted for. 

Perrin also uses his Brownian motion log to explain why, at one 
time, certain factors were erroneously thought to have influenced 
Brownian motion. For example, it had been thought that adding impu­
rities such as acids to the emulsion influenced the motion. The error 
arose from the fact that the impurities caused the particles to stick to 
the glass vessel when they touched the sides. In actuality, "the addition 
of impurities ... has no influence whatever on the phenomenon (Gouy, 
Svedberg)" (Perrin, 85, n. 1). 

Each of these separate experimental inquiries had its own set of 
primary questions, experimental and data models, and so on. Had they 
not been available-as is often the case-then the separate tests would 
have had to be conducted as part of Perrin's experimental testing con­
text. As it happened, by the time he performed the tests we have been 
discussing it was sufficient just to cite the familiar studies. 

But Perrin did not do that; he repeated nearly all the tests anyway! 
Why? The primary reason, I suggest, is one that emerged during our 
discussion of "normal science": Deliberately repeating and getting good 
at generating anticipated results teaches a great deal about interacting 
with one's experimental objects. It is this kind of deliberate practice, 
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not some mysterious knack, that gives one "a feeling for" one's experi­
mental objects. 

How far we have come from sighing over infinitely many alterna­
tive hypotheses that fit the data equally well. How far away, too, from 
the Bayesian requirement to consider all the alternatives in the catch­
all, plus our degrees of belief in them, to get a single inquiry going. 
Clearly, ruling out alternatives is not always possible, and even when 
it is it typically takes a lot of work and aggressive criticism. The good 
experimenter notices when the criticism may be lodged in terms of 
specific experimental questions. These questions find their place at 
some level and at some node of the hierarchy of models. With respect 
to such specific experimental questions, the infinitely many alterna­
tives really fall into just a few categories. Experimental methods (for 
answering new questions) coupled with experimental knowledge (for 
using techniques and information already learned) enable local ques­
tions to be split off and answered. These answers in turn may be used 
to show that experimental assumptions are sufficiently well met for 
testing a primary hypothesis severely. 

Table 7.3 displays the main aspects of the series of models of in­
quiry that we have discussed. Here I chose to place the data and experi­
mental models side by side. 

7.8 WHAT Is LEARNED ABOUT THE SOURCES OF 

EXPERIMENTAL EFFECTS 

Our experiments teach us or indicate the correctness of any hypothesis 
that may be deemed to have passed a severe test. Whereas in some 
cases the assessment of severity comes directly from formal statistical 
calculations (from a test's error probabilities), in others the argument 
for severity is based on analogies with known canonical (statistical or 
other) models. In Perrin's experiments, calculations (based on signifi­
cance tests) show that the two primary hypotheses in the theoretical 
model pass highly severe tests. Step 1 teaches Perrin that the experi­
mental results on Brownian motion approximate a random sample 
from a specified Normal distribution M. Step 2 indicates the values of 
the parameters of this distribution law. 

This tells us, for starters, that the Brownian motion of a variety of 
types of particles is satisfactorily modeled as the realization of a particu­
lar statistical process identified (in model M) as Normal with certain 
approximate parameter values-as asserted in the theoretical distribu­
tion 'Je. Perrin's experiments also indicate how to generate manifes­
tations of that process. We can paraphrase that favorite passage 
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EXPERIMENTAL TESTING OF HYPOTHESES 243 

TABLE 7.3 Selection of Entries From Models of Inquiry: Brownian Motion 

l'RIMARy MODEL: 
Hypotheses: 'JC: the displacement of a Brownian particle 
over time t, Sp follows the Normal distribution with fJ., = 

o and variance = 2Dt. 

MODELS OF EXPERIMENT: MODELS OF DATA: 
Hypotheses: H: the distribution of n ~ypotheses: Data set is a random 
displacements in experiment Hi follows sample from experimental model 
Normal model M with parameters a 
function of N 

Break down into steps: Step 1. test of Data Models: n displacements, observed 
hypothesis j, and Step 2, test or distributions of grains, measurements 
estimation of parameters D (or N) of grains 
(using data models) 

Problems: How to condense data from 
Problems: Specify the number of 

one or more experiments to (a) arrive 
displacements to record, choice of 
experimental (test) statistics, specify 

at suitable data models and (b) check if 

adequate error probabilities 
assumptions of experiment hold in 
each actual experiment Hi 

CANONICAL MODELS: Normal distribution, random walks, bull's-eye model, 
gambling models, random selection, piles of shot 

EXPERIMENTAL DESIGN AND DATA GENERATION 
Fractional Centrifuging (may take several months), prepare emulsions, microscopic 
techniques for following displacement distributions of grains, count and weigh the 
grains, check for uniform radius. 

Ceteris paribus conditions 
Miscellaneous factors in experiment: uniformity of temperature, color and intensity 
of light, vibrations, impurities, the nature of the grains 

Problems: 
(a) How to manipulate grains and emulsions to arrive at data that satisfies experi­
mental assumptions. 
(b) How to ensure control of relevant factors, subtract out their influences, or deter­
mine that they need not be controlled. Utilize log of previous experiments on influ­
ences of background factors. 

from Fisher (section 4.3): From these experiments we know how to 
bring it about that estimates for D (or for N) will very rarely be signifi­
candy far from certain values. This is experimental knowledge. The 
currently accepted value for N is still close to Perrin's values (within 
19 percent). 

But there is more to be said about what we learn from passing 
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the theoretical distribution hypothesis "Je. We do not learn about the 
distribution function of Brownian motion without also learning some­
thing about what produces it-something about molecular motions. 
The molecules about which the experiment teaches, however, agreeing 
with Nancy Cartwright, need not be the molecules of some substantive 
theory. The experiment teaches us about a cluster of causal or experi­
mental properties of molecular motion. Minimally, it teaches that mo­
lecular motion reliably manifests itself as a Normal (Gaussian) process 
in Brownian motion experiments. Molecules in motion possess those 
properties that enable Perrin's experimental effects (e.g., estimates of 
N) to be reliably produced and reproduced. 

Often, knowing this much (together with background knowledge) 
lets us go further. It may let us arrive at an understanding, if only ap­
proximate or partial, of specific properties of the underlying processes 
triggered in experiments. Perrin can also argue with severity, although 
without a precise severity assignment, that the experimental effects 
indicate that we are interacting with a process with certain characteris­
tics, if only in the aggregate. We are familiar with the characteristic 
types of statistical processes that, when triggered in the manner of Per­
rin's experiments, produce data distributions of the sort he finds he 
can generate. More important, we know that the result of altering the 
underlying processes in specific ways (e.g., creating slight dependen­
cies) would have been manifested in experiments like Perrin's. 

Perrin gives the following analogy: 

Direct perception of the molecules in agitation is not possible, for the 
same reason that the motion of the waves is not noticed by an ob­
server at too great a distance from them. But if a ship comes in sight, 
he will be able to see that it is rocking, which will enable him to infer 
the existence of a possibly unsuspected motion of the sea's surface. 
Now may we not hope, in the case of microscopic particles suspended 
in a fluid, that the particles may, though large enough to be followed 
under the microscope, nevertheless be small enough to be noticeably 
agitated by the molecular impacts? (Perrin, 83) 

Just as the rocking of a ship indicates the motion of the sea's surface, 
the Brownian motion of microscopic particles indicates the motion in 
the liquid medium. Perrin puts it this way: 

The objective reality of the molecules ... becomes hard to deny. At 
the same time, molecular movement has not been made visible. The 
Brownian movement is a faithful reflection of it, or, better, it is a 
molecular movement in itself .... From the point of view of agitation, 
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there is no distinction between nitrogen molecules and the visible 
molecules realised in the grains of an emulsion. (P. 105) 

245 

The microscopic grains are small enough to be noticeably agitated 
by the molecular collisions yet large enough to be observed under a 
microscope. Of course, molecular collisions are still occurring on the 
macroscopic level, but they do not displace a suspended body (indeed, 
this encouraged the initial skepticism toward the kinetic theory). The 
reason is that the breadth of surface area on average counterbalances 
the many collisions in different directions (a consequence of the law 
of large numbers). With microscopic particles, in contrast, the impulses 
from the collisions do not generally counterbalance each other; the 
particles are tossed about irregularly. 

From Perrin's experiments, and with the knowledge of fluctuation 
phenomena, we can delimit at least major aspects of the kinds of things 
that can produce all of this. It must be something in the liquid me­
dium-a discrete-hit type of process approximating a random walk.22 

This is what we can give a severe argument for, at least limiting our­
selves to Perrin's experiments. 

In this connection it is important to note that the knowledge of 
the existence of Brownian motion led to a change in scientific method­
ology. A new limit to experimental accuracy due to Brownian fluctua­
tions and "noise" in measuring systems was introduced. Methods of 
testing were revised accordingly, and updated experimental tool kits 
needed to reflect this. Indeed, Brownian motion was and is one of the 
most important sources of canonical models of types of errors and 
fluctuations. 

A number of mistakes and ways of overcoming them, all gleaned 
from Perrin's inquiries, also go into our experimental kit. One not yet 
mentioned deserves special note. Understanding Brownian motion un­
earthed a general type of statistical error that many people had over­
looked. The error was the basis for an important objection to the ki­
netic account first raised by Karl Nageli. The objection was based on 
the common assumption that in order for the molecules to cause 

22. The major approximation in the modeling of Brownian processes stems 
from the fact that it can only be seen as a random walk when the interval of time 
t is not too small. As Einstein notes: 

The movements of one and the same particle after different intervals of 
time must be considered as mutually independent processes, so long as 
we think of these intervals of time as being chosen not too small. (Ein­
stein [1926] 1956,12-13) 

See also Chandrasekhar 1954, 89. 
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Brownian motion, they would have to move in a coordinated fashion. 
Random motion, it was objected, could not explain Brownian motion. 

Gouy was the first to come close to answering this objection by 
citing the law of large numbers (chapter 5). Smoluchowski gave a 
more rigorous explanation based on a statistical argument of which 
Nageli and others had been unaware. The argument is based on the 
canonical model of random walk phenomena discussed earlier. To use 
the gambler analogy, what the argument shows is how a gambler can 
lose a great deal of money, even with an even chance of winning or 
losing a fixed amount on each game, provided that he plays long 
enough. Analogously, unlike what Nageli supposed, the jerks of 
Brownian particles do not need coordinated motion to explain them; 
with enough hits, the average displacement can be large, even when 
each hit has an equal chance of moving the particle a given amount to 
the right or left. 

Models of fluctuation phenomena added considerably to the meth­
ods and strategies of experimental tool kits. 

7.9 ACCEPTING A STATISTICAL VERSION OF THE SECOND LAW: 

A BIG SHAKE-UP TURNS ON A "SMALL" RESULT 

Perrin's results on Brownian motion are sometimes considered to have 
provided a crucial test between the kinetic theory and classical thermo­
dynamics taken as a whole. But his experiments themselves are not a 
severe test of the full kinetic account. There are many ways the full 
kinetic theory can be in error that Perrin's experiments did not direct 
themselves to uncovering. 

Nevertheless, they do provide a severe and crucial test of one small 
though key piece of the kinetic account against one piece of the classi­
cal one. The piece turned on the severe test that took place at step 1: 
the test of the hypothesized Normal distribution in j against j'. And 
what was learned from it, based only on local statistical tests, took on 
enormous importance in the debates. It provided a severe test in favor 
of a statistical version of the second law of thermodynamics (also re­
ferred to as Carnol's principle). Friedrich Ostwald, Ernst Mach (at 
times), and the mathematician Ernst Zermelo based at least part of 
their opposition to the molecular-kinetic theory on the fact that it 
would allow exceptions to the absoluteness of the second law of ther­
modynamics. Mach and Ostwald held that a phenomenological de­
scription, such as thermodynamics, contains sufficient information 
while escaping the various problems that plagued atomic theory (e.g., 
the use of entities deemed hypothetical). 
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Einstein ([1926] 1956) begins by stressing that the two theories 
give conflicting predictions about Brownian motion: 

If the movement discussed here can actually be observed (together 
with the laws relating to it that one would expect to find), then classi­
cal thermodynamics can no longer be looked upon as applicable with 
precision to bodies even of dimensions distinguishable in a micro­
scope: an exact determination of actual atomic dimensions is then 
possible. On the other hand, had the prediction of this movement 
proved to be incorrect, a weighty argument would be provided 
against the molecular-kinetic conception of heat. (pp. 1-2) 

Perrin, as expressed in the second epigraph that opens this chapter, 
regarded his experiments as providing such a crucial test. 

The kinetic theory, in contrast with the classical theory, views dis­
solved molecules as differing from suspended particles only in their 
size; their motion would be the same. If Brownian motion could be 
explained as caused by something outside the liquid medium or some­
thing within the particles themselves, it would not be in conflict with 
the classical theory. If, on the other hand, it could be shown that 
Brownian motion was caused by a molecular motion in the liquid me­
dium, as given in the kinetic theory, it would be in conflict. Moreover, 
it would show that a statistical process was responsible and that the 
second law (or Carnot's principle) requires a statistical rendering. 

That Brownian motion, if indeed spontaneous, would be an excep­
tion to the (nonstatistical version of the) second law was recognized 
even before the ES theory was formulated. For if it is true that without 
temperature differences in the system, a Brownian particle (denser 
than water) rises spontaneously, then it constitutes a case in which part 
of the heat of the medium is transformed into work. This recognition is 
explicitly discussed by Gouy around 1890. lules-Henri Poincare, per­
suaded by Gouy's arguments, declares: 

But we see under our eyes now motion transformed into heat by 
friction, now heat changed inversely into motion, and that without 
loss since the movement lasts forever. This is the contrary of the prin­
ciple of Carnot. (Poincare 1905,610) 

In step 1, Perrin showed that one can generate at will an observ­
able process due to an agitation not attributable to the particles or ex­
ternal energy sources. Thus in carrying out step 1, Perrin demonstrates 
the existence of violations of the nonstatistical version of the second 
law. Perrin even describes his experiments as methods for generating 
such violations: 
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Briefly, we are going to show that sufficiently careful observation re­
veals that at every instant, in a mass of fluid, there is an irregular 
spontaneous agitation which cannot be reconciled with Carnot's prin­
ciple except just on the condition of admitting that his principle has the proba­
bilistic charader suggested to us by molecular hypotheses. (Perrin 1950, 57; 
emphasis added) 

This is precisely what is established by the severe test of the distribution 
in hypothesis j. 

The statistical version involves a standard frequentist interpretation 
of probability: it means that it will be violated extraordinarily rarely­
so rarely that it can practically be discounted. Perrin calculates, for ex­
ample, that to have a better than even chance of seeing a one-kilogram 
brick suspended by a rope rise to a level by virtue of its Brownian 
motion, one would have to wait more than 1010 billion years. "Com­
mon sense tells us, of course, that it would be foolish to rely upon the 
Brownian movement to raise the bricks necessary to build a house" (p. 
87). So, practically speaking, the second law is unaffected. Perrin sug­
gests that we can best understand the law by stating it as follows: 

On the scale of magnitudes that are of practical interest to us, perpetual motion 
of the second kind is in general so insignificant that it would be foolish to take 
it into consideration.(P. 87) 

Perhaps enough has been said for our purposes, which were to 
illustrate the hierarchy of models in a single experimental testing con­
text, the breakdown of larger inquiries into small pieces, and strategies 
for arriving at severe tests. There is ample work by others on how Per­
rin's results bear on theories higher in the hierarchy as well as on more 
global disputes arising from the atomic debates.23 I limit myself to a 
few brief remarks. 

Going Higher in the Hierarchy 

At yet a higher level in the hierarchy of models one could place 
more general questions about the molecular-kinetic theory as a whole. 
The more global molecular-kinetic theory refers not only to Brownian 
motion but also to theories about gases, radiation, diffusion of light, 
and others. Here is where the discussion of the thirteen phenomena 
enters. In experiments upon each of these widely different phenom­
ena, estimates of Avogadro's number N were obtained, and good 
agreement was found. Although Perrin takes several chapters to dis­
cuss the tests on these other phenomena, they are distinct from his 

23. Examples are Brush 1977; Clark 1976; Gardner 1979; and Salmon 1984. 
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tests, involving primary hypotheses different from those he considered. 
While passing these further molecular-kinetic hypotheses adds weight 
to the Brownian motion tests, they largely come into play only when 
going beyond the Brownian motion tests that are my focus. 

The good agreement among the thirteen phenomena on the mo­
lecular magnitudes effectively ruled out the worry that extrapolations 
from one phenomenon to another would not hold up. It was also at 
the heart of arguments for the reality of atoms, as Salmon and others 
have maintained; which is why those arguing for realism began with 
the argument from the thirteen phenomena. Even ardent antiatomists 
(probably excepting Mach) construed Perrin's experiments as telling. 
On the basis of such experimental evidence, even Ostwald reversed 
himself on the atomic-kinetic theory in 1909: 

I have convinced myself that we have recently come into possession of experi­
mental proof of the discrete or grainy nature of matter, for which the atomic 
hypothesis had vainly sought for centuries . ... This evidence now justifies 
even the most cautious scientist in speaking of the experimental proof 
of the atomistic nature of space-filling matter. 24 

As I have said, I am confining myself to what is given by experi­
mental knowledge, and it is not clear that this does not take one as far 
as one would like. What did Perrin think? In some passages one hears 
him arguing for molecular reality (see Achinstein 1994, Nye 1972). 
But this is not the chief concern of his experimental work. Even on 
the role of the thirteen phenomena, Perrin has this to say near the end 
of Atoms: 

Yet, however strongly we may feel impelled to accept the existence 
of molecules and atoms, we ought always to be able to express visible 
reality without appealing to elements that are still invisible. And in­
deed it is not very difficult to do so. We have but to eliminate the 
constant N between the 13 equations that have been used to deter­
mine it to obtain 12 equations in which only realities directly percep­
tible occur. (P. 216) 

As an example, Perrin explains that by eliminating the molecular 
parameter between the equations from black body radiation and 
Brownian motion, we arrive at an equation that lets us predict the rate 
of diffusion of Brownian particles in water by measuring the intensity 
of the light in the radiation issuing from a furnace of molten iron: 

24. This translated quotation is from Brush 1977, 381. The source is Wilhelm 
Ostwald 1909. The quotation is from the "Vorbericht." 
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Consequently the physicist who carries out observations on furnace 
temperatures will be in a position to check an error in the observation 
of the microscopic dots in emulsions! And this without the necessity 
of referring to molecules. (P. 216) 

The thirteen equations make fundamental connections among very 
different phenomena, therefore providing an effective way of using 
one such phenomenon to check errors regarding vastly different 
phenomena. This is a powerful source of progress in experimental 
knowledge. 
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CHAPTER EIGHT 

Severe Tests and Novel Evidence 

I think that people emphasize prediction in validating scientific 
theories because the classic attitude of commentators on science is 
not to trust the theorist. The fear is that the theorist adjusts his or 
her theory to fit whatever experimental facts are already known, 
so that for the theory to fit these facts is not a reliable test of the 
theory. 

In the case of a true prediction, like Einstein's prediction of the 
bending of light by the sun, it is true that the theorist does not 
know the experimental result when she develops the theory, but 
on the other hand the experimentalist does know about the theo­
retical result when he does the experimenH 

-Steven Weinberg, Dreams of a Final Theory, pp. 96-97 

WITHIN TWENTY-FOUR HOURS of the bomb explosion at the World Trade 
Center in New York City in February 1993 there were nineteen tele­
phone calls from individuals or organizations claiming responsibility. 
The fact that the calls came after the first news reports of the explosion, 
it was generally agreed, greatly weakened the credibility of the claims. 
Our intuition here reflects the common principle that evidence pre­
dicted by a hypothesis counts more in its support than evidence that 
accords with a hypothesis constructed after the fact. Many may say 
that merely explaining known evidence provides little or no support 
for a hypothesis altogether. Nevertheless, it is equally clear that less 
than one week after the bombing the deliberate use of known pieces 
of evidence, in particular, "three feet of mangled, soot-encrusted steel" 
(Newsweek, 15 March 1993, 28), warranted the investigators to finger 
the man who rented the van that carried the explosive device. l 

1. Under the grime of this piece of the truck chassis was an identification num­
ber. This led authorities to New Jersey and to the Islamic fundamentalist who 
rented the van. 
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The seeming conflict in these two intuitions is at the heart of a 
long-standing dispute in philosophy of science. The dispute may be 
seen to center on the following methodological principle or rule: 

Rule of novelty (RN): for evidence to warrant a hypothesis H, H should 
not only agree with the evidence, but the evidence should be novel 
(in some sense). 

On some accounts the novelty of the evidence is required, whereas for 
others the claim is comparative: novel evidence accords the hypothesis 
greater weight than if it were nonnovel. Laudan refers to this rule as 
"one of the most contested principles in recent philosophy of science" 
(Laudan 1990b, 57). In fact. the controversy over some version of RN 
has a very long history, marked by vehement debates between several 
eminent philosophers of science: between Mill and Peirce, Mill and 
Whewell, and Keynes and Popper.2 The current dispute about the rele­
vance of novelty is commingled with a family quarrel among those 
who endorse RN over the very definition of "novel test" or "novel 
fact." The disputants here tend to take an all or nothing approach. Pro­
ponents of novelty find the novelty of the evidence always relevant in 
assessing its bearing on hypotheses, holding that evidence is accorded 
extra weight (of some sort) simply by dint of being novel. Opponents 
deny that novelty ever matters. There are further disagreements even 
among proponents who share the basic definition of novelty over what 
counts as violating novelty and, most importantly, over why novelty 
should matter to the import of evidence. 3 

I will not attempt to survey the literature to which this quarrel 
about novelty has continued to give rise but will argue for a change of 
focus in the entire battle-on both of the fronts on which it has been 
fought. Novelty, I claim, was not the real issue in the first place. What 
lay behind the intuition that novelty mattered is that severe tests mat­
ter. What underlies the basic intuition that if the data are not novel, 
then they fail to test or support a hypothesis are the various impedi­
ments to severity that correlate with violating novelty of one sort or 

2. Early proponents often dted are Descartes and Leibnitz. An indication in 
Descartes is his claim in Principles of Philosophy that "we shall know that we have 
correctly determined these causes when we observe that we can explain, by their 
means, not only those phenomena which we have considered up to now, but also 
everything else about which we have not previously thought" (Descartes [1644] 
1984, pt. 3, p. 104). 

3. For some assodated readings on the novelty debate beyond those dted in 
this chapter, see Campbell and Vind 1983; Howson 1984; Gardner 1982; Musgrave 
1978, 1989; and Redhead 1986. 
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another. But this correlation is imperfect. Novelty and severity do not 
always go hand in hand: there are novel tests that are not severe and 
severe tests that are not novel. 

As such, criteria for good tests that are couched in terms of novelty 
wind up being either too weak or too strong, countenancing poor tests 
and condemning excellent ones. I believe that our notion of severe 
tests captures pronovelty intuitions just where those intuitions are correct. 

Understanding and resolving the dispute about RN is important 
for several reasons. For one thing, an important task for an adequate 
epistemology of experiment is to unearth the principles underlying fa­
miliar methodological rules. The controversy in this case has had par­
ticularly serious consequences. Finding fault with those who argue 
that novelty in some sense always matters has been taken by some as 
supporting the opposite view, that it never matters. This discounts the 
important kernel of rightness underlying those who think novelty 
matters: aspects of the hypotheses and data generation procedures 
need to be taken into account in assessing the goodness of tests. They 
may be relevant to the error probabilities and so to the severity of the 
overall experimental test. 

In addition, the controversy has had disturbing consequences for 
historically minded philosophers of science. Discovering that several 
scientific episodes appear to fail so apparently plausible a rule has been 
taken as grounds for questioning the rationality and objectivity of the 
episode or, alternatively,. as grounds for questioning the viability of the 
methodological enterprise. 

There is a further reason that resolving the novelty controversy is 
of particular importance for our program. Any philosophy of experi­
mental testing adequate to real experiments must come to grips with 
the fact that the relationship between theory and experiment is not 
direct but is mediated along the lines of the hierarchy of models and 
theories as sketched in chapter 5. At various stages of filling in the 
links, it is standard to utilize the same data to arrive at as well as war­
rant hypotheses. It is commonly the case, for example, that raw data 
are used to construct as well as to test a hypothesis about experimental 
data, and experimental data are used to construct as well as to support 
an experimental hypothesis-the basis for a comparison with a theo­
retical prediction. As a matter of course, then, the inferences involved 
violate even the best construals of the novelty requirement. This is 
commonly so for the central task of experimental inference-estimat­
ing the effects of backgrounds. Indeed, if one goes down the list in 
chapter 2 of the standard problems of "normal" science, one finds again 
and again that they are tasks where hypothesized solutions are rou-
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254 CHAPTER EIGHT 

tinely affirmed by nonnovel evidence. So RN must be abandoned or 
qualified. 

A realistic picture of the relationship between evidence and 
hypotheses reveals not only that nonnovel results often figure in alto­
gether reliable inferences, but also that there is as much opportunity 
for unreliability to arise in reporting or interpreting (novel) results 
given knowledge of theoretical predictions as there is for it to arise in 
arriving at hypotheses given knowledge of (nonnovel) results. This is 
Weinberg's point in the epigraph that opens this chapter. The historian 
Stephen Brush finds cases where scientists are as concerned about the 
former as the latter, leading him to suggest that "the preference for 
forecasting implies a double standard for theorists and observers, based 
on a discredited empiricist conception of science" (Brush 1989, 1127). 
Why not be as suspicious of novel results claimed to be in accord 
with a known theoretical prediction? Lest we be driven to suspect all 
experimental inference, some distinctions clearly need to be made. 
These distinctions, I propose, appeal to reliability considerations that 
scientists standardly employ in devising and interpreting their experi­
ments. 

8.1 LOGICAL AND EVIDENTIAL-RELATIONSHIP VIEWS VERSUS 

HISTORICAL AND TESTING ACCOUNTS 

If I am correct that the goal of novelty is severity, then the dispute 
between those who do and those who do not accept some version of 
the novelty principle emerges as a dispute about whether severity­
or, more generally, error characteristics of a testing process-matters 
in evaluating the import of evidence. By and large, thinking novelty 
matters goes hand in hand with thinking severity matters. (Where 
there are exceptions, there is some question about the consistency of 
the view. I return to this in chapter 10.) This correlation is borne out 
in the historical disputes as well as in the current debate between 
Bayesian and non-Bayesian philosophies of hypothesis appraisal. 

Alan Musgrave on Logical versus Historical Theories of Confirmation 

Several philosophers have enlightened us on the history of the 
novelty dispute (e.g., Giere 1983; Lakatos 1978; Musgrave 1974). Mus­
grave puts his finger on what is common to historical opponents of 
novelty-they hold what he calls a logical theory of confirmation. 

According to modern logical empiricist orthodoxy, in deciding 
whether hypothesis h is confirmed by evidence e, and how well it is 
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confirmed, we must consider only the statements hand e, and the 
logical relations between them. It is quite irrelevant whether e was 
known first and h proposed to explain it, or whether e resulted from 
testing predictions drawn from h. (Musgrave 1974,2) 

One finds this stated plainly in Hempel 1965. 

255 

Some variant of the logical (or logicist) approach was implicitly 
held by historical opponents to RN. "We find it in Mill, who was 
amazed at Whewell's view" that successfully predicting novel facts 
gives a hypothesis special weight (Musgrave 1974,2). Whereas Whew­
ell held that 

men cannot help believing that the laws laid down by discoverers 
must be in a great measure identical with the real laws of nature, 
when the discoverers thus determine effects beforehand, (Whewell 
[1847] 1967, vol. 2, p. 64) 

in Mill's view, "such predictions and their fulfillment are ... well cal­
culated to impress the uninformed .... But it is strange that any con­
siderable stress should be laid upon such a coincidence by persons 
of scientific attainments" (Mill 1888, bk. 3, chap. 14, sec. 6, p. 356). 
Keynes, another logicist, similarly held that the "question as to 
whether a particular hypothesis happens to be propounded before or 
after examination of [its instances] is quite irrelevant" (Keynes [1921] 
1952, 305).4 Clearly, if confirmation is strictly a logical function be­
tween evidence (or statements of evidence) and hypotheses, when or 
how hypotheses are constructed will be irrelevant. 

The logical approaches to confirmation ran into problems, how­
ever, precisely because they insisted on purely formal or syntactical 
criteria of confirmation that, like deductive logic, "should contain no 
reference to the specific subject matter of the hypothesis or of the evi­
dence in question" (Hempel 1965, 10). Enter what Musgrave calls the 
"historical (or logico-historical) approach" to confirmation. 

In Musgrave's neat analysis of the situation, the contemporary ac­
counts of novelty in the Popper-Lakatos school arose out of attempts 
to avoid the paradoxes of the traditional logical approaches to confir­
mation by requiring various background considerations in the form of 
novelty requirements. Musgrave calls such accounts historical because, 
he believes, "it will presumably be a historical task to determine" what 
the background knowledge is. In particular, "all variants of the histori­
cal approach will make the confirmation of a scientific theory some-

4. This is as quoted in Musgrave 1974, 2. 
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how depend upon the historical setting in which that theory was pro­
posed" (Musgrave 1974, 7). 

E-R versus Testing Accounts of Inductive Inference 

The situation twenty years after Musgrave's article is rather simi­
lar-with one key difference. Few philosophers of science still harbor 
the view that a theory of confirmation is merely a formal relationship 
between evidence and hypothesis. What distinguishes their accounts 
is the kind of background thought to be needed. Bayesians let the 
background enter via prior probabilities. In the Bayesian analogy be­
tween induction and deduction from chapter 3 we hear echoes of the 
position staked out by logical approaches to confirmation. 

In contrast, most who follow what I termed "testing accounts" see 
the background as coming in via methodological principles such as 
those based on novelty.5 Members of the Popper-Lakatos school (e.g., 
Watkins, Musgrave, Zahar, Worrall) proposed notions of novelty 
where the background knowledge was intended to reflect Popperian 
goals. Musgrave tells us that "Watkins begins with Popper's thesis that 
genuine confirmations can result only from the failure of genuine at­
tempts to refute a hypothesis, from severe tests" (Musgrave 1974, 5). 
The central aim in each case was to use background knowledge to dis­
tinguish genuine or severe tests from spurious ones. 

Novelty in Testing Accounts of Inference. Three main types of novelty 
emerge. A novel fact for a hypothesis H may be (1) one not already 
known, (2) one not already used in arriving at or constructing H, or 
(3) one not already predicted (or one counterpredicted) by available 
hypotheses. The first corresponds to temporal novelty, the second, to 
heuristic or use novelty, the third to theoretical novelty. Each has itself 
been construed in a variety of ways, multiplying the number of differ­
ent definitions. The third view, theoretical novelty, was the Popperian 
severity requirement discussed in chapter 6. The debate I will now con­
sider revolves around temporal and heuristic or use novelty.6 

5. The more fundamental difference between these two approaches to the 
background is that testing accounts give a central role to what in statistical language 
are the error characteristics of a procedure of testing. This will be explored further. 

6. Calling in to take credit for the Trade Center bombing violates both types of 
novelty. Not only had the blast already occurred, it had already been reported on 
the news before the first phone call came in. It is a violation of use-novelty (or 
heuristic novelty) because that information was used to construct the particular 
hypothesis by filling in the blank: for example,_is responsible. So eschewing vio­
lations of either form of novelty explains our giving little credence to the calls. 
However, the mangled piece of steel (and a list of other clues) were also known 
and used to arrive at the identity of the driver of the suspected van. 
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A second school of testers-the "error statisticians" -has also up­
held novelty principles in the form of rules of predesignation or rules 
against double counting of data. An important variant of the argument 
from error statistics warrants separate attention and will be considered 
in chapter 9. The argument most familiar to philosophers, represented 
by Ronald Giere, can be considered now with arguments from histori­
cal schools. 

Recall that for a testing theorist the task of characterizing a good 
test is not distinct from saying when a hypothesis is warranted or well 
supported by evidence. To avoid confusion I have couched my account 
in terms of tests. However, Worrall and Giere often couch their re­
marks in terms· of when data support hypotheses. They must not be 
mistaken as attempting to provide an evidential-relation measure. For 
them, to say when data support H is to say when data provide a good 
test of H-although degrees of goodness are still possible. The task for 
novelty criteria is to tell us what more beyond entailing or fitting evi­
dence is required for a test to be genuine. The debate centers on how 
best to accomplish this. 

The central problems are how background knowledge should be 
brought in so that: the account of testing is not turned into a subjective 
or relativistic affair, the resulting account accords with important cases 
of actual scientific appraisal, and there is a clear epistemological ratio­
nale for doing so. The ongoing debate has not made much progress in 
satisfying these three desiderata. 

Temporal Novelty 

On the view of temporal novelty, "novel fact" meant what it said: 
a novel fact was a newly discovered fact-one not known before its 
use in testing.7 Known by whom? For some, it counts as known only 
if the general scientific community knows it, for others it is enough 
that a given investigator putting forth the hypothesis knows it (e.g., 
Gardner 1982). 

The temporal view of novelty has been criticized on all three desid­
erata for judging novelty criteria. First, there is the problem of how the 
temporal novelty of the data can be characterized nonsubjectively. 
How, it is asked, can temporal novelty be determined without having 
to look into the psyches of individual scientists to determine what they 
knew and when they knew it? Second, the temporal novelty require­
ment denies special evidential significance to tests that intuitively seem 

7. Although a temporally novel fact is sometimes equated with a predicted fact, 
the term "predicted" in science generally does not require this temporal element­
a point Stephen Brush (1989) makes. 
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to possess it. Take our example from the last chapter. Brownian motion 
was known long before the Einstein-Smoluchowski theory was pro­
posed, yet was considered to have provided significant evidence for it. 
Likewise for the orbit of Mercury and Einstein's theory. Third, there is 
the question of its epistemological rationale. Why should time matter? 

If the time-order of theory and evidence was in itself significant for 
scientists then we should, I think, be reduced merely to recording this 
as a brute fact. For why on earth should it matter whether some evi­
dence was discovered before or after the articulation of some theory? 
(Worrall 1989, 148) 

In response to such objections to temporal novelty, novel accounts 
have been proposed in which novelty turns instead on the heuristic role 
of facts: on whether the theory it helped construct was in a certain 
sense ad hoc. Zahar (1973) suggested that a fact is "novel with respect to 
a given hypothesis if it did not belong to the problem-situation which governed 
the construction of the hypothesis" (p. 103). Old facts (Le., facts not tempo­
rally novel) could be novel facts in this new sense so long as the theory 
was not devised to explain them. Musgrave and others criticized this 
view as being too subjective and psycho logistic-even more so than 
temporal novelty. It seemed to make the answer to the question of 
whether a test was good relative to the specific aims of the designer of 
the theory. "To assess the evidential support of a theory 'one has to 
take into account the way [it] is built and the problems it was designed 
to solve'" (Musgrave 1974, 12). Furthermore, it seems that in Zahar's 
view the same evidence might accord a given theory as proposed by 
one scientist a different amount of support than as proposed by an­
other, according to the heuristic route each scientist takes (p. 14). 

Worrall reformulates Zahar's heuristic view: the question is not 
whether a theory was "devised to explain" a fact but whether the fact 
was "used to construct" the theory. With this new formulation Worrall 
int~nds to signal that although support is to be heuristic-relative, it is 
notto be person-relative (e.g., Worrall 1978b, 51). That is, while grant­
ing that the heuristic view allows the same theory, because differently 
arrived at, to be differently supported by the same evidence, Worrall 
believes that "the heuristic considerations which led to the construc­
tion of a theory can be objectively specified" (p. 51). 

The Zahar-Worrall view of heuristic novelty may be called use­
novelty. It requires that for evidence e to support hypothesis H (or for e 
to be a good test of H), in addition to H entailing e, e itself must not have 
been used in H's construction. Worrall states the position as follows: 

The relation [of empirical support] holds if and only if the factual 
statement is implied by the theory but is not a member of the set of 
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factual statements used in the construction of the theory. (Worrall 
1978b,50) 

259 

Since strict entailment is generally too strong,8 I will allow that the 
use-novelty requirement, UN, for a good test is satisfied when 

i. H entails or is a good fit with e 

and 
ii. Use-novelty UN: e is not used in the construction of H. 

(Worrall also holds UN sufficient for a good test, but I leave that to one 
side. See Mayo 1991a.) 

Use-novelty, or something very much like it, is endorsed-at least 
as a necessary condition-by other use-novelists as well as by temporal 
novelists. Its violation is commonly termed double-use or double­
counting of data. If evidence is used in arriving at H, then it cannot 
be used again in H's support. As a shorthand, let us call a hypothe­
sis constructed to fit evidence e (however the construction is done) 
a use-constructed hypothesis. The use-novelty requirement for tests is 
this: 

UN requirement: Data e that was used to arrive at a use-constructed 
hypothesis H cannot also count as a good test of H. 

The UN requirement does seem to reflect our ordinary intuitions 
in cases such as the after-trial claims of responsibility for the bombing 
of the World Trade Center and astrological retrodictions. This fact 
should also make it reasonable to suppose that the rationale for these 
intuitions, where correct. applies uniformly to day-to-day and scien­
tific hypotheses.9 The account I recommend does just this. Violating 
UN is correctly eschewed-whether in science or day-to-day reason­
ing-only if it results in violating reliability or severity. 

Against this, proponents of the UN requirement recoil from ever 
crediting a use-constructed hypothesis for passing a test it was con­
structed to pass. Their basic intuition is this: 

If a hypothesis H has been arrived at to accord with data e, then that 
same data cannot also provide a good test of (or good support for) 
hypothesis H. since H could not have failed this test. 

It is not that the constructed hypothesis is considered unbelievable or 
false but rather that the UN proponent denies that finding the accor-

8. Worrall's own discussion bears this out. In any case, my arguments here 
will not turn on whether (i) requires strict entailment or allows a statistical type 
of fit. 

9. This counts against proponents of novelty who, when faced with counter­
examples to UN, maintain that science is different. 
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dance with data should be credited to H because the accordance was 
assured-no matter what. This reasoning, while sounding plausible, is 
wrong. 

Finding It Wrong for the Wrong Reasons 

In finding the intuition underlying the UN requirement wrong, I 
am apparently in an odd sort of agreement with the Bayesian Way. 
Indeed, recent criticisms of the UN requirement, with few exceptions, 
have been leveled by those wearing Bayesian glasses. What has 
scarcely been noted, however, is that the Bayesian critiques are deeply 
flawed. From our discussion of key differences in aims or even from 
Musgrave's logical versus historical lesson, it is easy to guess at the 
flaw. 

For Bayesian philosophers of science, just as with the earlier "log­
icist" approaches, there is no slot in which to take into account the 
novelty of the data. Thus when the rationale for the UN requirement 
is judged from this Bayesian standpoint, it is, unsurprisingly, found 
wanting. Finding UN unnecessary for earning high marks according to 
the Bayesian account of hypothesis appraisaL the Bayesian declares the 
arguments in favor of UN wrong (e.g., Howson and Urbach 1989, 549; 
Howson 1990). The problem is that even if the rule of novelty (RN) 
were good for its intended aims, running it through the Bayesian ma­
chinery has no chance of "passing" the rule. On Bayesian principles, if 
two hypotheses that entail evidence e are to receive different amounts 
of support from e, then the difference must lie in the prior probabilities. 
I differ from the Bayesian and concur with the UN proponent in hold­
ing that when a difference in appraisal is warranted, the fault lies in 
the testing process and not in our priors. 

Adding to the confusion, there have been Bayesian attempts to 
support the non-Bayesian arguments for UN. Shooting holes in these 
Bayesian defenses have wrongly been taken to vitiate the non­
Bayesian arguments. All of this warrants more careful scrutiny; I shall 
return to this discussion in chapter 10. 

8.2 CHARACTERIZING UN VIOLATIONS (NONSUBJECTIVELY) 

Worrall (1985) concedes that "allowing that heuristics playa role does 
indeed threaten to make confirmation a dangerously unclear and sub­
jectivist notion" (p. 309). The viability of his position, he grants, rests 
on being able to find out if a theory is use-constructed by careful his­
torical study, for example, by combing historical documents, notes, and 
letters without having to explore the psyches of individual scientists. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:14:06.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



SEVERE TESTS AND NOVEL EVIDENCE 261 

Three types of UN violations emerge in the accounts of Worrall and 
Giere: 

Parameter fixing. There is a hypothesis with a free parameter x (a quan­
tity or constant in some mathematical equation or other blank not yet 
fixed), for example, the number of molecules per unit is x. We can 
write the hypothesis with the blank as H(x). The data e are used to 
work out the value of this or these parameters so that the resulting 
hypothesis, H(e), yields, entails, accommodates, renders expected, or 
otherwise fits data e. This need not be a quantitative parameter. It in­
cludes any case where data are used to pin down a hypothesis suf­
ficiently so as to account for or accommodate that same data. An 
example Worrall gives is the use-construction of a Newtonian explana­
tion of Mercury's perihelion (Worrall1978b, 48). 

Exception barring or incorporation. Exception incorporation may arise 
when H fails to accord with result e, so e is anomalous for H. The con­
structed hypothesis, H', is the result of revising or qualifying hypothe­
sis H so that H' accords with e. That is, H' is H plus some qualification 
or modification. An example would be where H is an alleged psychic's 
claim to be able to "see" via ESP a drawing in a sealed envelope. When 
he fails, he qualifies H so that it excludes cases where skeptical scien­
tists are watching him. Thus revised, result e now allows H to pass. 

Evidence as constraint. Giere alludes to another way in which UN may 
be violated, although in a sense it subsumes all the preceding ones. 
Here the violation occurs whenever the evidence acts as a "constraint" 
on any hypothesis that is going to be considered. An agent who follows 
this procedure will only put forward hypotheses that can accommo­
date a known result or phenomena e. Such a procedure, assuming it 
ends, must somehow accommodate e. 

In each case e is being used to construct a hypothesis H to satisfy 
the condition that H "fits" e. Alternatively, e is used in constructing H 
to assure that H passes the test. Whenever the evidence e is taken at 
the same time as supporting or providing a good test of the use­
constructed H, we have a UN violation. 

Using Historical Data to Test Novelty Accounts 

It is far from clear that these attempts to characterize violations of 
use-novelty ameliorate the difficulty of determining objectively 
whether a case is use-novel. In the one historical case that both Giere 
and Worrall look at with express interest in the question of novelty-
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the case of Fresnel's (wave) theory of diffraction-they arrive at oppo­
site pronouncements. Following the traditional reading of this episode, 
Giere finds that the ability of Fresnel's theory to account for the diffrac­
tion effect known to occur with straightedges was given less weight 
(by a prize committee at the time) than its ability to predict the tempo­
rally novel (and unexpected) "white spot" effect. In contrast, Worrall 
argues that accounting for the known straightedge result was given 
more weight (Worrall 1989, 142). But their disagreement goes further. 
Whereas Worrall holds up the straightedge effect as a case where UN 
is satisfied,1O Giere holds it up as a case of a UN violation (of the evidence 
as constraint type). 

This disagreement raises the problem of when historical data 
should be regarded as genuinely testing a methodological claim such 
as the UN requirement. Worrall takes this episode as evidence in sup­
port of use-novelty. Yet, even granting his reading of the case, namely, 
that temporal novelty did not seem to matter, the episode seems at 
most to be consistent with his position about UN (it is not a very severe 
test). Going by Worrall's discussion of the case, it is far from clear that 
the appraisal turned on novelty altogether-whatever the type. Wor­
rall remarks: 

The report recorded that Fresnel had made a series of 125 experimen­
tal measurements of the external fringes outside the shadow of a 
straightedge, and that in this whole series the difference between ob­
servation and the value provided by Fresnel's integral was only once 
as much as 51100 mm, only three times 3/100 mm and six times 2/ 
100 mm. In all the other 115 cases disagreement between theory and 
observation did not exceed 1/100 mm. (Worrall 1989, 144) 

Members of the prize committee were impressed, it seems, by how 
often Fresnel's predictions came very close to the observed results with 
straightedges. Their argument clearly assumed, as it required such for 
it to have weight, something like the following: If Fresnel's hypothesis 
were wrong, we would expect larger differences more often than were 
observed. That is, such good accordance would be very improbable in 
a series of 125 experiments if Fresnel's account was not approximately 
correct in regard to diffraction. It is this argument-an argument from 
error-that mattered, and not how Fresnel's account was constructed. 

We can agree with Worrall (1989) that to assess support, "we need 
know nothing about Fresnel's psyche and need attend only to the de­
velopment of his theory of diffraction as set out in great detail and 

10. Worrall's purpose in citing the Fresnel example is to argue that scientific 
judgments reflect a concern with use-novelty and not with temporal novelty. 
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clarity in his prize memoir" (p. 154). Psyches have nothing to do with 
it, and scientific reports (if adequate) are enough. But in my view what 
we really need to learn from these reports is not the route by which 
the theory was developed, but the reliability of its experimental test. I pro­
pose that the whole matter turns on how well the evidence-used or 
not-genuinely indicates that hypothesis H is correct. What matters is 
how well the data, together with background knowledge, rule out 
ways in which H can be in error. While this calls for attending to char­
acteristics of the entire testing process, which may be influenced by 
aspects of the generation of test hypotheses and data, it does not call 
for reconstructing how a scientist came to develop a hypothesis. In 
planning, reporting, and evaluating tests, it is to the relevant character­
istics of the testing process that scientists need to attend. 

But I am ahead of myself. My point now is that it is difficult to 
argue for what historical cases show about some methodological rule 
without understanding how the rule functions in experimental learn­
ing. Worrall does not stop with testing UN via historical data but goes 
on, in several papers, to wrestle with its epistemological rationale, to 
which we will now turn. 

8.3 THE (INTENDED) RATIONALE FOR USE-NOVELTY IS SEVERITY 

Despite the fairly widespread endorsement of something like the UN 
requirement (especially among testing accounts), enormous confusion 
about what might be its epistemological rationale persists. In this chap­
ter I will focus on two variants of a single argument that has received 
considerable attention by philosophers, as found in discussions by 
Worrall and Giere. I shall argue that the (implicit or explicit) intended 
rationale for use-novelty is severity. 

Violating Use-Novelty and the Ease of Erroneous Passing 

An important advantage, Worrall (1989) claims, that use-novelty 
has over temporal novelty "is that it comes equipped with a rationale" 
(p. 148). Nevertheless, Worrall fails to come right out and say what 
that rationale is. The most telling hint is that he intends his use-novelty 
criterion UN to capture Popper's requirement for a genuine or severe 
test: "Many of Popper's most perspicacious remarks are ... based on 
an intuitive notion of testability" (Worrall 1985, p. 313) embodied in 
the Zahar-Worrall use-novelty account, which, Worrall says, "Popper 
has never, I think, fully and clearly realized" (ibid.). Paying attention 
to the manner of theory construction can fully capture the spirit of 
Popper's intuition about tests, whereas Popper's purely logical account 
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cannot. Popper's intuition, noted in chapter 6, is that we are to "try to 
think of cases or situations in which [a hypothesis] is likely to fail, if it 
is false" (Popper 1979, 14). 

At the heart of the matter is insisting on riskiness of some sort. 
Popper's favorite example is the test of Einstein's theory by checking 
the predicted light deflection during the eclipse of 1919: 

Now the impressive thing about this case is the risk involved in a 
prediction of this kind .... The theory is incompatible with certain pos­
sible results of observation-in fact with results which everybody before 
Einstein would have expected. (Popper 1962, 36) 

Popper contrasts this with the way popular psychological theories of 
his day seemed able to accommodate any evidence and with how un­
willing or unable the latter were at putting their hypotheses to genuine 
test. Yet Popper's logical requirement for a genuine test, I concur with 
Worrall, does not capture his own informal remarks about what a good 
test requires (as seen in section 6.7). 

Heuristic novelty, Worrall proposes, does a better job than both 
temporal and theoretical (Popperian) novelty at capturing the needed 
risk requirement. Worrall reasons that 

if some particular feature of T was in fact tied down on the basis of e 
... then checking e clearly constitutes no real test of T. ... In such a 
case even though e follows from T and hence not-e is, in Popper's 
terminology, a potential falsifier of T -it wasn't really a potential falsi­
fier of T. since T was, because of its method of construction, never at 
any risk from the facts described bye. (Worrall 1989, 148-49) 

Ronald Giere (1984a) makes a parallel assertion. Whether known 
(nontemporally novel) facts may provide good evidence for a hypothe­
sis, Giere claims, 

depends on whether the known facts were used in constructing the 
model and were thus built into the resulting hypothesis. If so, then 
the fit between these facts and the hypothesis provides no evidence 
that the hypothesis is true. These facts had no chance of refuting the 
hypothesis even if it were wildly mistaken. (P. 161) 

The final sentences of Worrall and Giere's passages can and have 
been misinterpreted (see chapter 10). They should not be taken to 
mean that some particular data e could not have but compared favor­
ably with H. For that would be so whenever a hypothesis fits or accords 
favorably with data-even in the best of tests. After all, if H is in accor­
dance with e, then there is no chance that it is not in accordance with 
e. What Worrall and Giere must intend to be pointing out about use-
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SEVERE TESTS AND NOVEL EVIDENCE 265 

constructed cases is that evidence e-whatever it is-is guaranteed to 
accord with hypothesis H whenever H is deliberately constructed to be 
in accordance with e. Any facts resulting from such a process, Giere is 
saying, had no chance of refuting the hypothesis (constructed to fit 
them) "even if it were wildly mistaken." That is, Giere is saying, the 
test fails to be severe in the sense of error-severity. 

But why do they suppose violating UN leads to violating severity? 
I will consider their arguments in turn, for each represents a well­
entrenched position. 

Worrall and a False Dilemma 

Worrall's (1989) position goes like this: Consider the kind of rea­
soning we seem to use when we do take a theory's empirical success as 
showing it to be true, empirically adequate, or in some way reflecting 
"the blueprint of the Universe" -"whether or not it can be given some 
further rationale" (p. 155). 

The reasoning appears to be that it is unlikely that the theory would 
have got this phenomenon precisely right just "by chance." ... The 
choice between the "chance" explanation and the "reflecting the 
blueprint" explanation of the theory's success is, however, exhaustive 
only if a third possibility has been ruled out-namely that the theory 
was engineered or [use-constructed]. (Worrall 1989, 155) 

For, in the use-constructed case, Worrall says, 

the "success" of the theory clearly tells us nothing about the theory's 
likely fit with Nature, but only about its adaptability and the ingenuity 
of its proponents. (Ibid.) 

The presumption seems to be that in use-constructed cases the 
proponent's ingenuity and/or the theory's adaptability suffice to ex­
plain the success, and that such success is likely even if the theory 
does not fit well with Nature. This is tantamount to asserting that use­
novelty is necessary for severity. Let us mark this premise (which UN 
proponents state in various ways) as (*). Here Worrall states it as 
follows: 

(*) If H is use-constructed, then it cannot be argued that its success­
fully fitting the evidence is unlikely if H is incorrect. 

His argument seems to be that since the success of a use-constructed 
hypothesis can be explained by its having been deliberately con­
structed to accord with the evidence, there is no need or no grounds 
for seeking its explanation in the correctness of H. We have "used up" 
the import of the evidence, so to speak. 
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Is there not some confusion here between two senses of explaining 
a success? Consider an imaginary trial of a suspect in the World Trade 
Center bombing: 

Prosecutor: There is no other way to explain how well this evidence fits with X 
as the culprit (the twisted metal matching the rented van, the matching 
fingerprints, etc.) save that X was (at least part of the group) responsible. 

Defense: Yes there is. The investigators built up their hypothesis about the 
guilty party so as to account for all of the evidence collected. 

It matters not. for the sake of making out the equivocation, that the 
hypothesis here is different from most scientific ones. 

In other words the problem is to find a way of accounting for some 
evidence or some observed effect. Let us say that the problem is de­
clared solved only when a hypothesis is reached that satisfactorily ac­
counts for it. Now suppose the problem is solved, but that particular 
features of the effect to be accounted for have been used in reaching 
the solution. One can ask: Why does the hypothesized solution accord 
so successfully with the evidence? In one way of reading this question 
(Worrall's), a perfectly appropriate answer is that any solution put for­
ward would accord with the evidence: the solution was use­
constructed. Quite a different reading of this question-the one to 
which the prosecutor is answering in the affirmative-has it asking 
whether the accordance with the evidence indicates the correctness of 
the hypothesis. The question, on this second reading, is whether the 
successful accordance with the evidence satisfactorily rules out the 
ways in which it would be an error to declare H. That H was con­
structed to account for the evidence does not force a "no" answer 
to this second question. H might be use-constructed, but use­
constructed reliably. 

Conflating the two renders mysterious ordinary scientific discern­
ments. Finding a correlation between a certain gene and the onset of 
Alzheimer's disease led Dr. Allen Roses (from Duke University) to hy­
pothesize a genetic cause for certain types of Alzheimer's. What ac­
counts for his hypothesis successfully explaining this correlation? The 
answer, interpreting the question one way, might be that Dr. Roses 
found this correlation and used it. as well as known properties of the 
gene, to develop a hypothesis to account for it. A separate question is 
why his genetic explanation fits the facts so well. One major Alzhei­
mer's researcher declared (despite Roses's hypothesis going against his 
own work) that after only ten minutes he could see that the data 
pointed to Roses's hypothesis. Yes, Roses used the data to construct his 
hypothesis. The particular way in which he did so, however, showed 
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SEVERE TESTS AND NOVEL EVIDENCE 267 

that it provided at least a reasonably severe test in favor of his hypothe­
sis (that the gene ApoE has a genuine connection with Alzheimer's). 
Had Roses's evidence been less good-as was the case a few years 
earlier-the scientists would have (and did) largely dismiss the 
agreement. II 

To summarize this subsection, we have good grounds for the cor­
rectness of H to the extent that the circumstances by which H's asser­
tion would be in error have been well ruled out. Evidence may be used 
to construct H and still do a good job of ruling out H's errors. To sup­
pose that these are mutually exclusive is a false dilemma. 

Proponents of Zahar and Worrall's argument for use-novelty might 
agree with all this. Nevertheless they may insist that except for when 
the use-construction method is clearly reliable, they are right to re­
quire, or at least to prefer, use-novel to use-constructed hypotheses. 
Let us grant them this and declare that there is no disagreement be­
tween us here. But let us push them a little further. What is the worry 
in those cases where the use-construction method is not clearly reli­
able? The worry is that it is one of those dreadful methods of cooking 
up hypotheses-the kind of method that is always everywhere avail­
able. And what is wrong with the kind that is always everywhere avail­
able? It is available whether or not the hypothesis reached is true! (Re­
member gellerization.) 

That is precisely my point. The reason for eschewing use-con­
struction methods is the condemnation of unreliable procedures of 
data accommodation. The underlying rationale for requiring or prefer­
ring use-novelty is the desire to avoid unreliable use-constructing pro­
cedures. The best spin I can glean from the Zahar-Worrall rationale for 
requiring UN shows it to be the one I claim. If there is a different ratio­
nale, perhaps its proponents will tell us what it is. 

An Argument from Giere 
Giere does not beat around the bush but plainly declares (*) from 

the start. Where Worrall emphasizes the cleverness of proponents and 

11. When in 1991 Roses first reported having pinpOinted the approximate lo­
cation of a gene in families with late-onset Alzheimer's, it was given little credence 
by neuroscientists. It not only went against the generally accepted thinking of the 
time, but Roses clearly had not yet ruled out the numerous ways in which he might 
have been mistaken to infer a causal connection from such a correlation. Later, a 
biochemist at Duke's lab sought out natural substances that chemically bind to 
amyloid. Perhaps some substance was sticking to amyloid, causing the buildup of 
plaques in the brain. What he thought was an experimental contaminant was 
ApoE. The biochemist was able to take advantage of the fact that studies of heart 
disease had already located and isolated the gene for this cholesterol-carrying sub-
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the adaptability of hypotheses in order to explain why it is no wonder 
that a success accrued, Giere notes how the tester himself may simply 
refuse to consider any theory or model that does not successfully fit 
the data. 

Although Fresnel's wave model accounted for the known diffrac­
tion pattern of straightedges, Giere says this did not count as a good 
test of the model because the straight-edged pattern violated use­
novelty in the sense that it "acted as a constraint on his theorizing": 

He [Fresnel] was unwilling to consider any model that did not yield 
the right pattern for straight edges. Thus we know that the probability 
of any model he put forward yielding the correct pattern for straight 
edges was near unity, independently of the general correctness of that 
model. (Giere 1983, 282) 

What emerges once again, though much more directly put, is a version 
of premise (*), that use-novelty is necessary for severity. Because Giere 
gives us a separate account of testing, it is possible to extricate his full 
argument for the UN requirement. 

Giere, at least in 1983, endorsed an error-statistical account of test­
ing (along the lines of Neyman-Pearson).12 He characterized "an appro­
priate test as a procedure that has both an appropriately high probability 
of leading us to accept true hypotheses as true and to reject false 
hypotheses as false" (Giere 1983,278). A test should, in short, have 
appropriately low error probabilities. We have: 

1. A successful fit does not count as a good test of a hypothesis if 
such a success is highly probable even if the hypothesis is incor­
rect. (That is, a test of H is poor if its severity is low.) 

stance. It turned out that the gene for ApoE was located in the very place Roses 
had found the suspect gene in families with Alzheimer's. 

12. There are important differences between the error-statistical account I fa­
vor and Giere's most current decision-theoretic account of testing (Giere 1988). 
First, I reject the idea of modeling scientific inference as deciding to choose one 
model over another. (See chapter 11.) Second, Giere's decision strategy is to choose 
a model M when evidence is very probable were M correct while being very improb­
able were some alternative model correct. Yet evidence may be very improbable 
under a rival to model M and not count as passing M severely. (See, for example, 
chapter 6.) Finally, the models in Giere'S "model-based" probabilities are allowed 
to be full-blown scientific models, such as Dirac's and Schrodinger's models (Giere 
1988, chap. 7). The assessments of these probabilities rely more or less on the intu­
itive judgments of scientists, and as Giere's own discussions show, are subject to 

serious shifts (even for a given scientist). In my account, the probability assessments 
must be closely tied to experimental models about which the statistics are at least 
approximately known. 
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SEVERE TESTS AND NOVEL EVIDENCE 269 

Violating use-novelty, Giere suggests, precludes (or at least gets in the 
way of) the requirement that there be a low probability that H is ac­
cepted if false. This gives an even stronger version of premise (*) than 
that found in Worrall: 

(*) If a hypothesis H is use-constructed, then its success is high ("near 
unity") even if it is false. 

From premise (1) and (*) we get the conclusion that use-construction 
procedures fail to count as good tests (of the hypotheses they reach). I 
agree with premise (I)-it is premise (*) that I deny. 

The Gierean Argument for (*) the Necessity of UN. Giere's argument for the 
necessity of UN seems to be that in a use-constructed case, a successful 
fit is obviously not unlikely-it is assured no matter what. That is, the 
basis for (*) is an additional premise (2): 

2. Basis for (*): If H is use-constructed, then a successful fit is as­
sured, no matter what. 

Ah, but here is where we must be careful. This "no matter what" 
can be interpreted in two ways. It can mean 

a. no matter what the data are 

or it can mean 

b. no matter if H is true or false. 

Although the assertion in (2) is correct with the replacement in (a), 
thus construed it provides no basis for (*), that UN is necessary for 
severity. For (2) to provide a basis for (*), the replacement would have 
to be as in (b). However, (2) is false when replaced with the phrase in 
(b). Once this flaw in the pivotal intuition is uncovered it will be seen 
that UN fails to be a necessary condition for a severe test, and that (*) 
is false. 

To clarify, consider two different probabilities in which one might 
be interested in appraising the test from which a passing result arises: 

A. The probability that test T passes the hypothesis it tests. 
B. The probability that test T passes the hypothesis it tests, given 

that the hypothesis is false. 

Note that here two things may vary: the hypothesis tested as well as 
the value of e. Now consider a test procedure that violates UN in any 
of the ways this can come about. To abbreviate, let H(e) be a use­
constructed hypothesis-one engineered or constrained to fit evidence 
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e (it may be read "H fixed to fit en). Then the following describes what 
may be called "a use-constructed test procedure": 

A use-constructed test procedure T: Use e to construct H(e), and let H(e) be 
the hypothesis T tests. Pass H(e) with e. 

Since H(e), by definition, fits e, there is no chance of H(e) not pass­
ing a use-constructed test T. The relative frequency of passing in a se­
ries of applications of a use-constructed test equals 1. That is, 

A. The probability that (use-constructed) test T passes the hy­
pothesis it tests 

equals 1. 
But that is different from asserting that the test T is guaranteed to 

pass the hypothesis it leads to testing, even if that hypothesis is false. That 
is, asserting that (A) equals 1 is different from asserting that 

B. The probability that (use-constructed) test T passes the hy­
pothesis it tests, even if it is false, 

equals 1. 
Yes, the use-constructing procedure always leads to passing one 

hypothesis or another-provided it ends-but this is not incompatible 
with being able to say that it never, or almost never, leads to passing a 
false hypothesis. 

Imagine that each experimental test rings a bell if the hypothesis 
it tests passes, and sounds a buzzer if it fails. (A) is a statement about 
how often the bell would ring in a series of experimental tests of a 
certain kind. A use-constructed test procedure would always culmi­
nate in a ring-if it ended at all. l3 So (A) equals 1 in the case of use­
constructed tests. The probability in (B), on the other hand, asks about 
the incidence of erroneous bell ringing, where by erroneous bell ring­
ing I mean that the test rings the bell when a buzzer should have been 
sounded. This need not equal 1, even in use-constructed tests. It can 
even be O. Those who hold UN necessary do so because violating UN 
leads to a test that has to result in sounding the bell and never in 
sounding the buzzer. The assumption is that severity requires some of 
the test results to lead to buzzing, but this is a mistake. 

The illustration with bells and buzzers is just to bring out, once 
again, the idea of an experimental (or sampling) distribution. A partic­
ular experimental test is viewed as a sample from a population of such 
experimental tests. The probabilities refer to relative frequencies with 

13. In many cases procedures can be guaranteed to end. 
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which a "sample test" has some characteristic, in this (actual or hypo­
thetical) population of tests. The characteristic in (A) is "passing one 
hypothesis or another." The characteristic in (B) might be described as 
"giving an erroneous pronouncement on the hypothesis passed." How 
to calculate these probabilities is not always clear-cut, but for my point 
it is enough to see how, in cases where they can be calculated, the two 
are not identical. 

This is a beautiful example of how the informal side of arguing 
from error can and should lead the way in disentangling the confusions 
into which one can easily wade in trying to consider the formal proba­
bilistic arguments. To understand why (A) differs from (B), and, corre­
spondingly, why UN is not necessary for severity, we need only think 
of this informal side. In particular, we need only think of how a proce­
dure could be sure to arrive at some answer and yet be a procedure 
where that answer is rarely or never wrong. This is the basis for the 
counterexamples I will now consider. 

8.4 USE-NOVELTY Is NOT NECESSARY FOR SEVERITY: 

SOME COUNTEREXAMPLES 

To give a counterexample to the thesis that UN is necessary for severity, 
I have to describe a case that violates use-novelty yet provides a severe 
test of the use-constructed hypothesis. 

Example 8.1: SAT Scores 

For a trivial but instructive example consider a hypothesis H about 
the average SAT score of the students who have enrolled in my logic 
class: 

H(x): the average SAT score (of students in this class) = x, 

where x, being unspecified, is its free parameter. Fixing x by summing 
up the scores of all n students and dividing by n qualifies as a case of 
parameter-fixing yielding a use-constructed hypothesis H(e). Suppose 
that the result is a mean score of 1121. The use-constructed hypothe­
sis is 

H(e): the average SAT score = 1121. 

Surely the data on my students are excellent grounds for my hypothe­
sis about their average SAT scores. It would be absurd to suppose that 
further tests w~uld give better support. For hypothesis H follows de­
ductively from e. Since there is no way such a result can lead to passing 
H erroneously, H passes a maximally severe test with e. 
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In much the same vein, Glymour, Scheines, Spirtes, and Kelly 
(1987) allude to the procedure of counting 12 people in a room and 
constructing the hypothesis that there are 12 people in the room. One 
may balk at these examples. Few interesting scientific hypotheses are 
entailed by experimental evidence. But allowing that such cases pro­
vide maximally severe tests while violating UN suffices to show that 
criterion UN is not necessary for severity. It may be asked: Is not UN 
required in all cases other than such maximally severe ones? The an­
swer is no. Tests may be highly severe and still violate UN. The extreme 
represented by my SAT example was just intended to set the mood 
for generating counterexamples. Let us go to a less extreme and very 
common example based upon standard error statistical methods of es­
timation. 

Example 8.2: Reliable Estimation Procedures 

We are very familiar with the results of polls in this country. A 
random sample of the U.S. population is polled (the sample size being 
specified along the lines discussed in chapter 5), and the proportion 
who approve of the President is recorded. This is the evidence e. Say 
that 45 percent of the sample approve of the President. The poll re­
port would go on to state its margin of error, say, of 3 percentage 
points. (The margin of error is generally around 2 standard deviations.) 
The resulting report says: Estimate that 45 percent of the U.S. popula­
tion plus or minus 3 percentage points approve of the President. The 
report is a hypothesis about the full population (that p, the population 
proportion, is in the interval [.42, .48]). The estimate is constructed to 
accord with the proportion in the sample polled. The procedure may 
be characterized as follows: Hypothesize that p, the proportion who 
approve of the President, is an interval around the data e, the observed 
proportion who approve. The interval is given by the margin of error. 
Call it a. So the procedure is to infer or "pass" hypothesis H(e) where 

H(e) asserts: p is equal to e ± a. 
This procedure, (confidence) interval estimation, will be discussed 
more fully in chapter lO. The margin of error corresponds to giving the 
overall reliability of the procedure. A 95 percent estimation procedure 
has a .95 probability of yielding correct estimates. What is known is 
that any particular estimate (hypothesis) this procedure yields came 
about by a method with a high reliability. Depending on the poll, the 
uncertainty attached might be .05 or .01 (reliability .95 or .99). The 
hypothesis thereby reached may be false, that is, the true value of p 
may be outside the estimated range, but, we argue, if p were outside 
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the interval, it is very unlikely that we would not have detected this in 
the poll. With high probability we would have. 

Now consider this question: Is it possible for the data e-the ob­
served proportion who approve of the president in the sample-to fail 
to pass the hypothesis H(e) that will be arrived at by this estimation 
procedure? Given that H(e) is use-constructed (to be within a units 
from e), the answer must be no. For the procedure, by definition, pas­
ses the hypothesis: p is in the interval e ± a. Even before we have a 
specific outcome we know there is no chance that the result of this 
data generation process will fail whatever (use-constructed) hypothe­
sis H(e) the procedure winds up testing. 

Compare this with the test's severity in passing H(e). The fit with 
the resulting hypothesis (the interval estimate H(e)) is given by the 
specified margin of error a, say 2 standard deviation units. It is rare for 
so good a fit with H(e) to occur unless the interval estimate H(e) is 
true (Le., unless the population proportion really is within 2 standard 
deviation units of e). So the severity in passing H(e) is high. (The rea­
soning is this: To say that the interval estimate H(e) is not true means 
that the true population proportion p is not in the hypothesized inter­
val. But the p values excluded from this interval are those that differ 
from the observed proportion who approve, e, by more than 2 standard 
deviation units (in either direction), and the probability of e differing 
from p by more than 2 standard deviation units is small [.05].)14 

Contrast this estimation procedure with one that. regardless of the 
observed outcome, winds up estimating that at least 50 percent of the 
population approve of the president. This "wishful thinking" estima­
tion procedure does suffer from a lack of reliability or severity: it al­
ways infers a 50 percent or better approval rating in the full population 
even if the true (population) proportion is less than that. Regardless of 
whether use-constructing is involved or not. it is for this reason that 
we condemn it. 

An Anticipated Objection. Against my counterexamples one might hear 
the following objection. The data in my examples provide evidence for 
the hypotheses reached, but they are not tests. I am confUSing tests 
with evidence. 

In my account. which is a testing account. there is no distinction. 

14. One must be careful to avoid misinterpreting this probability. The .05 does 
not refer to the probability that the particular estimate arrived at is true, i.e., in­
cludes the true value of parameter p. That probability is either 0 or 1. It is the 
procedure that formed the estimate of p that has a .05 probability of yielding false 
estimates. 
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To insist that any example I might give where evidence is used to con­
struct a hypothesis cannot count as a test is to beg the question at issue. 
The question is whether there ever exists a use-constructed example 
where the evidence is, nevertheless, good support for or a good test 
of the hypothesis. Those who deem UN necessary-at least Giere and 
Worrall-do not say that non-use-novel data count as great evidence 
but no test. They say that such data fail to count as good evidence or 
good support for the hypotheses constructed, and they say this because 
the data fail to test these hypotheses. What is more, the method of 
standard confidence interval estimation is mathematically inter­
changeable with a corresponding statistical test. In a nutshell, the pa­
rameter values within the interval constructed consist of values that 
would pass a statistical test (with corresponding reliability). So I am in 
good company in regarding such procedures as tests. 

A Curious Bayesian Aside. Curiously, confidence intervals have also been 
appealed to (e.g., by Howson) in Bayesian arguments against the ne­
cessity of use-novelty. Swept up in the task of showing the intuitive 
plausibility of use-constructed estimations, Howson allows himself the 
admission that 

there is no question but that confidence interval estimates of physical 
parameters, derived via some background theory involving assump­
tions about the form of the error distribution, are the empirical bed­
rock upon which practically all quantitative science is built. (Howson 
1990,232) 

He is quick to add that the Bayesian can show how to assign a high 
degree of belief to the correctness of the estimate, as if to say that 
Bayesians can endorse the estimate as well. But the force of the intu­
ition to which Howson is appealing is plainly the reliance science puts 
on the standard, Neyman-Pearson, estimates. (Hark back to our anal­
ogy of Leonardo da Vinci in chapter 3.) The irony of this Bayesian 
reliance on the intuitive plausibility of non-Bayesian procedures will 
not be fully appreciated until chapter 10.15 

8.5 SUMMARY AND SOME CONSEQUENCES FOR 

CALCULATING SEVERITY 

Tests of use-constructed hypotheses are eschewed because a passing 
result is assured. But what matters is not whether passing is assured 

15. Other examples occur in Howson 1984 and Howson and Urbach 1989. 
Nickles (1987) makes a point similar to Howson's, informally. Like the use-novelist 
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SEVERE TESTS AND NOVEL EVIDENCE 275 

but whether erroneous passing is. There is no problem with a test hav­
ing a high or even a maximal probability of passing the hypothesis it 
tests; there is only a problem if it has a high probability of passing 
hypotheses erroneously. Hypotheses might be constructed to accord 
with evidence e in such a way that although a passing result is assured, 
the probability of an erroneous passing result is low; equivalently, the 
test's severity is kept high. The common intuition to eschew using the 
same data both to construct and to test hypotheses (to require UN), I 
claim, derives from the fact that a test that violates UN is guaranteed 
to pass the hypothesis it tests-no matter what the evidence. But this 
does not entail that it is guaranteed to pass some hypothesis whether ar 
nat that hypothesis is false. Indeed, a use-constructed test may have a low 
or even no probability of passing hypotheses erroneously. Granted, if 
a test is guaranteed to pass the hypothesis it tests, even if that hypothe­
sis is false (Le., (B) equals 1), then the test is guaranteed to pass the 
hypothesis it tests (Le., (A) equals 1); but the converse does not hold. 16 

To hold UN as necessary is to overlook deliberate rules for use­
constructing hypotheses with high or even maximal severity. Consider 
first a rule for using e to construct H(e) so as to ensure maximal severity 
of the test: 

Rule R-J for constructing maximally severe tests: Construct H(e) such that 
a worse fit with e would have resulted (from the experiment) unless 
H(e) were true (or approximately true). 

(That is, if H(e) were false, a worse fit would have occurred.) Such a 
rule is obviously available only in very special cases. But the point is 
that to calculate the probability in (B), the probability of erroneously 
passing the (use-constructed) hypothesis tested, requires taking into 
account the construction rule employed-in this case rule R-1. That is 
why the severity criterion is modified for cases of hypothesis construc­
tion in section 6.6. 

Let us abbreviate a use-construction test that arrives at its hypothe­
sis via rule R-I as test T(R-I). Test T(R-I), by the stipulated definition, 
is guaranteed to pass any hypothesis fixed to fit e. (So (A) equals 1.) 
Nevertheless, the probability of (B)-the probability needed for calcu­
lating severity (by taking 1 minus it)-is this: 

and unlike me, however, Nickles denies that data used to fix the parameter can 
count as giving what he calls generative as well as consequential support to a hy­
pothesis so fixed. 

16. One might be led to the error of thinking that the converse does hold if 
one erroneously takes the Nif" clause in (B) as a material conditional instead of as 
the appropriate conditional probability. 
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276 CHAPTER EIGHT 

(B) in test T(R -1): the probability that test T(R -1) passes the hypothe­
sis it tests, given that hypothesis is false. 

This equals O. As such, the severity of a test of any hypothesis con­
structed by rule R-l is I-the severity is maximal. 

The rule used in fixing the mean SAT score of students in my class 
is an example of rule R-l. While there is always some rule by which 
to arrive at a use-constructed H (the so-called "tacking" method of use­
construction will do), the ability to apply the very special rule R-l is 
hardly guaranteed. But if one does manage to apply R-l, the con­
structed hypothesis to which it leads cannot be false. Although one can 
rarely attain the security of rule R-l, the experimenter's tool kit con­
tains several use-constructing rules that afford a high degree of reliabil­
ity or severity, call it 'IT. Such a use-construction rule may be written 
as rule R -'IT: 

Rule R-7T for constructing highly severe tests (e.g., to degree 7T): Construct 
H(e) such that the probability is very small (1-7T) that a result from 
the experiment would accord as well with H(e) as does e, unless H(e) 
were true (or approximately true). ' 

Examples of high severity construction rules are found in rules for the 
design and interpretation of experiments. They are the basis of stan­
dard estimation theory, as example 8.2 showed. 

Let test T(R-'lT) be the use-construction test based on a construction 
rule (R-'lT). What is the severity of test T(R-'lT)? 

The answer, of course, is 'IT. 

The Informal Calculation of Severity in Use-Constructed Tests 
One need not be able to formally calculate the severity 'IT. The 

identical rationale underlies informal rules for using evidence. In qual­
itative experimental tests one may only be able to say that the severity 
is very high or very low, yet that is generally enough to assess the 
inference. I might mention a (real) example that first convinced me 
that UN is not necessary for a good test. Here evidence was used to 
construct as well as to test a hypothesis of the form 

H(x): x dented my 1976 Camaro. 

The procedure was to hunt for a car whose tail fin perfectly matched 
the dent in my Camaro's fender to construct a hypothesis about the 
likely make of the car that dented it. It yielded a hypothesis that passed 
a high severity test. I was able to argue that it is practically impossible 
for the dent to have the features it has unless it was created by a spe­
cific type of car tail fin. Likewise for the rule the investigators followed 
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SEVERE TESTS AND NOVEL EVIDENCE 277 

in pinpointing the driver of the van carrying the explosive in the World 
Trade Center bombing. Such rules violate use-novelty; but they cor­
rectly indicate attributes of the cause of the explosion and the dent in 
my Camaro (and ultimately the identity of the drivers) because they 
are severe in the sense of rule R-1T. 

One may object, But science is not like that, there are too many 
possible alternative hypotheses. Having discussed the problem of alter­
native hypotheses in chapter 6, I am assuming those points here. If the 
objector persists that there is no way to obtain reliable knowledge or 
have a severe test of such and such a scientific theory, then, assuming 
he or she is correct, it must be agreed that no reliable use-construction 
procedure can accomplish this either. But this is irrelevant to my thesis 
that there are reliable experimental arguments that violate use­
novelty. 

We might connect the point of this chapter to our recasting of 
Kuhn in chapter 2. What is objectionable is not that practitioners are 
determined to find a way of accommodating data (to solve a given 
problem); what is objectionable is an accommodation that is not se­
verely constrained (e.g., that it involves changing the problem), whicb 
results in unsolved problems often being declared solved when the} 
are not. Alternatively, in a reliable use-construction one can argue that 
if H(e) were incorrect, then with high probability the test would not 
have led to constructing and passing H(e). 

In one passage-although it is almost only in passing-Popper 
seems to capture what I have in mind about warranting severity. He 
says (in replying to his critics) that 

supporting evidence consists solely of attempted refutations which 
were unsuccessful, or of the "knowledge" (it does not matter here how it 
was obtained) that an attempted refutation would be unsuccessful. (Popper 
1974,992; emphasis added) 

In a reliable use-constructed case one can sustain this "would be" argu­
ment. This is just what is wanted to affirm that evidence indicates the 
"probable success" of the hypothesis (in the sense of chapters 4 and 5). 

Proponents of use-novelty often view Whewell and Peirce as fore­
runners of their view. While to an extent they are right, both Whewell 
and Peirce also discuss the kinds of cases where use-constructions are 
allowable. (I shall save Peirce's remarks for our later discussion of him.) 
Whewell also considered "the nature of the artifices which may be 
used for the construction of formulae" when data of various types are 
in hand (Whewell [1847] 1967,392). The artifices he has in mind cor­
respond to cases where the construction may be seen to ensure high 
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278 CHAPTER EIGHT 

severity. The "special methods of obtaining laws from observations" (p. 
395) that Whewell cites include the method of curves, the method 
of means, the method of least squares, and the method of residues 
(essentially the statistical method of regression). 

Such rules are typical. as would be expected, where violations of 
UN cannot be helped: where hypotheses are arrived at and affirmed 
by data, and it is impossible or impractical to obtain additional evidence 
(e.g., theories about dinosaurs, evolutionary theory, epidemiology, an­
thropology). As the next section shows, however, violations of UN are 
required even in cases lauded as models of severe and crucial tests, 
such as the 1919 eclipse tests of Einstein's gravitational hypothesis. In­
deed, once the piecemeal aspect of testing is uncovered, such use­
construction rules are indispensable. The same data may be used both 
to construct and ground hypotheses-so long as it is improbable that 
reaching so good an agreement is erroneous. 

o~--------------~~----
Earth ~ 

V ~ght ray 

star* 

FIGURE 8.1. Deflection of starlight by the sun. 

8.6 THE 1919 ECLIPSE TESTS OF EINSTEIN'S LAW OF GRAVITATION 

According to Einstein's theory of gravitation, to an observer on earth, 
light passing near the sun is deflected by an angle, A, reaching its maxi­
mum of 1.75" for light just grazing the sun. Terrestrial tests of Einstein's 
gravitation law could not be severe, since any light deflection would 
be undetectable with the instruments available in 1919. Although the 
light deflection of stars near the sun (approximately 1 second of arc) 
would be detectable, the sun's glare renders such stars invisible, save 
during a total eclipse. "But," as Arthur Eddington ([1920] 1987,113) 
noted, "by strange good fortune an eclipse did happen on May 29, 
1919, " when the sun was in the midst of an exceptionally bright patch 
of stars, providing a highly severe test such as would not recur for 
many years. Two expeditions were organized: one to Sobral in north­
ern Brazil, another (including Cottingham and Eddington) to the is­
land of Principe in the Gulf of Guinea, West Africa. 
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SEVERE TESTS AND NOVEL EVIDENCE 279 

Eddington, Davidson, and Dyson, the astronomer royal (hence­
forth Dyson et a1. 1920), outline three hypotheses "which it was espe­
cially desired to discriminate between" (p. 291). Each is a statement 
about a parameter, the deflection of light at the limb of the sun, ~ (in 
arc seconds): 

1. Gravitation affects starlight according to Einstein's law of gravi­
tation: the deflection at the limb of the sun ~ = 1.75". 

2. Gravitation affects light according to the Newtonian law of 
gravitation: the deflection of a star at the limb of the sun ~ = 

0.87". 
3. Gravitation does not affect light, ~ = o. 

The "Newtonian"-predicted deflection, (2), which stems from assum­
ing that light has a certain mass and follows Newton's law of gravity, 
is exactly half that predicted by Einstein's law. Before setting out for 
Principe, Eddington suggests that 

apart from surprises, there seem to be three possible results: (1) A 
deflection amounting to 1.75" ... which would confirm Einstein's 
theory; (2) a deflection of 0.87" ... which would overthrow Ein-
stein's theory, but establish that light was subject to gravity; (3) no 
deflection, which would show that light, though possessing mass, has 
no weight, and hence that Newton's law ... has broken down in 
another unexpected direction. (Eddington 1918, 36) 

A little over one year later, the results are in, and the conclusions 
given: 

The results of the expeditions to Sobral and Principe can leave little 
doubt that a deflection of light takes place in the neighbourhood of 
the sun and that it is of the amount demanded by Einstein's general­
ised theory of relativity, as attributable to the sun's gravitational field. 
(Dyson et al. 1920, 332) 

This capsulizes the two key inferences from the eclipse inquiry: first, 
that there is a deflection effect of the amount predicted by Einstein as 
against Newton (Le., the "Einstein effect"), and second, that the effect 
was "attributable to the sun's gravitational field" as described in Ein­
stein's hypothesis. 

The appraisal of the results by numerous scientists consisted of two 
corresponding parts or stages, which I label i and iL Stage i involved 
inferences about the value of ~ and critical discussions of these infer­
ences, stage ii, inferences about the cause of ~ and the associated 
(heated) discussions about these inferences. Each stage involved test-
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280 CHAPTER EIGHT 

ing more local hypotheses, first to discriminate between the values of 
parameter A, and second to discriminate between causes of the ob­
served A. Eddington, an adept data analyst, provides lavish and fasci­
nating discussions of the nitty-gritty details of the data extraction and 
modeling. This, together with the intrinsic importance of the case, 
makes it an excellent subject for applying the full-blown hierarchy of 
models framework. Aspects of the data gathering were touched on in 
chapter 5. Lest I try my readers' patience, however, I will limit my 
discussion to aspects of the case most relevant to the present issue. 

Stage i: Estimating the Eclipse Deflection at the Limb of the Sun 

The "observed" deflection (on May 19), as with most experimental 
"results," is actually a hypothesis or estimate. Due to two major sources 
of error, arriving at the result is a matter of statistical inference: First, 
one does not observe a deflection, but at best observes (photographs 
of) the positions of certain stars at the time of the eclipse. To "see" the 
deflection, if any, requires learning what the positions of these same 
stars would have been were the sun's effect absent-a "control" as it 
were. Eddington remarks: 

The bugbear of possible systematic error affects all investigations of 
this kind. How do you know that there is not something in your appa-
ratus responsible for this apparent deflection? ... To meet this criti-
cism, a different field of stars was photographed ... at the same alti-
tude as the eclipse field. If the deflection were really instrumental, 
stars on these plates should show relative displacements of a similar 
kind to those on the eclipse plates. But on measuring these check­
plates no appreciable displacements were found. That seems to be 
satisfactory evidence that the displacement observed during the 
eclipse is really due to the sun being in the region, and is not due to 
differences in instrumental conditions. (Eddington [1920] 1987, 116) 

Where the check plates could serve as this kind of a control, the 
researchers were able to estimate the deflection by comparing the posi­
tion of each star photographed at the eclipse (the eclipse plate) with 
its normal position photographed at night (months before or after the 
eclipse), when the effect of the sun is absent (the night plate). Placing 
the eclipse and night plates together allows the tiny distances to be 
measured in the x and y directions, yielding ax and ay (see figure 8.2). 
These values, however, depend on many factors: the way in which the 
two plates are accidentally clamped together, possible changes in the 
scale-due mainly to the differences in the focus setting that occur 
between the exposure of the eclipse and the night plates-on a set of 
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FIGURE 8.2. Comparing the "eclipse plate" and the "night plate" (adapted 
from von KHiber, 1960, 52). (a) "eclipse plate" with sun and surrounding stars. 
(b) corresponding "night plate" taken of the same star field when visible at 
night. (c) both plates combined as they appear in the measuring machine. 
(From Mayo, 1991a) 

other plate parameters, and finally, on the light deflection, 1\ itselfY 
By what is quite literally a "subtraction" method, it was possible to 
estimate 1\. 

A second important source of error stems from the fact that the 
predicted deflection of 1.75" refers to the deflection of light just grazing 
the sun; but the researchers only observed stars whose distance from 
the sun is at least two times the solar radius. Here the predicted deflec­
tion is only about 1" of arc. To compare the evidence with the theoreti­
cal prediction it is necessary to estimate what the deflection would 
have been for starlight near the sun. 

Thus, despite the novelty of the theoretical prediction of 1. 7 5", to 
reach the hypothesis about the estimated deflection, the eclipse data 
themselves must be used, both to fix each of the experimental parame­
ters and to arrive at the extrapolation to the limb of the sun. Further­
more, checking the validity of these inferences requires using, once 
again, the eclipse data. So the UN requirement is apparently violated. 
But great pains were taken to ensure that reliability or severity was 
not. They used only those results for which there were measurements 
on enough stars (at least equal to the number of unknown parameters 
in the equations-6) to apply a reliable method of fixing: the statistical 
method of least squares (regression), a technique well known to as­
tronomers from determining stellar parallax, "for which much greater 

17. A detailed discussion of this and several other eclipse tests of Einstein's 
deflection is provided by H. von Kliiber (1960). See also D. Moyer 1979. 
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282 CHAPTER EIGHT 

accuracy is required" (Eddington [1920] 1987, 115-16) than that for 
the eclipse test. 

(Note also that it was impossible to adhere to the classic require­
ment to pre specify the sample size. Before obtaining and analyzing the 
data one did not know how many of the photographed stars would be 
usable. 18 I will return to the issue of pre specification in chapter 9.) 

The Results 

Subtracting out the variety of factors algebraically, one arrives at 
estimates of A. from the different sites, along with their probable errors 
(or, the measure now used, their standard errors).19 The "observed re­
sults," in short, are actually hypotheses about the expected deflection 
(at the limb of the sun), A.. The two eclipse results, one from Sobra!, 
one from PrinCipe, taken as crucial support for Einstein were, with 
their standard errors,20 

Sobral: the eclipse deflection = 1.98" ± 0.18". 

Principe: the eclipse deflection = 1.61" ± 0.45". 

Using either standardized measure of error allows assigning probabili­
ties to experimental results under different hypotheses about A.. This 
permits severity to be calculated. Eddington reasons: 

It is usual to allow a margin of safety of about twice the probable 
error on either side of the mean. The evidence of the Principe plates 
is thus just about sufficient to rule out the possibility of the "half­
deflection," and the Sobral plates exclude it with practical certainty. 
(Eddington [1920] 1987, 118) 

The severity criterion (SC), the formal analog to our argument 
from error, explains the weight accorded to each result. The pattern of 
reasoning is one with which we are by now very familiar. An observed 
difference from a value predicted by a hypothesis Ho genuinely indi­
cates that Ho is in error, if so large a difference is very improbable (just) 
if the error is absent. The appraisal at stage i had several parts. In the 
portion of the appraisal alluded to in the above passage, HO' the hy-

18. This was Barnard's point in discussing the eclipse results in Barnard 1971. 
19. One probable error equals .68 standard errors. A standard error is the esti­

mate of the standard deviation. The reason for the choice of the probable error as 
a standard is that a sample mean differs from a (Normal) population mean by one 
or more probable errors (in either direction) 50 percent of the time. (It differs from 
the population mean by one or more standard errors in either direction about 32 
percent of the time.) 

20. The probable errors are, respectively, .12 and .30. 
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pothesis found to be in error, is the Newtonian "half-deflection," that 
A. = .87". The hypothesis H that "passes" is 

H: the half-deflection is in error, A. > .87". 

Consider passing H with the Sobral result of 1.98" :':: 0.18". We ask: 
What is the probability of "such a passing result" -that is, one as far 
or farther from .87" than the observed result-given that A. is the New­
tonian (half-deflection) .87"? The answer is that this probability is 
practically O. (The result is more than 6 standard deviations in excess 
of .87.) So 1T, in construction rule R-1T, is nearly 1. The Principe result, 
being around 1.6 standard deviations in excess of .87", is only a reason­
ably severe passing result. That is, with reasonably high probability, 
around .95, a result more in accordance with A. = .87" would be ex­
pected, if A. were equal to the Newtonian value (.87"). (1T = .95.)21 

The probabilities, it must always be remembered, are not assigned 
to the hypotheses about A.. Universes are not as plenty as black­
berries-to recall Peirce (from chapter 3). There is one universe, this 
one blackberry, within which a hypothesized value for A. either does or 
does not hold true. We know, however, that there are a variety of 
sources of error that produce differences between actual and estimated 
deflections. Making use of this knowledge of error we can argue as 
follows: were the experimental differences from the half-deflection 
due to the variety of known sources of error and not to a genuine 
discrepancy from .87", they would practically never, or extremely 
rarely, be expected to occur in a series of (hypothetical) eclipse experi­
ments at the two sites. This is our standard canonical argument for 
inferring that a discrepancy from a parameter value is real. 

If one were filling out the hierarchy of models, one would explore 
how at stage i a single question is split off from the primary one. The 
possible hypotheses at stage i are values for A.. These are the possible 
answers to this one subquestion. One would describe the link between 
an observed mean deflection L (itself a model of the data) and hypoth­
eses about A. within the experimental model. The severity criterion 
warrants accepting the use-constructed hypotheSis 

H(L): A. exceeds L - 2 standard errors, 

where the standard error is the estimated standard deviation of L. To 
see why H(L) is warranted, notice that "H(L) is false" asserts that A. 

21. I do not mean that this is the only work in weighing these two inferences. 
Detailed checks to affirm the assumptions of the experimental data models are also 
needed and would have to be incorporated in a full-blown discussion of the experi­
mental inquiry. 
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does not exceed L - 2 standard errors. To calculate severity one calcu­
lates the probability of not observing a deflection as large as L, given 
that ~ is any of the values included under "H(L) is false." The value of 
this probability is high (at least .97).22 

A Result in "All Too Good Agreement" with Newton 

There was, however, a third result also obtained from the Sobral 
expedition. In contrast with the other two this third result pointed not 
to Einstein's prediction, but, as Eddington ([1920] 1987) declares, 
"with all too good agreement to the 'half-deflection,' that is to say, the 
Newtonian value" (p. 117). It also differed from the other two in being 
discounted due to systematic errors! The instrument used, an astro­
graphic telescope, was of the same type as that used in the counted 
Principe result. Nevertheless, upon examining these Sobral astro­
graphic plates the researchers constructed a hypothesis not among the 
three set down in advance. Because this new hypothesis incorporates 
the alleged exception into Einstein's hypothesis (1), we may denote it 
by 1*: 

1 *: The results of these (Sobral astrographic) plates are due to system­
atic distortion by the sun and not to the deflection of light. 

Popper held up this test as a model of severity, unlike the tests of psy­
chological theories of the day, because the Einstein prediction dared to 
stick its neck out: a deflection far from the predicted value and near 
.87", Eddington (1918) declared, "would overthrow Einstein's theory" 
(p. 36). So what is to be made of this discounting of one set of results 
from Sobral? 

Certainly this violates UN. It exemplifies the second entry in our 
list of ways that such a violation can occur: exception barring, ot what 
Worrall calls exception incorporation. Here, when confronted with an ap­
parent piece of counterevidence, one constructs a new hypothesis to 
account for the exception while still saving the threatened hypothe­
sis-in this case, Einstein's. Moreover, while the Einstein hypothesis 
can accommodate the Sobral astrographics with the help of 1*, New­
ton's hypothesis accommodates them without any such contrivance. 
According to the UN requirement, it seems, the result used to construct 
1 * would count more for Newton than Einstein-contrary to the ac­
tual appraisal. 

Now, the proponent of UN may deny that this really counts as 
exception incorporation (because there is a violation of "initial condi-

22. Note that although this includes infinitely many alternative values of A, the 
high severity requirement is met for each. This instantiates my point in section 6.4. 
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SEVERE TESTS AND NOVEL EVIDENCE 285 

tions"), but what cannot be denied is that constructing 1 * violates UN. 
Still, it might be objected: the UN requirement never intended to con­
demn this kind of violation of UN. Here the data are being used to 
arrive at (and affirm) some low-level auxiliary hypothesis, one which, 
in this case, indicates that the data may be discounted in appraising the 
primary hypothesis. Are we to understand the UN theorist as allowing 
use-constructions in the case of low-level auxiliary hypotheses? Surely 
not. Otherwise the kind of UN violation (exception incorporation) that 
started all the fuss in the first place would pass muster. All of this 
underscores the main thesis of this chapter: the UN requirement 
fails to discriminate between problematic and unproblematic use­
constructions (or double-countings). 

Let us return to Eddington and the mirror hypothesis (1*). Con­
sider the actual notes penned by Sobral researchers as reported in Dy­
son et al. 1920: 

May 30, 3 a.m., four of the astrographic plates were developed .... It 
was found that there had been a serious change of focus, so that, 
while the stars were shown, the definition was spoilt. This change of 
focus can only be attributed to the unequal expansion of the mirror through 
the sun's heat . ... It seems doubtful whether much can be got from 
these plates. (P. 309; emphasis added) 

This is not to say that it was an obvious explanation that could be 
seen to be warranted right off. It called for a fair amount of (initially 
unplanned) data analysis, and gave rise to some debate-all of which 
of course depended on using the suspect data themselves. However, 
the dispute surrounding this inference was soon settled, and because 
of that it sufficed for most official reports to announce that the astro­
graphics, despite appearing to support the Newtonian value, were dis­
counted due to distortions of the mirror. Such a report, not surpris­
ingly, raises the antennae of philosophers looking into this historical 
episode. 

John Earman and Clark Glymour (1980) point a finger at Edding­
ton precisely because he "claimed the superiority of the qualitatively 
inferior Principe data, and suppressed reference to the negative Sobral 
results" (p. 84)-the Sobral astrographics. According to Earman and 
Glymour, "Dyson and Eddington, who presented the results to the sci­
entific world, threw out a good part of the data and ignored the dis­
crepancies" (p. 85). They question his suppression of these results be­
cause, in their view, "these sets of measurements seem of about equal 
weight, and it is hard to see decisive grounds for dismissing one set but 
not the other" (p. 75). 

There were, however, good grounds for dismissing the Sobral 
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astrographics-one could not obtain a usable standard error of the esti­
mate. Moreover, as the journals of the period make plain, the numer­
ous staunch Newtonian defenders would hardly have overlooked the 
discounting of an apparently pro-Newtonian result if they could have 
mustered any grounds for deeming it biased. And the reason they 
could not fault Eddington's "exception incorporation" in hypothesizing 
I * is that it involved well-understood principles for using this type of 
data to test, and in this case reject, a key assumption of the experiment. 
Results were deemed usable for estimating the deflection A., we said, 
only if the statistical method (least squares) was applicable; that is, 
when there was sufficiently precise knowledge of the change of focus 
(scale effect) between the eclipse and night plates (within .03 mm)­
precisely what was absent from the suspect Sobral plates. 23 

The discussion of this mirror distortion hypothesis brings out an 
interesting feature of the analysis. A. C. D. Crommelin (Nature, 13 No­
vember 1919) remarked that "there is reason to suspect systematic er­
ror, owing to the very different character of the star images on the 
eclipse and check plates" (p. 281). This is contrasted with the Sobral 
results taken with the 4-inch lens, whose use was allowed: 

The small coelostat used with the 4-inch lens did not suffer from de­
formation, the images of stars during totality being of the same char­
acter as those on the check-plates; this increased the weight of the 
determination with that instrument. (Crommelin 1919, 392) 

Even small systematic errors of focus are of crucial importance because 
the resulting scale effect (from this alteration of focus) quickly becomes 
as large as the Einsteinian-predicted deflection effect. After an analysis 
of the distortion it was evident that the Sobral astrographic results 
pointed to only one hypothesis: I *, systematic error.24 

Over and over again, the discussions reveal that what was of cen­
tral importance in declaring results usable was the similarity of the 
pattern of error in the eclipse and check plates. This similarity, or the 
lack of it, was discerned statistically; and this discernment is a formal 

23. To see how important even small systematic errors of focus are, one need 
only look at how the resulting scale effect (from this alteration of focus) quickly 
becomes as large as the Einsteinian-predicted deflection effect of interest. The effect 
of 1.75" refers to the deflection of the light of a star just at the limb of the sun; but 
the researchers only observed stars whose distance from the sun is at least 2 times 
the solar radius. Here the predicted deflection is about 1" of arc or .015 millimeters 
on the photographic plate. See von Kliiber 1960, 50. 

24. Eddington was a specialist in techniques of data analysis, and his notes 
offer, in effect. rules for legitimately using eclipse evidence to "use-construct" 
hypotheses about A (that is, instances of rule R-'lT). 
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SEVERE TESTS AND NOVEL EVIDENCE 287 

analog of the informal detection of error patterns noted in chapter 1.25 

The mirror problem of 1919 became what I have in mind by a canoni­
cal model of error, and it was used in subsequent eclipse experiments. 

Whereas this first stage was relatively uncontroversial, the second 
stage was anything but. 

Stage ii: Can Other Hypotheses Be Constructed to Explain 
the Observed Deflection? 

While even staunch defenders of Newton felt compelled to accept 
that the eclipse evidence passed the hypothesis that the deflection ef­
fect A. = 1.75", they did not blithely accept that Einstein's law of gravi­
tation had thereby also passed a good test. As the scientist H. F. Newall 
put it, "I feel that the Einstein effect holds the day, but I do not yet feel 
that I can give up my freedom of mind in favour of another interpreta­
tion of the effects obtained" (Newall 1919, 395-96). Such skeptical 
challenges revolved around stage ii, determining the cause of the ob­
served eclipse deflection. At issue was the possibility of a mistake about 
a causal factor. The question, in particular, was whether the test ade­
quately discriminated between the effect due to the sun's gravitational 
field and others that might explain the eclipse effect. A "yes" answer 
boiled down to accepting the following hypothesis: 

(ii)(l): The observed deflection is due to gravitational effects (as given 
in Einstein's law), not to some other factor N. 

The many Newtonian defenders adduced any number of factors to ex­
plain the eclipse effect so as to save Nt'wton's law of gravity: Ross's lens 
effect, Newall's corona effect, Anderson's shadow effect, Lodge's ether 
effect, and several others. Their plausibility was not denied on the 
grounds that they were deliberately constructed to account for the evi­
dence (while saving Newton)-as the UN requirement would suggest. 
On the contrary, as Harold Jeffreys wrote, 

25. Dyson, Eddington, and Davidson (1920) say this about the discounted So-
bral results: 

The images were diffused and apparently out of focus .... Worse still, this 
change was temporary, for without any change in the adjustments, the 
instrument had returned to focus when the comparison plates were taken 
in July. (P. 309) 

Interestingly, Crommelin explained that if we assume that the bad focus left the 
scale unaltered, then the value of the shift from these results is 1.54", thereby no 
longer pointing to the Newtonian value. 
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288 CHAPTER EIGHT 

before the numerical agreements found are accepted as confirmations 
of the theory, it is necessary to consider whether there are any other 
causes that could produce effects of the same character and greater in 
magnitude than the admissible error. (Jeffreys 1919b, 138) 

Were any other cause to exist that was capable of producing (a consid­
erable fraction of) the deflection effect. Jeffreys stressed, that alone 
would be enough to invalidate the Einstein hypothesis (which asserts 
that all of the 1.74" are due to gravity). 

Everything New Is Made Old Again 

The historian of science Stephen Brush (1989) found, in apparent 
violation of the rule to prefer (temporal) novel predictions, that the 
ability to explain the known fact about Mercury's orbit provided 
stronger support for Einstein's theory of gravitation than did the theo­
ry's ability to predict the new fact (in the 1920s) about the deflection 
of light. Getting Mercury's orbit correct counted more in favor of Ein­
stein's theory than light bending did, not despite the fact that the for­
mer was known and the latter new, but because of that very fact. Se­
verity considerations explain why. The known fact about Mercury­
being an anomaly for Newton-was sufficiently important to have led 
many to propose and test Newtonian explanations. These proposed 
hypotheses, however, failed to pass reliable tests. In contrast, when 
light bending first became. known to exist '"one might expect that 
another equally or more satisfactory explanation would be found" 
(Brush 1989, 1126). It is as if before this novel effect could count as 
an impressive success for Einstein's theory, scientists had to render 
it old and unsatisfactorily explained by alternative accounts (much 
like Mercury). I think Brush is right on the money in declaring 
that 

the eclipse results ... provoked other scientists to try to give plausible 
alternative explanations. But light bending could not become reliable evi­
dence for Einstein's theory until those alternatives failed, and then its weight 
was independent of the history of its discovery. (Brush 1989, 1127; empha­
sis added) 

Let us now consider how the new light-bending effect was made ap­
propriately old. 

Using the Eclipse Results at Stage ii 

The challenges at stage ii to the pro-Einstein interpretation of the 
observed deflection were conjectures that the effect was due to some 
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SEVERE TESTS AND NOVEL EVIDENCE 289 

factor other than the Einstein one (gravity in the sun's field). They 
were hypotheses of the form 

(ii)(2): The observed deflection is due to factor N, other than gravita­
tional effects of the sun, 

where N is a factor that at the same time saved the Newtonian law 
from refutation. Each such hypothesis was criticized in a two-pronged 
attack: the effect of the conjectured N-factor is too small to account for 
the eclipse effect; and were it large enough to account for the eclipse 
effect it would have other false or contradictory implications. 

Stage ii exemplifies several UN violations: the road to hypothesis 
construction was constrained to account for evidence e, and e also 
counted in support of that hypothesis. Once the deflection effect was 
affirmed at stage i it had to be a constraint on hypothesizing its cause 
at stage ii; at the same time, the eclipse results had to be used a second 
time in appraising these hypotheses. (A similar eclipse would not occur 
for many years.) Typically they were used to fix a parameter, the extent 
to which a hypothesized factor N could have been responsible for the 
observed deflection effect. When explicitly used to save the Newtonian 
law, they also violated UN by exception incorporation. Note also that 
the alternative hypotheses were at the same level as the primary hy­
pothesis here. 

The arguments and counterarguments (scattered through the rele­
vant journals from 1919 to around 1921) on both sides involved vio­
lating UN. What made the debate possible, and finally resolvable, was 
that all who entered the debate were held to shared standards for reli­
able experimental arguments. They were held to shared criteria for 
acceptable and unacceptable use-constructions. It was acceptable to 
use any evidence to construct and test a hypothesis H (about the de­
flection effect) so long as it could be shown that the argument proce­
dure was reliable or severe-that it would very rarely yield so favor­
able a result erroneously. Examples abound in the literature. They 
supply a useful sampling of canonical arguments for ruling out hypoth­
esized causes of an effect of this sort. I will briefly cite a few. 

The shadow effect. Alexander Anderson (1919, 1920) argued that 
the light deflection could be the result of the cooling effect of the 
moon's shadow. Eddington responded that were the deflection due to 
this shadow effect there would have had to be a much larger drop in 
temperature than was actually observed. (It might have been responsi­
ble for the high value of the deflection found at Sobral.) Anderson did 
not give up, but attempted other hypotheses about how the moon's 
shadow could adjust conditions just enough to explain the effect and 
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save the Newtonian law. These attempts were found wanting, but only 
after being seriously considered by several scientists (e.g., by Arthur 
Schuster [1920]). The problem, in each case, was not that Anderson 
repeatedly use-constructed his hypotheses, but that in so doing he was 
forced into classically unreliable arguments. The problem, well put by 
Donald Moyer (1979), was this: 

The available adjustments are adjustments of parameters of trustwor­
thy laws and these adjustments are tightly constrained by the connec­
tions among these laws of phenomena. Temperatures, or air currents, 
or density gradients cannot be adjusted in one law without also ad­
justing all the other laws where these terms occur as well and this 
must not introduce consequences not observed. (P. 84) 

A test procedure that relies on inconsistent parameter adjustments to 
get a hypothesis to pass would frequently pass hypotheses erroneously. 
The test is highly unreliable. 

Newall's corona lens. Another N-factor seriously entertained was put 
forward by H. F. Newall (1919, 1920), that of the intervention of a 
corona lens. Again, there was a two-fold response, here by the scientist 
F. A. Lindemann and others. The refraction required to cause the 
eclipse result, Lindemann (1919) argued, would require an amount of 
matter many orders of magnitude higher than is consistent with the 
corona's brightness, and were there enough matter to have caused it, 
comets passing through the region should have burned up. 

Ether modifications. Sir Oliver Lodge (e.g., Lodge 1919) promised 
that if the Einstein effect was obtained he would save Newton by modi­
fying conditions of the ether with special mechanical and electrical 
properties; after the results were in, he did just that. (Lodge, a propo­
nent of spiritualism, held that the ether effected contact with departed 
souls, in particular his son, Raymond.) Strictly speaking, since these 
hypotheses were constructed by Lodge before the results, it seems that 
the case satisfies temporal novelty, and so use-novelty. This hardly 
made Lodge's arguments more impressive. The problem was not when 
Lodge formulated his hypotheses, but that his procedure for passing 
them required inconsistent parameter adjustments. Consistent adjust­
ments showed that each hypothesized factor N could not have caused 
the observed deflection. As Lindemann (1919) put it: 

Sir Oliver Lodge has suggested that the deflection of light might be 
explained by assuming a change in the effective dielectric constant 
near a gravitating body. This way of looking at it had occurred to 
me .... It sounds quite promising at first since it explains ... the shift 
of the perihelion of Mercury as well as the ... shift of the spectral 
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lines, if this exists. The difficulty is that one has in each case to adopt a 
different constant in the law, giving the dielectric constant as a function 
of the gravitational field, unless some other effect intervenes. (P. 114; em­
phasis added) 

291 

The kinds of tactics Lodge employed lead many to insist on the UN 
requirement. Far from striving to steer clear of classic unreliable use­
construction procedures, he employed (whether deliberately or not) 
precisely the kind of rigging that would allow hypotheses to pass, 
whether or not they were true. 

Not that one can see immediately which use-constructions are ko­
sher and which are not-even the constructors themselves cannot do 
this. This is because one cannot see immediately which ones have ar­
guably passed severe tests. By indiscriminately prohibiting all tests that 
violate UN, the UN requirement cannot provide an epistemological 
ground for the reasoning in this dispute, nor for the way it was settled. 

What finally settled the matter (around 1921) was not the predic­
tion of novel evidence, but the extent to which known evidence war­
ranted only a construction of the Einstein gravitational hypothesis. 
This was argued by Harold Jeffreys (1919a, 1919b) (despite his having 
initially assigned an extremely low Bayesian prior probability to Ein­
stein's law). Jeffreys-one of the last holdouts-explains: 

It so happens that the three known facts, the truth of Kepler's third 
law, the motion of the perihelion of Mercury, and the displacement 
of star images, give different equations for the constants, and the only 
solution that satisfies those three conditions happens to be Einstein's theory . 
. . . It must be accepted as the only theory that will satisfactorily coor­
dinate these facts. (Jeffreys 1919a, 116; emphasis added) 

What he is saying is that in order to use the known results (the eclipse 
effect together with Kepler's law and the Mercury perihelion) to con­
struct a hypothesis, and do so reliably, one is led to Einstein's law of 
gravity! After reviewing the tests and all the rival explanations, Dyson 
and Crommelin concluded in the February 1921 issue of Nature,26 
which was entirely devoted to the eclipse tests: "Hence we seem to 
be driven by exhaustion to the Einstein law as the only satisfactory 
explanation" (p. 788). 

What about other alternative hypotheses that may be dreamt up 
that will not disagree with H on any experimental results (either of a 
given test or of any conceivable test)? What about, say, possible alter­
native conceptions of space and time that would agree experimentally 

26. Dyson and Crommelin, Nature 106 (1920-21): 781-820. 
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with Einstein's law? We already took up this issue in discussing under­
determination (chapter 6). It is readily admitted that the 1919 eclipse 
tests were not severe tests of these alternative conceptions. The eclipse 
tests were not even considered tests of Einstein's full theory. As Ed­
dington remarked: 

When a result that has been forecasted is obtained, we naturally ask 
what part of the theory exactly does it confirm. In this case it is Ein­
stein's law of gravitation. (Eddington 1919, 398).27 

It is important to stress, however, that the existence (or logical possibil­
ity) of alternative hypotheses that are not themselves tested by a given 
experiment leaves unaltered the assessment of hypotheses that are se­
verely tested. The severity calculation is unchanged. On the informal 
side this means that we can learn things one piece at a time and do not 
have to test everything at once. That is why Jeffreys (and others) could 
laud the eclipse results as finally putting the Einstein law on firm ex­
perimental footing, apart from any metaphysical concepts (e.g., about 
space and time). (See, for example, Jeffreys 1919b, 146.) However Ein­
stein's full theory is modified, the knowledge gained in the severely 
tested experimental law remains: 

In this form the [Einstein] law appears to be firmly based on experi­
ment, and the revision or even the complete abandonment of the 
general ideas of Einstein'S theory would scarcely affect it. (Eddington 
[1920]1987,126)28 

Summary and Next Step 

Our critique of use-novelty showed it to be neither necessary nor 
sufficient for severity. This finding discredits the rule of novelty (RN) 
when viewed as a policy always to be followed to satisfy severity. It 
also teaches us how UN may be violated yet avoid a possible threat to 
severity, namely, with a reliable rule for use-constructing hypotheses 
such as rule R-'IT. Proponents of UN err by taking a handful of cases 
in which UN is violated and where the test lacks severity, and then 
generalizing to eschew all violations of UN. 

There are, however, contexts of inquiry where the methodological 
rules that have been developed to ensure reliability are invalidated 

27. One reason for this is that the redshift prediction had thus far not passed 
a severe test. 

28. It is interesting to consider in this connection the recent progress in parti­
tioning theories of gravity and determining which theories are consistent with 
given experimental results, as reported in Earman 1992. See section 6.3. 
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SEVERE TESTS AND NOVEL EVIDENCE 293 

when UN is violated. Their reliability guarantees break down when 
use-constructing is allowed. These contexts comprise an important 
subset of standard Neyman-Pearson tests. In other contexts, however, 
Neyman-Pearson methods seem happy to violate rules against use­
constructing. For a long time this has caused a good deal of confusion. 
Let us see if we cannot dispel it once and for all. 
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CHAPTER NINE 

Hunting and Snooping: Understanding the 
Neyman-Pearson Predesignationist Stance 

If in sampling any class, say the M's, we first decide what the char­
acter P is for which we propose to sample that class, and also how 
many instances we propose to draw, our inference is really made 
before these latter are drawn, that the proportion of P's in the 
whole class is probably about the same as among the instances that 
are to be drawn .... But suppose we were to draw our inferences 
without the predesignation of the character P; then we might in 
every case find some recondite character in which those instances 
would all agree. That, by the exercise of sufficient ingenuity, we 
should be sure to be able to do this, even if not a single other object 
of the class M possessed that character, is a matter of demonstra­
tion. For in geometry a curve may be drawn through any given 
series of points. 

-c. S. Peirce, Collected Papers, vo!' 2, par. 737 

To base the choice of the test of a statistical hypothesis upon an 
inspection of the observations is a dangerous practice; a study of 
the configuration of a sample is almost certain to reveal some fea­
ture, or features, which are exceptional if the [chance] hypothesis 
is true. 

-E. S. Pearson, The Selected Papers ofE. S. Pearson, p. 127 

9.1 INTRODUCTION AND OVERVIEW 

The debate about the novelty requirement in the arena of philosophy 
of science parallels an ongoing methodological debate in actual scien­
tific practice, and the preceding results have direct ramifications for 
that dispute. That this dispute is alive and well is brought home by the 
program put forward in Glymour, Scheines, Spirtes, and Kelly 1987 
and its subsequent extensions. The dispute concerns a principle often 
adhered to in statistical testing based on Neyman-Pearson (NP) meth-
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HUNTING AND SNOOPING 295 

ods. It is commonly supposed that the NP account, from which my 
error-statistical account derives, prohibits all after-trial constructions of 
hypotheses. Indeed, it is typically thought to mandate an even stricter 
requirement. It is supposed that a key feature of the NP model of tests 
is that all aspects of the tests, the hypotheses, the sample size, the sig­
nificance level, and so on must be laid out in advance of running the 
experiment. All must be predesignated. If the predesignation of tests is 
always required, then in particular the temporal novelty of hypotheses 
is required. It is never OK to snoop at the data before formulating a 
hypothesis-at least not if the same data are to be used in testing that 
hypothesis. So if NP statistics requires predesignation, then it has all 
the problems of temporal novel accounts. Known data fail to provide 
good tests of hypotheses-NP theory has what is called an "old evi­
dence" problem. 

But is predesignation part and parcel of the NP methodology? Pre­
designation is part of what might be called "folk NP statistics." In prac­
tice it is often good advice. But violating predesignation does not neces­
sarily conflict with NP principles. In fact, many of its own methods 
violate this predesignationist stance. 

Examples of NP procedures that violate predesignation-by vio­
lating use-novelty-are those involved in checking the assumptions of 
an experimental test. The same data may lead to constructing a hy­
pothesis-say, that the trials are not independent-and at the same 
time may be used to test that hypothesis. The rationale is analogous 
to the posttrial scrutiny of the eclipse data discussed in the last chap­
ter. In checking if a particular set of data satisfies assumptions, such a 
double use of data is likely to offer a better test than looking to the 
data of some new experiment. 

Roger Rosenkrantz puts his finger on this apparent dilemma for 
NP or "orthodox" statistics: 

It is difficult to live within the confines of a predesignationist method­
ology. Actual orthodox practice fully bears this out; indeed, standard 
orthodox texts are all replete with post-designated tests .... In analy­
sis of variance, for example, upon rejecting the hypothesis that all 
means are equal, orthodox texts show you how to go on to test other 
more particular hypotheses about the means suggested by the 
data .... Those same texts-and their number is legion-also show 
how to test the underlying assumptions of the usual analysis of vari­
ance model ... again using the same data. Similarly, they show how 
to test underlying assumptions of randomness, independence and sta­
tionarity, where none of these was the predesignated object of the 
test (the "tested hypothesis"). And yet, astoundingly in the face of all 
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this, orthodox statisticians are one in their condemnation of "shop­
ping for significance," picking out significant correlations in data post 
hoc, or "hunting for trends in a table of random digits." ... It is little 
wonder that Orthodox texts tend to be highly ambivalent on the mat­
ter of predesignation. (Rosenkrantz 1977, 204-5) 

Is the NP statistician being inconsistent in banning postdesignation 
in the form of shopping or hunting for significance, while condoning 
it in certain other tests? Are NP statisticians justified in insisting on 
predesignation with respect to certain kinds of tests and estimation 
procedures? And what exactly is the NP statistician condemning in 
condemning postdesignation? Answering these questions, which have 
been at the center of considerable controversy, is the goal of this 
chapter. 

In chapter 8 I argued that the real aim of novelty is severity and 
that the novelty requirement was justified only to the extent that vio­
lating novelty precluded severity. Can an analogous move disentangle 
the predesignationist puzzle? The natural suggestion would be to pro­
pose that condoning violations of predesignation in one set of cases 
while condemning such violations in others may be perfectly justified 
if it turns out that severity is only problematic in the latter set of cases. 
Will this natural suggestion hold up? 

I claim that it will. One must be carefuL however, in understanding 
what it means for "severity to be problematic." Certainly severity 
would be problematic if violating predesignation led to a procedure of 
passing hypotheses where the severity was low. For then there would 
be a high probability of passing hypotheses erroneously, violating the 
NP low error probability requirement. But is predesignation necessary 
for severity? We already have our answer to that question as well. If 
predesignation is necessary for a good test, so is use-novelty. Hence the 
contexts in which one can have a severe test while violating UN are 
also contexts that yield a severe test despite violating predesignation. 
So having shown that UN is not necessary, we have shown predesigna­
tion is not. 

However, the real NP argument for predesignation differs from the 
argument given by the UN proponents we have considered. Those pro­
ponents thought UN necessary because its violation was thought to 
lead to zero- or low-severity tests. This is not what is going on in the 
contexts where NP statisticians insist upon predesignation-although 
it is often thought to be. The real argument is that in certain testing 
contexts violating predesignation alters the test procedure in such a 
way as to require that it be taken account of in assessing its severity. 
What is really being condemned, or so I shall argue, is treating both 
predesignated and postdesignated tests alike. 
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My focus in this chapter is on an important class of cases in which 
violating predesignation is condemned or deemed inadmissible by the 
error-probability statistician. Disagreement about whether predesigna­
tion should be required in this class of cases often masks a disagree­
ment about whether error probability requirements matter altogether. 
The Bayesian (or other holder of the likelihood principle) says no, 
while the NP theorist says yes. But a debate also persists among users 
of the standard significance tests whose position on this matter is much 
less clear. The individual I have in mind does not deny the importance 
of error probabilities outright but views the predesignationist stance as 
unnecessarily hamstringing the researcher in actual practice. 

This is how I view the position in the work of Glymour, Scheines, 
Spirtes, and Kelly (1987). Their project is a rare example of a joint 
effort by philosophers to articulate methods intended for scientific 
practice-in particular, for discovering causal hypotheses. But my fo­
cus is not on their computer algorithm TETRAD; it is on their discus­
sion of what I take to be the main NP stance against postdesignation. 
This form of postdesignation falls under the class of cases hunting for 
statistically significant correlations. Glymour, Scheines, Spirtes, and Kelly 
maintain that despite the general adherence to the inadmissibility of 
postdesignation procedures, the arguments purporting to show their 
inadmissibility will not hold up. Admittedly, the real argument against 
postdesignation (to my knowledge) has never been articulated clearly. 
With the machinery I have been developing it will be seen that the NP 
statistician does have a legitimate objection to postdesignation, at least 
with respect to the class of cases of interest. 

The general outline of the NP objection emerges naturally from 
the underlying aim of NP statistics. Despite the different interpretations 
NP procedures are open to, the following error probability principle 
stands: 

(EPP): An NP procedure of inference is inadmissible if its error proba­
bility characteristics are inconsistently reported or if it prevents the 
determination of valid error probabilities (even approximately). 

In the contexts I will be considering, a test's error probabilities are al­
tered when hypotheses are not predesignated. At the same time there 
are other tests of hypotheses and models that despite being postdesig­
nated do not violate any NP principles. Several tests are even intended 
for use in cases that would ordinarily be thought to violate predesigna­
tion-Rosenkrantz is right. If my analysis is correct, however, then 
there is nothing inconsistent in this apparent schizophrenia as regards 
predesignation. 

It is important to get clear on the real NP argument regarding post-
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designation procedures, because supposing that NP methods rule them 
out altogether has opened those methods to unjust criticism. Further­
more, dismissing the NP argument as unsound has only made it easier 
to ignore the very special constraints that have to be satisfied for validly 
applying NP tests in such cases. 

My strategy in appraising the rule of predesignation follows the 
general one that I advocate for a philosophy of experiment: the value 
of a methodological rule is determined by an analysis of how its appli­
cation allows one to avoid particular types of experimental mistakes. 
But methodological rules are made to be broken. I By understanding 
the function that a rule of procedure has, we can identify the condi­
tions under which it may be violated-even in testing contexts where 
it is normally of concern. In the opening epigraph of this chapter, 
Peirce explains that by prespecifying a test, "our inference is really 
made before" the data are collected. The "inference" that the NP statis­
tician really wants to make before the trial is about the test's error 
probabilities. What is really of concern, we shall see, is the validity of 
the "before-trial" probabilistic guarantees. 

The NP argument against violating predesignation says simply that 
if your worry is ensuring tests with high severity, then you must recog­
nize that the manner of data generation can influence the probability 
of erroneously passing a hypothesis (the severity of the test). We must 
look at the entire experimental testing context to correctly assess se­
verity. From this point of view, the NP admonishment against violating 
predesignation may be regarded as a kind of warning to the error statis­
tician that additional arguments-possibly outside the simple signifi­
cance test-may be required to rule out the error at hand. The tests 
themselves cannot be expected to provide the usual guarantees. This, 
I suggest, should be seen as an invitation for the error statistician to 
articulate other formal and informal considerations to arrive at a reli­
able experimental argument. 

On my treatment of this issue it may be objected that I am assum­
ing that it is unproblematic to determine what a test's error probabili­
ties are, thereby discounting the ambiguities in describing a given test 
procedure. While I do not wish to minimize the problem of how to 
describe a given experiment-some might identify it with the reference 
class problem-I regard that as a problem of choosing an appropriate 

1. I am not just playing on a cliche. While obviously methodological rules are 
made to be followed, an equally important service they perform is to call attention 
to an assumption or goal that should be met, if not by following the rule, then (at 
least approximately) by an alternative route. 
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test procedure for a given inquiry, a problem distinct from the current 
issue. The basis for choosing a test will depend upon experimental 
background knowledge acquired from comparable cases, knowledge 
that would comprise a kind of repertoire of canonical inquiries into 
errors. Once one has specified the kind of argument from error one 
wishes to sustain, this background knowledge directs one to appro­
priate choices of test statistics and corresponding error characteristics. 
(I return to this issue in chapter 11.) 

9.2 HUNTING FOR STATISTICALLY SIGNIFICANT DIFFERENCES 

As is so often the case with contemporary statistical disputes, a history 
of this debate already exists from early applications of significance 
tests. A good source for the debates that took place nearly forty years 
ago is Morrison and Henkel's classic volume The Significance Test Contro­
versy. Much of what 1 would wish to say emerged in these early discus­
sions. 1 will focus on two contributors to the volume, both social scien­
tists. 

Leslie Kish 's Example 

Leslie Kish (1970, 138) refers to a study regarding infant training. 
The study, done in the late 1940s, sought to investigate a variety of 
infant training experiences regarding nursing, weaning, and toilet 
training that according to Freudian psychological theories of the day 
were thought advantageous for personality adjustment. In records on 
children spanning several years, a number of high (statistically signifi­
cant) correlations were found between children exposed to a certain 
kind of infant training T and various personality traits. Among those 
subjected to training T "gradual weaning," for example, there was a 
significantly higher proportion of children with "high social standards" 
than among those abruptly weaned. Among the other high correla­
tions found were between "no punishment for toilet accidents" and 
"good school relations," and between "late bladder training" and "little 
nail biting." The question is whether the evidence on correlations pro­
vides good evidence for the existence of a real effect in the population 
of children or whether the observed correlations are spurious or "due 
to chance." 

The Key Question. The fact that the researchers searched among many 
factors for large correlations adds a new twist to this question. The 
question, which I pose to the reader, is this: Is it relevant to the assess­
ment of the evidential import of the observed correlations that they 
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are the outcome of a procedure of searching for effects large enough 
to be statistically significant? The Neyman-Pearson error statistician 
says yes. The question is why? 

Let us use Kish's example to describe a procedure sometimes called 
"hunting with a shotgun." Here the sample size is fixed ahead of time, 
and even the cutoff for rejecting a test hypothesis may be preset, say 
at the .05 level. What varies is the hypothesis chosen for testing and 
reporting. (The hypotheses themselves mayor may not have been 
thought up in advance.) Each such hypothesis asserts that some prop­
erty or "treatment" T is genuinely correlated with some factor F in 
some population. Each factor is dichotomous, each subjec~ has it or 
not. Before getting to the "hunting" aspect, let us recall how a test of 
such a hypothesis might go in nonhunting cases. 

The situation shares several features with example 5.1 on birth 
control pills. The "null" or test hypothesis H is that the observed corre­
lation is merely due to chance-that in fact the incidence of the effect 
(cancer, high feeling of belonging) is no different among those treated 
(with the pill, with gradual weaning in infancy) and those not so 
treated.2 (In Kish's example the difference is sought in either a positive 
or a negative direction.) The null hypothesis is rejected when the ob­
served correlation is sufficiently statistically significant (e.g., at the .05 
level). The hypothesis that passes-let us abbreviate it as H*-asserts 
that there is a genuine correlation in the population between the fac­
tors of interest (in either or in one direction). 

As in example 5.1, a simple difference measure can be used for a 
statistic measuring observed correlations, and to avoid complexities I 
will stick to thai case in this chapter. We observe the proportion of 'IS 
that are Fs and the proportion of not-'IS that are Fs and record the 
difference D. We can compute the statistical significance of D by consid­
ering the number of standard deviations by which it differs from 0 (0 
being the expected difference, given the truth of the null hypothesis). 
The 2-standard-deviation cutoff corresponds to a .05 level of statistical 
significance (see note 2). 

The same mathematical procedure for calculating statistical sig­
nificance is available even if the particular factor F is specified after 
hunting for large correlations. At issue is whether it is misleading or 

2. In example 5.1, only the existence of a positive difference was being tested. 
It was a one-sided test. Kish's example is a two-sided test, because it looks for differ­
ences in either direction. A 2-standard-deviation difference in one direction corre­
sponds to a significance level of approximately .025 (I elsewhere round it to .03), 
so in two directions it corresponds to a significance level of about .05. That is why 
the two-sided significance tests discussed here have .05 significance levels. 
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fallacious to report the statistical significance of a difference in the same 
way as in the case where the hypothesis to be tested is prespecified. 
The "hunter," as Kish calls him, thinks not, and Kish alludes to the 
infant training example, as discussed by William Sewell (1952), to il­
lustrate how the hunter would get into trouble. 

The researchers in the infant training study conducted 460 statisti­
cal significance tests! Out of these they found that 18 were statistically 
significant at the .05 level (or beyond), 11 of these were in the direc­
tion expected by the popular psychological account. Sewell (1952) de­
nies that we should be just as impressed with the 11 statistically sig­
nificant results as we would be if they were the only 11 hypotheses to 
be tested. Kish agrees and explains why. 

Note that the hunting procedure is an example of what I called a 
"use-constructing" test procedure in chapter 8. Introducing some ab­
breviations for this simple example will make it easy to characterize the 
more general argument later. For each factor ~, calculate the difference 
statistic Di' between the proportions with ~ among those given infant 
training T and those not given T. Finding a factor, ~, on which the 
experimental subjects show a statistically significant difference would 
lead to testing the postdesignated null hypothesis: 

Null hypothesis Hj : In the population of children, treatment T is not 
correlated with factor Fj" 

Let us focus on just one type of infant training T -gradual weaning. 
Suppose, for example, that a statistically significant difference is ob­
served between gradual weaning and factor F6 , say, "a strong feeling of 
belonging." In that case, the procedure directs one to test the corre­
sponding null hypothesis, H6: 

H6: Gradual weaning in babyhood is not correlated with a strong feel­
ing of belonging in older children. 

Next, the null hypothesis Hi (in this case, H 6 ) is then rejected if the 
observed difference is statistically significant at the .05 level. The hy­
pothesis that passes when Hi is rejected is the non-null hypothesis ~.: 

Non-null hypothesis Hj':There is a genuine correlation between gradual 
weaning and factor (or personality trait) Fj" 

But the only time Hi is tested according to this procedure is when the 
observed difference is statistically significant! So on this procedure, 
whenever Hi is tested, it is rejected. 

What is wrong with this? In the actual study, out of 460 attempts 
to hunt for statistically significant correlations, 18 were found signifi-
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cant at the .05 level or beyond (11 in the expected direction "on the 
basis of psychoanalytic writings"). Kish (1970) remarks: 

Note that by chance alone one would expect 23 "significant" differ­
ences at the 5 percent level. A "hunter" would report either the 11 or 
the 18 and not the hundreds of "misses." ... After finding a result 
improbable under the null hypothesis the researcher must not accept 
blindly the hypothesis of "significance" due to a presumed cause. 
Among the several alternative hypotheses is that of having discovered 
an improbable random event through sheer diligence. (P. 138) 

Keep in mind I<ish's statement about what the "hunter" would 
report. It is not just that the hunter postspecifies (and tests) hypotheses 
to fit samples, but that the hunter, or one who endorses being a hunter, 
is saying that doing so calls for no difference in interpretation. And because 
of that, the hunter reports the statistically significant cases just as if the 
successful cases had been predesignated. 

However, if one's answer to the "key question" I posed at the start 
of this section is yes, then one does not think that the postdesignated 
cases should be reported just as if they had been predesignated. One 
thinks they should be distinguished. The NP error statistician distin­
guishes between the two on the very grounds Kish cites. But why, one 
might ask, should the import of the evidence depend upon whether 
the hypothesis is set out in advance? If the hypothesis, say H6 , had been 
set out in advance, and a 2-standard-deviation difference observed, we 
would have computed the statistical significance level in the usual way 
(.05). Why this change because it was one of the successfully hunted 
ones? 

For the NP or error statistician, the altered interpretation is called 
for because the test procedure in the postdesignated case is very differ­
ent from the case in which H6 is preset as the hypothesis to test. What 
is allowed to vary-and hence the set of possible outcomes-is very 
different. With H6 predesignated, the possible results are the possible 
differences in F6 rates between the two differently trained groups­
that is, the different values of statistic D6 • In the postdesignated case 
the possible results are the possible statistically significant F factors that 
one might hunt down. This difference is reflected in the difference in 
error probabilities. Let us turn to a second contributor to Morrison and 
Henkel (1970), Hanan Selvin. 

Hanan Selvin's Example 
Selvin, in an article first published in 1958, gives a very useful 

capsule statement of the problem: 
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When the hypotheses are tested on the same data that suggested 
them and when tests of significance are based on such data, then 
a spurious impression of validity may result. The computed level of 
significance may have almost no relation to the true level. ... Sup­
pose that twenty sets of differences have been examined, that one 
difference seems large enough to test and that this difference turns 
out to be "significant at the 5 percent level." Does this mean that 
differences as large as the one tested would occur by chance only 5 
percent of the time when the true difference is zero? The answer is 
no, because the difference tested has been selected from the twenty 
differences that were examined. The actual level of significance is not 
5 percent, but 64 percent! (Selvin 1970, 104)3 

303 

So more than half the time one will be designating an observed differ­
ence (or correlation) unlikely to have been the result of mere chance 
error when in fact it is a result that easily (commonly) results from 
chance. 

Selvin's distinction between "the computed" and "the true or ac­
tual" significance levels is a useful way of making out the NP argu­
ment, and it merits some additional clarification. 

computed versus Actual or True Significance Levels. The computed level of sig­
nificance of a difference is the usual one: the improbability of observing 
such a large difference in the proportion with trait Fj given that in fact 
there is no real correlation, that is, the null hypothesis Hj is true. The 
computed level would be .OS if the observed difference were at least 
2 standard deviations (the chance or null hypothesis being that the 
difference is 0). In the case of a prespecified test of null hypothesis Hj' 
the computed level equals the actual error probability of the proce­
dure-the actual significance level. But the actual significance level 
differs if Hj arose from a procedure of searching through 20 factors on 
which the groups might be correlated. In this case, the actual significance 
level would be the probability of observing at least one such 2-standard-

3. As Selvin notes, this can be calculated approximately by considering the 
probability of finding at least one statistically Significant difference at the .05 level 
when 20 independent samples are drawn from populations having true differences 
of zero, 1 - P (no such difference). This is 1 - (.95)20 = 1 - .36. In general, the 
probability of obtaining at least one statistically significant outcome (in either direc­
tion) with N independent tests and a 2a (computed) significance level is 1 - (1 -
2a)N. This would give the actual significance level, that is, the actual probability of 
erroneously affirming a genuine correlation. The assumption of independent sam­
ples is made here for simplicity. With real data on a single population, Selvin re­
marks, this independence assumption does not hold "and the computation of the 
true level of significance would be extremely difficult" (ibid.). 
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deviation difference, given that there is no genuine correlation (in the 
population) on any of the 20 factors. Using various assumptions, Selvin 
calculates this probability to be .64.4 

More generally, the probability of error in the postdesignated case 
is the probability of finding some such a-significant correlation or other, 
given that no real correlation exists. In both cases, one minus the prob­
ability of error is the severity of the test (for passing the hypothesized 
correlation). Thus, while 1 - a is the severity (for passing H) when Hj 

is prespecified, severity is no longer 1 - a in the postspecified case. In 
the postspecified case the actual significance level, the actual probabil­
ity of erroneously finding some such a-significant correlation, is not 
generally equal to a. (Recall the altered severity criterion for hypothe­
ses constructed from the data in chapter 6, section 6.6.) 

It may be objected that in calling this the "actual" significance level 
I am taking sides in favor of one description of the "actual" test proce­
dure-one that takes into account the fact that searching has occurred. 
I am, but maintain that this aspect of the procedure cannot be ignored 
given the aim of the statistical significance test chosen. Remember, I 
am distinguishing the appropriateness of the test chosen (for a given 
inquiry) from the error probabilities, given that that test is chosen. One 
chooses a type of test corresponding to the type of argument from error 
that one wishes to sustain. In the present case, the interest is in arguing 
from·error to infer a genuine correlation. "Hunting" raises a problem 
because it may invalidate the desired argument. 

Ronald Giere's Example 

Ronald Giere (1969) generalizes this kind of argument against 
hunting for a corresponding procedure for estimating a population 
proportion. Here it is imagined that we hunt through random samples 
for a property shared by all of the n members in the sample. Finding 
such a property, we construct a confidence interval estimate with some 
high confidence level 1 - a, say, .95 (Giere uses q). As we know, a 
standard .95 confidence interval estimation procedure includes the 
true population proportion 95 percent of the time-whatever its value 
might be. It is possible, as Giere shows, to describe a series of applica­
tions of the estimation procedure such that the probability (or the ex-

4. Selvin's calculation, discussed in note 3, is just an application of the ·Bino­
mial model that we have already considered. As always, each outcome is either a 
"success" or not. Here, however, a successful outcome is a test result statistically 
significant at level .05. The probability of getting no successes in 20 independent 
trials is the probability of not getting a significant difference in one trial, namely, 
.95 raised to the twentieth power, giving .36. One minus this probability is .64. 
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pected relative frequency) of successful estimates is not 95 percent but 
O! As Giere remarks, 

This will be sufficient to prove [the inadmissibility of this method] 
because Neyman's theory asserts that the average ratio of success is 
independent of the constitutions of the population examined. (Giere 
1969, 375) 

Giere shows how to construct populations that, in effect, illustrate 
Peirce's point at the outset. Take a population of As and to each set of 
n members from this population assign some shared property. The full 
population has U members where U > 2n members. Then arbitrarily 
assign this same property to exactly U12 - n additional members. 

Given a sufficient store of logically independent properties, this can 
be done for all possible combinations of n A's. The result is a popula­
tion so constructed that while every possible n-membered sample 
contains at least one apparent regularity, every independent property 
has an actual ratio of exactly one-half in the total population. (Ibid., 
376) 

More generally, for any postdesignated selection of the property to 
be estimated whose population frequency is statistically dependent on 
its frequency in the observed sample used to arrive at the estimate, 
"one can always construct a possible series of populations leading to an 
expected ratio of successful estimates differing from [the predesignated 
confidence level 1 - al" (p. 376). (In Mayo 1980, I give an analogous 
argument for tests.) This difference corresponds, in the case of postdes­
ignated tests, to the difference between the actual significance level 
and the computed (or predesignated) level. 

Summary 

To sum up this section, the dependency of the correlation to be 
tested, or the proportion estimated, on the correlation or proportion 
that is observed results in changing the experiment-at least, so far as 
the NP error statistician is concerned. In the standard statistical signifi­
cance test (on difference in proportions) where the factors whose cor­
relation will be tested are predesignated, the possible outcomes are the 
possible different degrees of significance that might be observed with 
respect to that single predesignated correlation of interest. In the case 
of hunting for a statistically significant difference, in contrast, what is 
fixed is the particular level of statistical significance for which one is 
going to hunt. What varies now are the possible factors or possible 
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correlations that might turn out to be statistically significant at that 
level. 

This formal difference in error probabilities corresponds to an 
informal difference in the way the procedure can err. The hunting pro­
cedure has more and different ways of erring than a procedure of 
testing a predesignated hypothesis. The ability of a test to protect 
against the errors of one kind of procedure may have no relation to 
its ability to protect against errors in some other procedure that has 
many more ways of going wrong. This is what the NP stance against 
violating predesignation amounts to. Why, then, would anyone who 
answered yes to the question at the start of section 9.2 object to the 
NP stance? 

9.3 "No PEEKINGI": GLYMOUR, SCHEINES, SPIRTES, AND KELLY 

Glymour, Scheines, Spirtes, and Kelly, henceforth abbreviated as GSSK 
(1987), develop a computerized procedure for using observed correla­
tions in data to construct a (linear) model that fits the observed correla­
tion or difference. I will use their term "model" interchangeably with 
my "hypothesis." Although their approach is largely intended as a 
(computerized) method for finding models, presumably to be tested on 
other evidence, the authors claim they "also believe that there is often 
nothing wrong with using one and the same body of data to discover 
a theory and to confirm it or test it" (p. 46). The discovery procedure 
they provide is essentially a computerized program for carrying out the 
postdesignated searching procedure described above. (The correlations 
looked for will typically involve many more variables, but this will not 
alter the points that they or I wish to make.) The bulk of social scien­
tists and statisticians, steeped as they are in NP methodology, object to 
such a hunting procedure on the grounds that it entails using the same 
data both to find as well as to test statistically significant correlations. 
Because they comprise a key group for whom their method of causal 
modeling is intended, GSSK are led to examine the basis of such objec­
tions. 

Under the apt subtitle "No Peeking," GSSK (1987) consider what 
they take to be the best arguments for prohibiting this kind of double 
use of data, and find them wanting (p. 45). My focus is on the argu­
ment that they regard as most promising. They dub it the "worst case 
argument" and model it on Giere'S argument above. We can use it to 
elicit what I view to be "the real NP stance on predesignation." Toward 
this end it is sufficient to keep to the type of correlation hypothesis 
described above, leaving to one side the additional difficulties of war-
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HUNTING AND SNOOPING 307 

ranting causal hypotheses (which we might imagine to be higher up 
in the hierarchy of models). 

The Worst Case Argument 

GSSK (1987) spell out what they view as the NP argument against 
hunting for statistically significant correlations in terms of an argument 
against their computerized search procedure. The NP argument would 
begin with a fact that they recognize, namely, that the procedure of 
hunting for statistically significant correlations "will produce some 
model, even for data that are in fact randomly generated from inde­
pendent variables" (p. 55). That is, the hunting procedure would find 
some statistically significant correlation even if there were none. More­
over, they recognize, it would do so with high probability. Neverthe­
less, GSSK want to reject the NP objection to such a procedure by de­
nying the soundness of what they regard as the NP argument. Let us 
quote directly from their gloss on the NP argument against computer­
ized hunting procedures: 

1. computer-aided heuristic searches for statistical models must ex­
amine the data for statistical dependencies among the variables, 
search for the model or models that best explain [fit] those dependen­
cies, subject the models thus obtained to statistical tests based on the 
data, and output those models that survive the tests. 
2. No procedure for searching for hypotheses is acceptable if there are 
circumstances in which it is very probable that that procedure will 
yield a false conclusion. 
3. For any procedure as in 1, a number r of independent random 
variables and a sample size n can be found such that it is very proba­
ble that a sample of size n will show k statistically significant correla­
tions (or other statistic) among h of the r variables, for some number 
h and for some number k .... 
4. In the circumstance described in 3, it is very probable that a proce­
dure, such as described in 1, will output false hypotheses. 
5. Therefore, by 4 and 2, a computer-aided heuristic search procedure 
is unacceptable. (GSSK 1987, 55-56) 

Does this argument capture the NP objection? On a first reading it 
appears to distort the NP argument, but this is mainly because it is 
not in the language of NP criteria for judging inference procedures. The 
conclusion, for example, might make it sound as if the NP statistidan 
disallows searching for hypotheses not spedfied beforehand. In actual­
ity, the only prohibition relates to a procedure of first using data to 
arrive at a correlation that is statistically significant at some level a, and 
then using that same data to test the corresponding null hypothesis H, 
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that there is no real correlation. However, that is precisely what GSSK 
mean by a computer-aided heuristic search procedure. We can avoid 
misunderstandings by spelling out, in the conclusion of the argument 
(clause 5), the procedure that is being declared NP inadmissible. That 
change calls for corresponding adjustments to the premises as well. 
Once these alterations are made, this argument turns out to be a plau­
sible rendering of the NP objection; but contrary to what GSSK sup­
pose, the resulting argumeut is sound. 

Let us turn to the adjustments. To begin with premise l, we need 
to be clear about their phrase that the searches "output those models 
that survive the tests." First, the output of any NP procedure is never 
just a hypothesis or model or estimate by itself, it is always accompa­
nied by a statement of the error characteristics of the test or estimation 
procedure. Here the error characteristic is the significance level of the 
test, a, such as .05. Second, it is rather curious to say that the outputs 
here are hypotheses that survive statistical tests. The outputs are those 
hypotheses of form Hj": treatment Tis correlated with Pi" And this out­
put occurs when the corresponding null hypothesis Hj does not survive, 
that is, when Hj is rejected by the statistical significance test. Accord­
ingly we may rewrite premise 1 as follows: 

1. Computer aided heuristic searches ... search for statistical depend­
encies among the variables, reject those null hypotheses Hj if the data 
show a difference dj that is statistically significant at some smallleveI 
0: (e.g., .05) and output the non-null hypothesis Hj (at level 0:). 

(In more abbreviated form, the procedure is to search for variables for 
which observed differences dj satisfy P(Dj ;::: d) Hj ) ::5 a, declare dj statis­
tically significant at level a, reject Hj and pass Hn 

In premise 2, once again, "procedure for searching" has to be filled 
out as the procedure just described. Premise 2 also talks about yielding 
"a false conclusion," which could be ambiguous were it not for prem­
ises 3 and 4. Those premises make it clear that yielding a false conclu­
sion means outputting a statistically significant correlation (at some 
small level a) even though the variables in question are not correlated 
(in the population) but are independent. (The false conclusion here is 
a type I error: rejecting the null hypothesis even though it is true.) 
Premise 2 becomes 

2. No procedure for significance testing is acceptable if there are cir­
cumstances in which it is very probable that that procedure will reject 
the null hypothesis Hj at a low significance level 0: (and pass the non­
null hypothesis Hj') even though the null hypothesis is actually true. 
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Premise 3, while stated a bit confusingly, simply generalizes the 
situation we discussed in section 9.2. Since the population imagined is 
one where all the variables are independent, to assert a statistically 
significant correlation, that is, to reject the chance hypothesis, is to 
commit an error. Premise 3 describes a circumstance such that the 
searching procedure has a high probability of committing such a type 
I error. This is affirmed in premise 4. It then follows, in 5, that the 
significance test consisting of the procedure of searching described in 
premise I is unacceptable or inadmissible, on NP grounds. 

So, fleshing out the argument given by GSSK turns out to give a 
reasonable rendition of how an NP argument might go. Will it hold 
up? GSSK think not. 

Their Response and an NP Rejoinder 

The main objection of GSSK to the argument concerns premise 2. 
Premise 2, they object, assumes that a procedure ought to be judged 
by the worst imaginable case, namely, the circumstances described in 
premise 3. 5 Why consider the worst possible case, they ask, where all 
of the variables searched are actually independent? 

In the majority of cases researchers are pretty confident that the sta­
tistical dependencies they find are due to some causal structure or 
other .... If the investigator were not strongly inclined to think that 
there is some explanation other than chance (or bad measurement 
design) for the patterns found in the data, a causal model would not 
be sought in the first place. Unless the researcher thinks there is a 
large probability that the dependencies in the data are spurious, there 
is no sufficient reason not to use the data to search for the best expla­
nation of it. (GSSK 1987, 56-57) 

They continue that, 

of course, some of the correlations found may be due to chance, and 
that is the more likely the smaller the sample size in proportion to 
the number of variables considered. The investigator should certainly 

5. GSSK (1987) also object that premise 2 "puts all of the weight in judging a 
procedure on the deSirability of avoiding false theories" (p. 56). But NP criteria also 
consider the probability that a true hypothesis is accepted-by seeking a small type 
II error probability. It is just that the situation to which this NP argument is referring 
is one where it is given as part of the procedure that some hypothesis (or estimate) 
is going to be accepted. Thus the error of concern is the probability of erroneous 
acceptance. Of course nothing in the NP argument says there is anything wrong 
with searching for statistically significant results for the sake of getting some 
hypotheses to consider, and then testing them on other data. 
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take account of that fact and, where appropriate, test a model on new 
samples. (P. 57) 

I will return later to this continuation, which suggests a different 
tack than the earlier parts of the passage. What about the first part of 
their response? For starters, merely being ignorant of spuriousness is 
not sufficient for most researchers to be "pretty confident that the sta­
tistical dependencies they find are due to some causal structure." If, 
alternatively, this confidence is well founded from background knowl­
edge, then why are the researchers running statistical significance 
tests? Perhaps what GSSK mean is that, most of the time, the research­
ers have a strong belief that any dependencies found to be "statistically 
significant" are real: they assume there's a causal story to be had; the 
function of the test is to tell them which factors are really connected. 

For the test to tell them which are really connected, however, it 
has to be able to calculate the actual statistical significance-the actual 
error probability of the test procedure. That is, the researchers' reliance 
on an analysis of statistical significance to arrive at a reliable argument 
from error depends crit1.cally on that analysis being done correctly. Sig­
nificance tests are useful only to the extent that they can be relied on 
to alert us to the lack of statistical significance when there is none. 
Tests should declare the statistical significance level high and not low, 
when the correlation observed is of the sort that would, very probably, 
disappear in subsequent trials. This ability to make reference to what 
would probably occur in additional trials is altogether central to NP 
principles. 

The error statistician might put the rejoinder this way. This type of 
statistical significance test is designed for a case in which one is con­
cerned with ruling out the error that an observed correlation is merely 
due to chance. It is designed for a case in which one wants to know 
what it would be like if this were a population in which it would be 
an error to declare correlations genuine. As we have seen in previous 
chapters, one can then use the sample to see whether this error can be 
ruled out.6 If your case is not one in which there is a need of such 
information, then you are not in need of this particular NP test. But 
premise 2 does not rest on any claims about the relevance of significance 
tests for a given research situation. Claims about researchers' confi-

6. What is wanted in such a situation is a standard signal or warning that an 
observed correlation is of the sort that can often occur by chance: that it is the sort 
of result frequently generated even in working with a population in which the 
factors are independent. The actual Significance level is a measure of this frequency, 
so its being high indicates that such a correlation is highly probable by chance 
alone. 
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dence, warranted or not, are quite beside the point of the NP argu­
ment, which is really just an argument, a demonstrable one, about the 
properties of these testing tools. The argument shows that if you change 
the test procedure the error probabilities change, and if you report sig­
nificance levels in the usual way-if you are a "hunter" in Kish's 
sense-then you are going to get your error probabilities wrong. 

The upshot of premise 2, we can imagine the NP test saying, is this: 
"I cannot do my job if you are a hunter. My logic breaks down. Don't 
blame me if you declare correlations real far more often than the com­
puted level arrived at in searching for significance." Or as Selvin (1970) 
put it, if you apply statistical significance tests to a hunted hypothesis, 
"a spurious impression of validity may result. The computed level of 
significance may have almost no relation to the true level" (p. 104). 

What GSSK call the "worst case" is precisely the case that the NP 
statistical test must consider here, because that is just what the type 1 
error would be. It is often said that no one really thinks (point) null 
hypotheses are exactly true. But it is a mistake to regard this as a criti­
cism of their use in tests. We use them in getting the probability of a 
type 1 error, or the significance level, because we seek an objective way 
of learning how far from true they are. Hunting, on the other hand, 
allows correlations to be described as improbably far from what would 
be expected due to chance, when in fact they are quite typical of what 
would be expected even if chance alone were responsible. 

Using Computed Levels of Significance as Fit Measures. Granted, one may 
only be interested in giving a kind of summary measure of the ob­
served correlation, and the computed significance level could be used 
for this. (The smaller the computed level, the larger the deviation from 
the corresponding null hypothesis Hj' This corresponds to a greater "fit" 
with the alternative hypothesis Hj*') However, the process of giving a 
summary measure of fit is no longer an NP test process. An NP test 
process always asks about the error probability of the observed correla­
tion or fit measure-it would ask about the actual significance level. 
Without such an error probability, there is at most a data summary and not 
a statistical inference from the observed correlation to the population. To 
such a data summary the whole question of NP inadmissibility in 
premise 2 would not apply. Nevertheless, the soundness of this prem­
ise, which after all pertains to NP tests, still stands. 

The Honest Hunter: Defeating the Worst Case 

We have justified the argument of the NP inadmissibility of post­
designated or searching procedures of significance testing. The objec­
tion of GSSK exposed no unsoundness in the NP argument-once that 
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argument is properly understood. However, the later part of GSSK's 
statement quoted earlier, as well as their subsequent research efforts, 
leads me to suspect that GSSK agree. For there they allude to the advis­
ability of (a) ensuring a large enough sample size relative to the num­
ber of variables to be hunted or (b) testing on new samples. Both (a) 
and (b) presuppose taking seriously the threat posed by hunting for 
statistical significance. Avenue b is tantamount to setting out a new 
test and not violating predesignation altogether. Avenue a, however, 
may be seen as a way of defeating the worst case. I want to pursue this 
avenue a bit. 

Let us use the designation "hunters" to refer to those who engage 
in "hunting with a shotgun" and allow postdesignated hypotheses 
about correlations to be reported just as if they were predesignated. One 
might agree that the NP argument above is a sound argument against 
being a hunter, but deny that this bars all postdesignated tests that 
double count data. It does not bar the practices of what we might call 
"honest hunters." Honest hunters report, as far as possible, the true or 
actual significance level, taking into account the way this is altered by 
the fact of hunting. In suggesting avenue a, however briefly, GSSK 
seem to be taking the line of the honest hunter. 

NP statisticians can have no in principle objection to hunting and 
reporting the actual significance leveF-although they may have a 
practical one, which I will return to in a moment. Quite the contrary, 
that is what the NP statistician would recommend in cases that violate 
predesignation. To state it more generally, avenue a advises that by 
appropriately specifying the test (number of variables searched, sample 
size, the significance level required), the actual significance level, even 
in postdesignated tests, may be sufficiently small. 

One way that can happen is if many of the hypotheses tried turn 
out to be statistically significant. Let us return to Selvin. He explains 
how "curiously enough" the same argument against improperly using 
significance tests in postdesignation cases 

can be extended to show how the tests might legitimately be used on 
such hypotheses. Consider once more the twenty differences drawn 
from populations where the true differences are zero. We have seen 
that the probability of at least one difference "significant" at the 5 per­
cent level is 0.64. By similar calculation it can be shown that the prob-

7. That is so whether or not it is high or low. It cannot bar an entire procedure 
because it is possible for it to be applied in a case with large error probabilities, for 
that is true for all NP procedures. It may say it is not a particularly good test, but 
not that it is inadmissible. 
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ability of at least two "significant" differences is 0.26. that the proba­
bility of at least three is 0.07. and that the probability of at least four is 
0.01. In other words. if one examines twenty differences and finds 
four or more "significant" at the 5 percent level. then the set of differ­
ences is significant at the 1 percent level. since this combined result 
would have happened only one time in a hundred if the true differ­
ences were zero. (Selvin 1970. 104-5) 

313 

Several caveats remain. First. while one can reject the worst case 
here. one still cannot say any particular hypothesized correlation has 
passed a severe test. Second. as Selvin notes. sustaining this argument 
would require carefully considering correlated biases and the lack of 
independence of the 20 factors (p. 105). For ease of computation. Sel­
vin does not take these into account. Third, here the number of differ­
ences looked at was fixed at 20. If the number of variables sought could 
be open-ended-in a diligent hunting expedition-then it would be 
far more difficult to get a low error probability. It may not even be clear 
how to determine what the error probability is in such an open-ended 
case. Nevertheless, the honest hunter could argue that particular con­
texts impose a limit on the possible variables and corresponding 
hypotheses. 8 

So the task for honest hunters might be put as that of finding ways 
of showing that the overall error probability is fairly low. I take this to 
be the idea pursued in subsequent work by GSSK. By means of Monte 
Carlo simulations, and considerations of background constraints 
(based on knowledge of which variables are or are not related), they 
have made progress in investigating the reliability of their search pro­
cedures. The impetus of these investigations, in my view, is to show 
that their use-construction rules are of the sort that I called R-1T rules, 
with fairly high severity 1T in chapter 8, section 8.5. The NP philosophy 

8. One should not overlook a related and very serious problem that can arise. 
Here we are imagining that the analyzer knows all of the tests attempted. The situa­
tion is entirely different if one must resort to rounding up positive and negative 
results from the literature. The problem. often called the "file drawer problem," 
is that nonstatistically significant results may remain in file drawers. never to be 
published. Because these negative results would not be counted, a much higher 
proportion of statistically significant results would be found than actually exist. This 
is a good example of a canonical mistake. 

Robert Rosenthal, a leader in the relatively recent area of "meta-analysis," dis­
cusses how one might "estimate the degree of damage to any research conclusion 
that could be done by the file drawer problem" (1987,223). This attempt to esti­
mate and subtract out the effect of studies remaining in file drawers is, in its intent. 
very much in the spirit of the error statistical program. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:14:48.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



314 CHAPTER NINE 

has no valid argument against postdesignation in such cases. (But see 
note 9.) 

C. S. Peirce, that arch-predesignationist, actually anticipated the 
gist of the responses of the honest hunter. Perhaps this is not really 
surprising because Peirce in many ways seemed to have anticipated 
the appropriate construal of NP methods-a thesis to be pursued in 
chapter 12. Peirce discusses an important modification of the rule of 
predesignation, namely, when it is not necessary. 

Without any voluntary predesignation, the limitation of our imagina­
tion and experience amounts to a predesignation far within those 
limits; ... thus ... if the number of instances be very great ... the 
failure to predesignate is not an important fault .... So that if a large 
number of samples of a class are found to have some very striking 
character in common, or if a large number of characters of one object 
are found to be possessed by a very familiar object, we need not hesi­
tate to infer, in the first case, that the same characters belong to the 
whole class, or, in the second case, that the two objects are practically 
identical. (Peirce 2.740) 

A Tactical NP Objection 

One can articulate another kind of NP objection to hunting for 
correlations. Although it too can be seen to have its basis in what I 
called the error-probability principle (EPP), it is not an argument about 
the inadmissibility in principle of violating predesignation. The objec­
tion now is more practical: it is so difficult to figure out what the actual 
error probabilities are in postdesignated cases, this objection goes, that 
they are not recommended by this school of inference. Even adjusting 
the test specifications to get reasonable significance levels rests on very 
slippery assumptions or requires too-large sample sizes to be practic­
able. Nevertheless, new uses of computer-driven Monte Carlo simula­
tions might get around these tactical criticisms. To their credit, GSSK, 
in their most recent work, appear to be heading in that direction. 

9.4 THE CREATIVE ERROR-THEORIST 

Some practitioners may feel dissatisfied at what I have provided thus 
far. They may grant that the NP theorist is correct to charge that the 
error probability guarantees of NP tests break down in hunting proce­
dures. They may likewise grant the validity of calling for elaborate ad­
justments to significance levels, sample sizes, and so on to ameliorate 
the problem of high error probabilities in hunting procedures. But in 
point of fact they are still confronted with the realities of their inquir-
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ies, and being an honest hunter by the straight and narrow path still 
prevents them from doing the kinds of things that it seems they ought 
to be able to do with the evidence they have. If one keeps in mind that 
the ultimate goal is a severe argument from error, then it is possible to 
go further, while remaining within the NP school. The previous chap­
ters give us a head start on this problem. 

This takes us into the realm of informal error probability argu­
ments, and hence from formal NP statistics into the broader realm of 
the error statistician. Consider a case in which a violation of predesig­
nation results in the actual significance level being high (and thus, the 
severity being low). The honest hunter must report the actual signifi­
cance level. So the statistical significance test analysis does not provide 
a severe test of the reality of some correlation. But that is not the only 
kind of analysis possible, even without getting more data. (Of course, 
if it were feasible to get more data, this might be desirable.) Even if 
none of the quantitative NP tools has anything more to offer (at least 
not at present), the error-statistician's tool kit certainly might. What is 
needed is an argument from error, an argument to rule out error. If it 
is remembered that that is the underlying rationale for NP inferences 
in the first place, then arriving at or approximating some such argu­
ment must be countenanced on error-severity grounds. 

Attention to the inadmissibility argument spelled out above alerts 
the researcher that the significance test does not license a certain infer­
ence. It says nothing about other arguments that might be put forth. 
The error statistician requires only that it be able to be shown that the 
argument used is reliable in our sense. (The researcher cannot just say 
that he or she feels very strongly about the conclusion.) Nothing in 
what we have said precludes assessing the reliability of some other 
method that a researcher might custom-design. It might well be shown 
that the custom-designed method constitutes a reliable method for in­
ferring a type of correlation. It might be shown to be a high severity 
use-construction rule (R-'IT), as defined in chapter 8. 

Recall our discussion of the informal arguments from coincidence 
in chapter 3-how they justified inferring that an effect is real, that it 
will not go away. Hacking, for example, presented such an argument 
for dense bodies. The same was seen in Perrin's argument for coinci­
dence for the causes of Brownian motion. At this stage of their argu­
ments there was no need to formally define a test statistic with quanti­
tative error probabilities. They could arrive at arguments that fairly 
well rule out the error of mistaking an artifact for a real effect. The 
informal calculation of severity mimics the formal one. 

Of course, whether one is relying on a formal or an informal argu-
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316 CHAPTER NINE 

ment from error, one must be careful not to infer more than the argu­
ment warrants. Having knowledge of a real effect is not the same as 
having knowledge of an important effect; much less is it the same as 
knowing about its specific cause. The need for a piecemeal breakdown 
into arguments from error, and the need to limit the inference to what 
is strictly warranted by each argument, must be respected (chapters 5 
and 6).9 

The quantitative NP test procedures serve as canonical models of 
error-so do NP inadmissibility arguments. Canonical models of error, 
recall, are exemplars, of both admirably high and infamously low relia­
bility. The "worst case" scenarios, as in the examples of Kish, Selvin, 
and Giere, are examples of the latter. They demonstrate how hunting 
expeditions can lead you terribly astray. The lesson is that the onus is 
on you to show how you are getting around that possibility. The situa­
tion is similar to what happens in retrospective analyses of correlations. 
Knowledge of how that can lead one astray has given rise to a host of 
procedures for reliably inferring correlations retrospectively. In a much 
less systematic way, individual researchers, especially in medicine, de­
velop informal procedures for learning from correlations that are only 
noticed from "peeking" at the results of medical trials. Some oncolo­
gists hold that the major advances in cancer chemotherapy were made 
based on retrospective studies of small groups of patients (Greenspan 
1982, 8). However difficult it may be to arrive at these approximate or 
qualitative error probabilities, if they are arrived at and are valid from 
a frequentist point of view, there are no error statistical grounds for 
condemning them. 

9.5 CONCLUSION 

The real NP argument against postdesignated significance tests is that 
if the same data are used both to construct as well as to test statistically 

9. Even if one manages to obtain a low actual level of significance and thereby 
pass the nonchance hypotheses severely, this severity does not carry over into par­
ticular interpretations of the correlation found. These distinct inferences (we may 
locate them in a model above the experimental hypothesis of a real correlation) 
introduce a distinct set of possible errors. 

For example, in the social sciences, as Paul Meehl has steadily warned, genu­
ine correlations can be found among nearly all variables "since in social science 
everything correlates with everything to some extent" (1990, 207). This fact­
Meehl calls it the "crud factor"-introduces an important canonical error: when 
the crud factor is high, a test that takes evidence of a real correlation as evidence 
of a particular causal hypothesis would often pass causal hypotheses erroneously­
the test would have poor severity. Meehl makes the intriguing proposal of estimat-
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hypothesized correlations, the actual probability of erroneously declar­
ing a correlation to be genuine-that is, the actual significance level­
differs from, and may be much greater than, the computed significance 
level. Using the computed significance level in postdesignation cases 
forces one to adopt a different interpretation of a significance level, 
one that conflicts with the intended interpretation and use of signifi­
cance levels (as error probabilities). 

The upshot of the real NP argument is a warning: since violating 
predesignation may alter the actual significance level (by altering the 
test procedure), it is invalid to report the results in the same way as if 
hypotheses were predesignated. Now the high actual significance level 
corresponds to low severity, for it means that there is a high probability 
of affirming the existence of a real correlation erroneously. Hence the 
justification for the NP warning is that if one fails to heed it, tests will 
be construed erroneously as having high severity. 

One could suggest, as I believe GSSK do, that the computed sig­
nificance level be calculated simply as a kind of measure of fit and then 
give some other report of the overall error probability. In getting these 
other reports, they also allude to various background considerations or 
"constraints" regarding which variables are or are not connected. If 
these other reports of reliability are valid from a frequentist point of 
view, then they may certainly be sanctioned and even welcomed by 
the error probability statistician. It is important to see, however, that 
this is not a defense of hunting in standard significance tests, quite the 
opposite. It is to grant that the NP inadmissibility argument necessitates 
some wholly other kind of test or analysis. I take it that this is what 
GSSK are really hunting for. 

The examples we have considered of hunting for statistical signifi­
cance should be viewed as canonical models of error-as classic ways 
of being led into clearly unreliable tests. Rather than viewing them as 
part of an utter prohibition of violating predesignation, they should be 
viewed as invitations to articulate creative arguments to substantiate 
reliability by other means. Such developments are quite in keeping 
with the statistical philosophy of E. S. Pearson: 

There is perhaps in current literature a tendency to speak of the 
Neyman-Pearson contributions as some static system, rather than as 
part of the historical process of development of thought on statistical 
theory which is and will always go on. (Pearson 1966d, 276) 

ing the crud factor for given domains-something I hope will be pursued. Meehl's 
work provides an excellent source for building a tool kit of errors for social sci­
ence research. 
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Considerations of the creative postdesignationist provide the 
groundwork for justifying a break with overly narrow construals of NP 
methodology. This break is not new but reflects sound uses of those 
procedures in much of scientific practice. What is still needed is a clear 
articulation of the associated error-statistical arguments. This is part of 
the larger task of setting out an adequate methodology of experiment, 
a task that requires domain-specific considerations and is beyond the 
scope of this book. Despite wide latitude for such a program, the one 
thing retained is the constraint-formal or informal-of error statistics 
or severity. This stands in marked contrast to the alternative program 
represented by the Bayesian Way. Deliberate disregard for this con­
straint, as will be seen in the next chapter, "frees" the Bayesian to view 
hunting and data snooping as irrelevant to the import of the evidence 
in hand. 
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CHAPTER TEN 

Why You Cannot Be Just a 
Little Bit Bayesian 

To understand how radical the likelihood principle must appear to 
many objectivists, note first that in accepting this principle one 
renounces all desire to make his estimates unbiased. An even more 
radical consequence of the likelihood principle is the thesis of the 
innocuousness of [rules to stop the experimentj. 

-Bruno de Finetti, Probability, Induction and Statistics: The Art of 
Guessing, p. 170 

The likelihood principle emphasized in Bayesian statistics implies, 
among other things, that the rules governing when data collection 
stops are irrelevant to data interpretation. It is entirely appropriate 
to collect data until a point has been proved or disproven. 

-Ward Edwards, Harold Lindman, and Leonard Savage, "Bayes-
ian Statistical Inference for Psychological Research," p. 193 

It would indeed be strange if the information to be extracted from 
a body of data concerning the relative merits of two hypotheses 
should depend not only on the data and the hypotheses, but also 
on the purely external question of the generation of the 
hypotheses. 

-A. W. F. Edwards, Likelihood: An Account of the Statistical Concept 
of Likelihood and Its Application to Scientific Inference, p. 30 

The likelihood principle implies ... the irrelevance of predesigna­
tion, of whether an hypothesis was thought of beforehand or was 
introduced to explain known effects. 

-Roger Rosenkrantz, Inference, Method and Decision: Towards a 
Bayesian Philosophy of Science, p. 122 
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IN APPRAISING METHODOLOGICAL RULES for scientific inference the norm­
ative epistemologist needs to assess how well the rules promote a given 
experimental aim. It is entirely reasonable to expect that philosophical 
accounts of hypothesis testing or confirmation should have something 
to say in such a metamethodological assessment. I listed this task in 
chapter 3 as the third way in which accounts of hypothesis testing may 
be applied in philosophy of science. A danger persists, however, that 
the view of testing appealed to in such a metamethodological appraisal 
already embodies principles at cross-purposes with the aim underlying 
the account to be appraised. This situation exists, I have already al­
leged, in Bayesian appraisals of the use-novelty (UN) requirement. In 
this chapter I shall give a full-blown justification for my allegation­
but that will be only my first stopping point on the way to a further 
destination. Catching the Bayesians in this misdemeanor uncovers a 
pervasive illicitness in the Bayesian Way of performing a methodologi­
cal critique. The problem, in a nutshell, is this: the underlying rationale 
of a number of methodological rules is the aim of reliability or severity 
in the sense I have been advocating, yet that aim runs counter to the 
aim reflected in Bayesian principles. In section 10.3 I will explicitly 
take up an even more far reaching outgrowth of this recognition, 
which explains the title of this chapter. 

The intent of the title is not to suggest that all Bayesians are radical 
subjectivists or strict Bayesians-but somewhat the opposite. What I 
am arguing is that insofar as one accepts inference according to Bayes's 
theorem, one is also buying into distinctive principles of relevant evi­
dence, hence criteria for inferences, hence grounds for judging meth-
0dological rules. The key issue is the question of the relevance of error 
probabilities. Accepting minimal Bayesian principles compels renounc­
ing standard error probability principles and their informal counter­
parts (e.g., severity and reliability in our sense). 

The conflict between these two sets of principles is familiar to phi­
losophers of statistics: 

It seems that the divisions in statistics result almost completely from 
differences in attitude to the question of whether operating character­
istics of data analysis procedures are important or not. (Kempthorne 
1972, 190) 

Error probabilities are examples of operating characteristics of proce­
dures, and they are the linchpin of error statistics. The difference in 
attitude reflects different principles for interpreting data. Given an ob­
served outcome x the error statistician finds it relevant-indeed essen­
tial-to consider the other outcomes that could have resulted from the 
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procedure that issued in data x. Those considerations are needed to 
calculate error probabilities. Bayesian inference-although it comes in 
many different forms-must hold to the likelihood principle, and this 
leads to the irrelevance of such calculations. James Berger and Robert 
Wolpert, in their monograph The Likelihood Principle (which they ab­
breviate as LP), assert that 

the philosophical incompatibility of the LP and the frequentist view­
point is clear, since the LP deals only with the observed x, while fre­
quentist analyses involve averages over possible observations .... 
Enough direct conflicts have been ... seen to justify viewing the LP 
as revolutionary from a frequentist perspective. (Berger and Wolpert 
1988, 65-66) 

I will be making use of their work in section 10.3. 
Despite these direct conflicts, particular error statistical procedures 

often correspond to procedures Bayesians would countenance, albeit 
with differences in interpretation and in justification. This apparent 
overlapping of procedures is regarded by some as belittling the signifi­
cance of the "philosophical" differences between Bayesians and error 
statisticians on matters of interpretation and justification. Even in the 
apparent eclecticism of statistical practice, however, the issues of in­
terpretation and justification do not go away; and when it comes to 
utilizing statistical ideas in philosophy of science, these issues are para­
mount-although they have generally been overlooked. Since philos­
ophy of statistics, in its formal guise, tends to occupy a rather separate 
niche in philosophy of science, it is not surprising to find that most 
philosophers of science are unaware that there are two major conflict­
ing principles of confirmation, support, or testing. Nor is it obvious that 
this conflict should be of any particular concern to philosophers. 

Is it possible that a conflict that, strictly speaking, emanates from 
two opposed formal statistical schools could shed any light upon the 
problems still facing philosophers of science? Is it possible that even as 
the logical empiricist ways are being replaced with "postpositivist" ones 
that a fundamental principle of evidence and evidential appraisal is 
still, unknowingly, retained? Is it possible that a good deal of the debate 
about methodological principles is rooted in the opposition between 
two principles, made explicit in theories of statistics? The answer to all 
these questions, I believe, is yes. 

First I will illustrate how the novelty debate is skewed when seen 
through Bayesian glasses. Then we will arrive, finally, at the heart of 
the conflict between error probability principles and the likelihood 
principle. 
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10.1 NOVELTY AND SEVERITY THROUGH BAYESIAN GLASSES 

Let us begin with the flaw in Bayesian critiques of arguments for the 
UN requirement. While not immediately obvious-at least it does not 
seem to have been recognized-the flaw is not difficult to spot, having 
the results from the previous two chapters under our belts. 

In chapter 8, recall, the UN requirement was found to reflect the 
desire to ensure that evidence counts as good grounds for H only to 
the extent that it may be seen to constitute a good test of H, meaning 
that the evidence stems from a procedure with a low probability of 
erroneously passing hypothesis H-that is, one with high severity. I 
then set out to evaluate how well the UN requirement accorded with 
the aim of severe tests. I showed that while a test that violates the UN 
requirement is assured of passing the hypothesis it tests, it does not 
follow that it was assured of doing so whether or not that hypothesis is 
false. In short, I showed the argument for requiring UN to be unsound 
by showing that violating UN need not lead to violating severity, de­
spite the fact that the intended aim of use-novelty is severity. 

The Bayesian appraisal of accounts of novelty takes a very different 
tack. To the Bayesian, it has been said, all things are Bayesian, and the 
Bayesian appraisal of the UN requirement is a perfect illustration of 
this. The Bayesian appraises the UN requirement according to whether 
it has a rationale from its own vantage point of what counts as good 
support for a hypothesis. Running the UN requirement through the 
Bayesian machinery means asking whether satisfying UN is necessary 
for Bayesian support. 1 Howson and Urbach (1989) make this Bayesian 
strategy very clear. They note that although "the Bayesian theory of 
support is certainly inconsistent with" the UN requirement, 

there are arguments for the view, and these both sound convincing 
and also number among their subscribers many if not most contem­
porary philosophers of science. We shall examine these arguments 
now and show that their plausibility vanishes on closer inspection. 
(Howson and Urbach 1989, 276) 

They get the plausibility to vanish only by changing the argument-at 
least as it is offered by the non-Bayesians they consider (e.g., Giere, 
Glymour, Worrall). They change the argument by making the "closer 
inspection" consist of an examination through a Bayesian magnifying 
glass-through the Bayesian rule for support. I am not criticizing their 

1. That the Bayesian asks about support rather than about good and bad tests 
does not impede this analysis. 
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Bayesian scrutiny of the arguments offered by other Bayesians (e.g., 
Redhead). I concur that attempts at Bayesian justifications of UN will 
not wash. But aside from these few Bayesian exceptions, the "many if 
not most contemporary philosophers of science" to whom Howson and 
Urbach refer are not giving Bayesian arguments for requiring UN. Here 
is where the inappropriateness comes in. 

Whose Rule of Support? 

According to Howson and Urbach, 

attempts to show that data which hypotheses have been deliberately 
designed to entail, as opposed to independently predicting, do not 
support those hypotheses fail. On the contrary, the condition for support, 

that P(e I not-H) be small, may be perfectly well satisfied in many 
P(el H) 

such cases. (Howson and Urbach, 1989, 279; emphasis added; I re­
place their h with H) 

The condition for support? So confidently do Bayesians speak of "the 
condition for support" that the UN proponent may forget to ask 
whether this was the intended condition when thinking that UN is 
required for a good test. If it is not, then the Bayesian criticism fails to 
make a dent in the argument for UN. In fact, it is not. 

First, let us be clear about the origin of this condition for support. 
It comes from the Bayesian condition that for evidence e to provide 
support for hypothesis H the posterior probability of H given e must be 
higher than the probability of H prior to e. That is, the posterior proba­
bility of H must exceed the prior probability of H: 

Bayesian rule for support (first form): e supports H if P(H I e) is greater 
than P(H). 

Although it is not immediately obvious, this rule is equivalent to the 
requirement that e be more probable under H than under not-H. That 
is, 

Bayesian rule for support (second form): e supports hypothesis H if e is 
more probable under H than under not-H. 

Equivalently, 2 

2. To see how the second form of the Bayesian rule of support falls out from 
its first form, consider Bayes's theorem and then calculate the ratio of P(H I e) and 
P(H): 

P(H I e) = P(e I H) P(H) 
P(e I H) P(H) + P(e I not-H) P(not-H). 
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e supports Hif Pie I H) is greater than Pie I not-H). 

We have arrived at the rule for support to which Howson and Urbach 
refer in the above passage. Let us get a little fancier. Let us abbreviate 
the Bayesian ratio of suppor[3 for H as BR: 

P(e I not-H) 
BR: . 

P(e I H) 

We can then write what Howson and Urbach refer to as "the condition 
for support" as the condition: e supports H if the Bayesian ratio BR is 
less than 1. The smaller the BR is, the greater the support for H. This 
condition does not require the posterior probability to be high, just 
that it be higher than the prior. 

For the case where H is constructed to fit e, Howson and Urbach 
suppose that H entails e (hence P(e I H) = 1), so in considering their 
discussion I will too. In that case, the Bayesian rule of support becomes 
extremely simple: 

Bayesian rule of support where P( e I H) = 1: e supports hypothesis H if 
P( e I not-H) is less than 1. 

It is now easy to see, when the argument for the UN requirement is 
scrutinized through Bayesian glasses, why the proponent of the UN 
requirement appears to be claiming that violating UN leads to P(e I not­
H) being 1. Why? Because that is what it would mean for a Bayesian to 
assert that no support accrues (when H entails e). 

Recall that P(e I not-H) is our friend the Bayesian catchall factor 
(section 4.3). Calculating the Bayesian catchall factor (except where 
not-H is a point hypothesis) requires prior probability assignments to 

Then the ratio, 

P(H I e) = P(e I H) 

P(H) P(e I H)P(H) + P(e I not-H) P(not-H) 
1 

P(H) + P(e I not-H) P(not-H) 
P(el H) 

This exceeds 1 just so long as the denominator is less than 1. And remembering 
that P(H) = 1 - P(not-H), it is seen that this occurs whenever P(e I not-H) < P(e 
IH). 

3. The BR is often called the likelihood ratio but this is misleading since the 
hypotheses involved can be disjunctions requiring averaging over prior probabili­
ties. What I am calling the Bayesian ratio of support is also called the Bayes's factor 
against H, but I did not want to confuse the BR with what I call the Bayesian factor 
on the catchall. 
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all alternatives to H. But the non-Bayesian refuses to employ prior 
probabilities. Nevertheless, this does not stop Howson and Urbach from 
using this critique against non-Bayesian arguments for use-novelty. 
From their Bayesian perspective, all that is needed to vitiate arguments 
for requiring UN is that UN is not required for Bayesian support. For 
this it suffices to show that even when H is use-constructed, an agent 
can assign the Bayesian catchall factor a value less than 1. And that is 
what they do. 

Howson and Urbach most specifically consider Giere's position, 
which we are already familiar with, that evidence used to construct a 
hypothesis has "no chance of refuting it." In this connection, they con­
sider Giere's discussion of Gregor Mendel. A constraint on Mendel's 
model, says Giere, was to fit the evidence of the two-to-one ratio of 
tall to dwarf plants. Thus, following the same pattern of argument ar­
ticulated in chapter 8, he considers that such a fit was assured even if 
Mendel's hypothesis had been false. Through Bayesian glasses, Giere 
looks to be claiming that the Bayesian catchall factor is assured to be 
1, and this Howson and Urbach deny: 

It is far from self-evident that Mendel's data would not be improbable 
were his own explanation of them to be false; indeed, as that was the 
only explanation which seemed plausible to Mendel, its falsity would 
presumably render those data, were they assumed to be still conjec­
tural, relatively improbable as far as he was concerned. And this, as 
we have seen, is sufficient for a Bayesian to be able to explain the 
undoubted fact that Mendel himself took his data to be strongly con­
firmatory of his model. Giere has not justified his thesis-nor indeed could 
he-that P(e I not-H) = 1 when H has been designed to explain e. (Howson 
and Urbach 1989, 277; emphasis added. To be consistent with my 
notation, I capitalize their lowercase h and use "not-H" rather than 
-h.) 

So it suffices to vitiate Giere's argument, according to Howson and 
Urbach, that as far as a given agent is concerned there is no other plausible 
explanation of the evidence. In fact, Bayesian support will accrue 
(however small) so long as the subjective Bayesian catchall factor is 
less than 1.4 Thus it suffices for support that the agent believes there 
to be at least one alternative to H that does not make the evidence 
certain! Since there is vast latitude to what agents can believe, their 
dismissal of Giere's argument is simplicity itself. 

4. There are really two mistaken assumptions in this Bayesian critique of 
Giere: that the probability of concern is the Bayesian factor on the catchall and that 
subjective probabilities are relevant. 
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But it has nothing to do with Giere's argument. Admittedly, Giere 
is careless in stating what he regards as the intended rationale for UN, 
but, having acknowledged that he is a non-Bayesian, it is odd that 
Howson and Urbach suppose that a subjective Bayesian analysis has 
relevance. They disregard Giere's warning that 

it is crucial to remember that the probabilities involved are physical 
probabilities inherent in the actual scientific process itself. If one slips 
into thinking in terms of probability relations among hypotheses, or 
between evidence and hypotheses, one will necessarily misunder­
stand this account of the nature of empirical testing. In particular, one 
must not imagine that to estimate the probability of [a failing result] 
one must be able to calculate the probability of this result as a 
weighted average of its probabilities relative to all possible alternative 
theories. No such probabilities are involved. (Giere 1983,282-83) 

And yet that is precisely how Howson and Urbach construe the proba­
bilistic claim in Giere's argument. 

Now it is true that Giere's argument for the necessity of UN is un­
sound (as I argued at length in chapter 8), but not for the reason the 
Bayesian alleges. The difference is altogether crucial. The proponent of 
the UN requirement is not at all claiming that violating UN precludes 
Bayesian support (whether subjectively or objectively interpreted)! 
The concern, rather, is with violating the severity requirement. And 
Bayesian support is easy to obtain even where severity is violated. 

Low or Minimally Severe Tests Can Satisfy the Bayesian 
Requirement for Support 

One way of making this point clearer is to consider a restricted 
version of the UN requirement, which does hold: 

Restricted UN requirement: Data used to arrive at and test a use­
constructed hypothesis cannot count as a good test of that hypothesis 
if there is a high probability for passing some such hypothesis, even 
if it is false. 

This is, of course, just an instance of the severity requirement: any test 
that lacks severity is a poor one, and in some cases violating UN makes 
it easier to carry out strategies that hinder severity. Equivalently, the 
restricted UN requirement says that a use-constructed hypothesis is 
poorly supported or poorly tested by evidence if the use-construction 
rule is one of the "Unreliable ones. In the extreme case of a gellerized 
rule, there is no test, and so no genuine support at all. 

The existence of highly unreliable use-construction procedures 
is the reason that many are led to uphold the UN requirement and 
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eschew udouble counting U of data. Admittedly, as we saw in chapter 
8, it is really only the restricted UN requirement that is warranted. 
Nevertheless, Howson and Urbach's Bayesian argument against the 
general UN requirement goes through just as well for this restricted 
UN requirement. Another way to put this is that even when severity is 
low or zero, the condition for Bayesian support can be satisfied. Hence 
finding Bayesian support still available simply cuts no ice with an 
error-severity person. Satisfying Bayesian support is not sufficient for 
severity. 

This is obvious where calculating the Bayesian ratio (BR) is subjec­
tive, that is, where the reason the Bayesian support ratio is small is 
that the agent simply believes evidence e to be incredible under alter­
natives to H. However, minimally severe tests can muster Bayesian 
support even if the BR is determined by objective likelihoods from a 
probability model. 

Maximally Likely Alternatives Again 

We have already seen several examples that would show this. Re­
call our discussion of maximally likely alternatives and the problem of 
underdetermination in section 6.5. Let Ho be the null or test hypothe­
sis, and H an alternative hypothesis. The Bayesian condition of support 
for H is satisfied so long as H makes e more probable than does Ho-so 
long as the Bayesian ratio BR is less than 1. Here the BR equals 

P(e I Ho) 

P(e I H) 

But one can always find such an H (so long as Ho does not give e probabil­
ity 1). One simply uses evidence e to construct or select an H that per­
fectly fits the evidence e. Support would thereby accrue to H, even 
when the restricted UN requirement would be violated. The extreme 
example of gellerization could illustrate, but so could less artificial ex­
amples such as those from uhunting for statistical significance," dis­
cussed in chapter 9 (especially in section 9.2).5 

5. To see how the gellerized process in example 6.1 would do to make this 
point, note that the severe testing theorist would describe the process this way: 
Observe the outcome e, find a hypothesis G(e) that makes e maximally likely, and 
then deem G(e) supported bye. (Whether one goes on to measure the support is 
irrelevant.) Although the particular hypothesis erected to perfectly fit the data will 
vary in different trials, for every data set some such alternative may be found. 
Therefore, supporting the maximally likely hypothesis constructed is assured, even 
if that hypothesis is false. 

Teddy Seidenfeld clued me in to a nifty real-life example from sports that offers 
a different kind of illustration. A person who wants to show he has a system for 
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Hunting Again 

To see how the Bayesian rule accords support to a hypothesis that 
an error theorist would consider poorly tested, we can recall the strat­
egy of hunting used in the study of infant training discussed by Kish 
(1970) and detailed in section 9.2. For simplicity, consider that a single 
infant training experience is of interest, early weaning. Suppose that 
the procedure is to search among 100 factors for 1 that is highly corre­
lated with having been subjected to early weaning. Say that such a 
correlation is found between early weaning and a tendency toward 
shyness in older children. Outcome e is the difference between the pro­
portions of the early weaners and the late weaners who are or claim 
to be shy. Hypothesis Ho asserts that the observed correlation between 
early weaning and shyness is spurious, or due to chance. The proce­
dure will test hypothesis Ho only upon finding an e that is very improb­
able given that Ho is true-so the numerator of the Bayesian ratio is 
small. For example, the difference sought may be required to be at 
least 2 standard deviations (corresponding to the .05 "computed" level 
of significance). The alternative H may assert that the correlation is real 
and in the direction observed: 

H: Early weaning is correlated with shyness in young children. 

Hypothesis His deliberately chosen or constructed so that the denomi­
nator of the BR, P(e I H), is high (perhaps maximal). The evidence is far 
more probable given hypothesis H than given the null hypothesis Ho. 

Notice the similarity between the improbability of the particular e 
given the chance hypothesis Ho and the small "computed significance 
level" in the last chapter. The probability of this particular outcome e­
a high correlation between early weaning and shyness-is very low 
given the null hypothesis Ho' The alternative-by design-makes this 
observed correlation highly probable. So the Bayesian rule of support 
is satisfied-indeed, it is well satisfied, since the ratio is not just less 
than 1 but very small. 

Such an example reveals in no uncertain terms the mistake that 
has gone unchecked in Bayesian reconstructions of non-Bayesian ar­
guments. The mistake stems from the fact that satisfying Bayesian sup-

predicting the winning slate in a football series offers this "test": If the list of win­
ners he sends you at the start of the season turns out to be correct, then it is re­
garded as good support that his system really works. However, each possible per­
mutation of winners is sent to a different sports fan, so his system is assured of 
acquiring high support (by someone) even if his system has no predictive ability 
beyond mere guessing. 
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port is not sufficient for satisfying severity. That a methodological rule 
is not required for Bayesian support does not license inferring that the 
rule is not required for non-Bayesian measures of support-such as 
those based on error probabilities. 

Satisfying Severity versus Satisfying Bayesian Support 

It will be useful to recapitulate the distinguishing feature of a se­
verity calculation by way of the Bayesian rule of support (that e sup­
ports H if the BR is small). In appraising such a rule, the error statisti­
cian is concerned with its behavior under repetitions. With respect to 
the case being discussed, the severity criterion requires asking how of­
ten the rule would award support to hypotheses about the effects of 
infant training on personality, even if they are false and there is no real 
difference in personality traits among those subjected to the different 
infant training.6 We can answer this question by viewing the Bayesian 
ratio BR as a statistic, a function of the data. For each trial of the experi­
ment the BR takes some value. So long as the BR is less than 1, support 
accrues to the use-constructed alternative H, but we are imagining that 
the rule is even more demanding: the BR must be very small. Severe 
testers want to know how often such strong support would accrue for 
some nonchance hypothesis (between infant training and personality) 
or other, even if Ho is true. And they want to know this even after the 
result is in and a particular value for the BR has been calculated. With 
100 different tests, it is highly probable that at least one 2-standard­
deviation difference would be found, even if all the null hypotheses 
were true.? The severity of the test that H passes is 1 minus this, and 
thus is very small, practically O. Although the probability of any particu­
lar statistically significant result is low, the probability of some high 
correlation or other is high. 

To answer the severity question, the error statistician needs to con­
sider something that from the Bayesian standpoint is irrelevant-the 
behavior of the statistic (in this case the BR) in a series of (real or 
hypothetical) repetitions. This is the experimental distribution of statis­
tic BR. (Precisely why it is irrelevant for the Bayesian will be taken up 
in section 10.3.) Such considerations, in the view of the error statisti­
cian, are necessary to scrutinize the Bayesian procedure of assessing 
support by calculating the BR. 

6. Since this is an example of the type where the hypothesis selected for testing 
can vary, the severity criterion becomes SC with hypothesis construction (defined 
in section 6.6). 

7. Applying the calculation discussed in chapter 9, the probability is about .99. 
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Sum-Up 

We have shown in this section that the Bayesian rule of support is 
unreliable in the sense that it allows support to accrue to hypotheses, 
with high probability, even if the hypotheses are false. True, merely 
satisfying the rule of support does not say that the posterior probability 
of H is high, nor that the increment in the posterior is large. It says 
merely that some support accrues to H; it may, depending on the prior 
probabilities, be tiny. But that is the Bayesian condition for support that 
Howson and Urbach use to denounce arguments for the UN requirement. 
Hence it is appropriate for us to consider it in questioning their denun­
ciation. Moreover, it makes sense for them to consider the minimal 
requirement for support because that is what they regard as being chal­
lenged by the claim that UN is necessary. What I have shown is that 
their criticism is unsound because satisfying Bayesian support does not 
entail satisfying severity. And all I claim to be doing just now is dis­
counting this Bayesian criticism. 

It may be objected that I am evaluating the Bayesian criterion of 
support from an error probability (e.g., severity) stance. That is exactly 
right. It is entirely appropriate to do this in answering Bayesian cri­
tiques of the novelty requirement, because the aim of novelty is se­
verity. 

Novelty through Bayesian Glasses 

Since the UN requirement reflects a concern about error-severity, 
it is easy to see why the Bayesian concludes that the novelty require­
ment will not hold up. The point is made informally by remembering 
what was said about Bayesian philosophers being descendants of hold­
ers of "logical theories" of confirmation. Like the logical theorists be­
fore them, those who assess the import of evidence by way of the 
Bayesian ratio regard as irrelevant how the hypothesis was generated. 
(There are also prior probabilities, of course, but these are separate 
from the import of the evidence for support.) The Bayesian support 
ratio BR, which is how the import of the evidence comes through for a 
Bayesian, is unaffected by the manner of hypothesis generation. Hence 
Howson and Urbach's (1989) assertion that "the Bayesian theory of 
support is certainly inconsistent with" the novelty requirement (p. 
276). 

Not all Bayesians deny the UN requirement, but both supporters 
and detractors share the assumption that what has to be shown or 
denied is its bearing on the Bayesian measure of support (the Bayesian 
support ratio). To be fair, the reason for this is not just the Bayesian 
tendency to appraise all principles of evidence according to the Bayes-
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ian formula. In this case, non-Bayesian UN proponents have uncon­
sciously opened up their argument to Bayesian scrutiny by making 
ambiguous statements about the grounds for requiring UN. (We saw 
this in discussing Worrall and Giere in section 8.3.) What UN propo­
nents have failed to see or failed to state unequivocally is that the rai­
son d'etre for the use-novelty principle has to do with severity-in our 
non-Bayesian sense. To think that severity matters is to think that test 
results cannot be appraised without considering the error properties of 
the entire procedure from which the results arose-the very properties 
that Bayesians are happy to declare irrelevant. 

Bayesian Ways to Make Novelty Matter 

If violating novelty is not relevant to Bayesians, then they are faced 
with the problem of accounting for scientific cases where it does seem 
to have mattered. It is open to the Bayesian to propose the classic 
Bayesian move. Any scientific appraisal that you think turned on the 
mode of hypothesis construction (and a concern with the correspond­
ing lack of severity or reliability), the Bayesian may allege, can be re­
constructed as having turned on some difference in prior probabilities. 
Indeed, any time there is a difference in the appraisal of two hypothe­
ses that entail (or equally fit) evidence, the Bayesian must locate the 
source of the difference in the priors. There is no place else to locate the 
difference in the Bayesian algorithm. Granted, with given assumptions 
about one's prior probabilities in hypotheses, some, though not all, vio­
lations of severity can be made to correspond to tests that are poor or 
comparatively poor on Bayesian grounds. Even so, the Bayesian recon­
struction incorrectly locates the actual rationale for disparaging these 
tests. 

Various attempts in which, through just the right assumptions and 
prior probabilities, use-novel hypotheses receive higher Bayesian sup­
port than use-constructed ones include Campbell and Vinci 1983; 
Howson and Urbach 1989; Maher 1988, 1993c; Redhead 1986; and 
Rosenkrantz 1977. Regrettably, my remarks on them must be brief. 
These attempts, if they are not guilty of mistakes about probabilities, 
err in one or both of two ways: either (1) they violate the likelihood 
principleS or (2) they fail to capture the actual epistemological rationale 
for why certain violations of use-novelty are taken as problematic and 
why they should be. 

8. The arguments between Maher and his critics Howson and Franklin (1991) 
really tum on this issue, although the debate has not been framed in these terms. 
Maher needs to appeal to the idea of the reliability of the method by which hypoth­
eses are generated. Such an idea finds its home in error-statistical not Bayesian ac­
counts. 
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My basis for (2) is that the problem caused by unreliable use­
construction procedures is not a problem about prior degrees of belief 
in hypotheses. To underscore this point, consider a single hypothesis 
so that the problem cannot be traced to prior probability assignments. 
A hypothesis that might do is one we saw in the example with which 
I began our discussion of novelty-the bombing of the World Trade 
Center. Let hypothesis H assert that group X drives into the garage at 
the given time and explodes the bomb. When advanced before the 
bombing, H passes a (relatively) severe test. The probability that the 
before-the-fact description of the bombing would have fit the actual 
facts so well if H were false is low. In contrast, hypothesis H does not 
pass a severe test when advanced after the details of the bombing have 
been reported. Being able to come up with a hypothesis that fits the 
reported occurrence is precisely the sort of move that is open to anyone 
who wants to assign credit for the bombing, even though the alleged 
group had nothing to do with it. At the stage that we disparage the 
after-the-fact calls claiming responsibility for the bombing, nothing has 
been done to rule out this error. 

More generally, the difference in the evidential import of two 
pieces of evidence, both of which fit hypotheses equally well, is located 
in a difference in the reliability of test processes. This is where the error 
statistician locates it. The Bayesian desiring to make out a difference 
locates its source elsewhere (depending on which attempt one consid­
ers). For this reason, error statistical criteria match our intuitions about 
differential support better than Bayesian ones. 

10.2 THE OLD EVIDENCE PROBLEM 

The position that how or whep a hypothesis is generated is irrelevant 
to a Bayesian may seem puzzling in the light of what has been said 
about Bayesians having an "old evidence" problem. The puzzle results 
because, whereas for most Bayesians novelty never matters to support, 
for a few others it always does! These other Bayesians are said to have 
an old evidence problem. 

An account is said to have an old evidence problem if it has the 
consequence that old or known data fail to count as evidence in sup­
port of a hypothesis (it requires temporal novelty). As critics of tem­
poral novelty show, this conflicts with many cases where known 
evidence is regarded as providing excellent support for hypotheses.9 

9. We have shown (in chapters 8 and 9) that contrary to what some have 
claimed, Neyman-Pearson statistics does not have an old evidence problem. 
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Why is the subjective Bayesian supposed to have an old evidence 
problem? 

The allegation, brought to the forefront by Glymour (1980), goes 
like this: if probability is a measure of degree of belief, then if an agent 
already knows that e has occurred, the agent must assign P(e) the value 
1. Hence P(e I H) is assigned a value of 1. But this means no Bayesian 
support accrues from e. For if P(e) = P(e I H) = 1, then P(H I e) = P(H). 
The Bayesian condition for support is not met. 

Another way of phrasing the problem is that if evidence e is known 
and so assigned a probability of 1 by an agent, then the agent also 
assigns a probability of 1 to the Bayesian catchall factor, that is, P(e I 
not-H) = 1. So, the BR equals 1, and no Bayesian support accrues to H. 

How do subjective Bayesians respond to the charge that they have 
an old evidence problem? The standard subjective Bayesian response 
is given by Howson and Urbach (1989) and by Howson (1989). 

It has been argued (e.g., by Glymour ... ) that since e is, by assump­
tion, known at the time h is formulated, its probability must be 1, so 
that P(e I-h) = 1 also .... But is it? If Glymour is right then P(e I-h) 
would be 1 even if h had not been constructed to explain e, if e is a 
known fact, and so e would not support h in this case either. But 
Glymour is not right .... The Bayesian interprets P(e I -h) as how 
likely you think e would be were h to be false .... On this construction 
the value of P(e I -h) is independent of whether h was or was not 
constructed to explain e. (Howson 1989, 386) 

But many people-Bayesians included-are not too clear about how 
this "would be" probability is supposed to work. 

Consider the known evidence in the Brownian motion example 
(chapter 7). Brownian motion was known before formulation of 
the Einstein-Smoluchowski theory. To assess the support that this 
phenomenon affords this theory, the subjectivist imagines Perrin or 
some other agent asking something like this: How probable would I re­
gard the phenomenon of Brownian motion, were the Einstein­
Smoluchowski theory false? If the agent thinks that His the only plau­
sible explanation of Brownian motion (e), he or she may well think the 
occurrence of the phenomenon very improbable in a world in which H 
were false. So the agent may well assign a small, and not a maximal, 
value to P(e I not-H). If we ask how the agent figures out this probabil­
ity, Howson and Urbach will say (recall chapter 3), it is not our job. "We 
are under no obligation to legislate concerning the methods people 
adopt for assigning prior probabilities" (Howson and Urbach 1989, 
271). 
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It is pretty clear that an agent would not want to assign a probabil­
ity of 1 to known evidence because the evidence is always known by 
the time Bayes's theorem is applied. Glymour's "mistake," according to 
Howson and Urbach, is in supposing that probability assignments are 
to be relative to the totality of current knowledge. In fact, "they should 
have been relativised to current knowledge minus e" (p. 271): 

Once e has become known ... the probabilities P(e I h), P(h), and P(e) 
... are relativised to the counter-factual knowledge state in which 
you still do not know e. (P. 271) 

In their view, the support that e gives to H is to be computed by con sid -
ering how knowledge of e would alter one's degree of belief in H, on 
the supposition that one did not yet know e. 10 

counterfactual Degrees of Belief 

The need to consider an agent's counterfactual knowledge state 
while still keeping assignments coherent is fraught with problems, 
many of which Glymour discusses (e.g., Glymour 1980, 87-91). Does 
one try to go back in time, and if so how far back? Were the counterfac­
tual knowledge view taken seriously, says Glymour, 

we should have to condemn a great mass of scientific judgments on 
the grounds that those making them had not studied the history of 
science with sufficient closeness to make a judgment as to what their 
degrees of belief would have been in relevant historical periods. (Gly­
mour 1980, 91) 

What if we stay in the present but imagine subtracting out the knowl­
edge of e? That seems silly and hardly an easier feat. In this view, for 
Einstein to assess the evidential bearing of the perihelion of Mercury 
on the relativistic theory of the gravitational law, he needs to imagine 
whether there would be an increase in his assignment of probability to 
the law had he not already known of the perihelion phenomenon. 
However, as Earman (1992) nicely points out, Einstein developed the 
theory hoping to account for just this phenomenon; had he not known 
about it, perhaps he would not have developed the theory. "And if 
someone else had formulated the theory, Einstein might not have 
taken it seriously enough to assign it a nonzero prior" (p. 123). In any 

10. Paul Horwich has a somewhat different tactic for dealing with this prob­
lem. He seems to allow that the probability of known evidence e equals 1, but 
maintains that a Bayesian should assess how much e would alter our degree of 
belief assignment to H relative to "our epistemic state prior to the discovery" of e, 
when its probability was not yet 1 (Horwich 1982, 53). 
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event, a scientist does not actually assess the import of the evidence e 
in hand by imagining the probability change that would obtain if e 
were unknown to him. 

The problem of assigning counterfactual degrees of belief also 
makes it difficult to carry out Bayesian reconstructions of scientific epi­
sodes, upon which Bayesianism's usefulness to the philosophy of sci­
ence depends. The Bayesian "solution" to Duhem's problem (recall 
chapter 4) requires the philosopher to assign probabilities so as to re­
flect the beliefs actually held by given scientists. But are philosophers 
in a position to follow Dorling's suggestion that we consider the betting 
odds a typical scientist would have been willing to place on e, assuming 
that e had not yet been discovered? (Dorling 1979, 182). Even if one 
could arrive at such a counterfactual probability assignment, the 
deeper question remains: why is it relevant to either making or scruti­
nizing a scientific inference from evidence e? 

Take the example of the World Trade Center bombing. In the 
"imagine the evidence is not known yet" view, to assess the support to 
give a hypothesis H about the group responsible for the bombing­
where this hypothesis is called in after the fact-I must consider how 
the evidence of the explosion would have altered my belief in H if I 
did not yet know of the explosion. I am to be just as impressed when 
nonnovel evidence fits a hypothesis as I am when novel evidence fits 
it. The reliability of the use-construction method does not enter. At the 
end of 1994 I enjoyed fitting the data on profitable stocks over the past 
twelve months into a highly profitable strategy for buying and selling 
during that time. Would the Bayesian assess how well these data sup­
port my system in the same way had I advanced it at the end of 1993? 
Yet isn't that what pretending you didn't yet know the data would 
seem to countenance? 

The most satisfactory Bayesian way around the old evidence prob­
lem, in my view, is for the Bayesian to restrict the probability assign­
ments to specific statistical models of experiments and generic out­
comes of those experiments. For example, the probability of heads on 
a toss of a fair coin is one-half, independent of anyone knowing the 
outcome. Presumably, this is the "objective" Bayesian solution. This 
would considerably limit the scope of the Bayesian account in philos­
ophy of science, and the problem of prior probabilities of hypotheses 
would remain. 

Although there seems to be no single agreed-upon solution to the 
old evidence problem, some such solution is assumed by the generally 
accepted Bayesian position on novelty described in section 10.1: nov­
elty (temporal and use-novelty)-in and of itself-never matters to 
support. 
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Garber's and Jeffrey's Way 

The Bayesian rejection of the UN requirement may be put this 
way: an argument showing that violating UN precludes Bayesian sup­
port would also show that known evidence in general precludes Bayes­
ian support (leading to the old evidence problem). There are a few 
Bayesians, however, who want to accept the UN requirement, yet get 
around the old evidence problem-even if this requires changing the 
probability axioms. 

This way around the old evidence problem, developed by Daniel 
Garber, Clark Glymour, Richard Jeffrey, and others, reflects the idea 
that even old evidence can be made to support H, as long as the fact 
that H entails e is new. This attempt requires altering the axioms of the 
probability calculus relative to one's knowledge. For example, instead 
of stipulating that all tautologies have probability 1, the assignment 
would be relativized to knowing it to be a tautology. (Essentially the 
same idea was originally developed by 1. J. Good, but for a different 
reason.) The problems that such attempts raise for Bayesians will not 
be gone into hereY They make confirmation even more a matter of 
subjective, psychological beliefs than traditional subjective Bayes­
ianism. 

Note mainly that accepting the Garber-Jeffrey way out of the old 
evidence problem takes us right back to the problem of use-novelty. 
With a use-constructed hypothesis H it is known that H entails or oth­
erwise fits e, so it is not saved from the chopping block that spares 
cases in which the entailment is unknown. Those who appeal to such 
accounts to solve the old evidence problem start out assuming the posi­
tion that violating UN always precludes support. Take Garber: 

Suppose that S constructed h specifically to account for e, and knew, 
from the start, that it would. It should not add anything to the credi­
bility of h that it accounts for the evidence that S knew all along it 
would account for. (Garber 1983, 104) 

There is no attempt to justify this on Bayesian principles. It is hard to 
see how it could be so justified since, as Bayesians are quick to show, 
the UN requirement violates the likelihood principle. Moreover, as I 
argued in chapter 8, the position that violating UN precludes support 
is untenable: it would rule out many cases with excellent and even 
maximal support (as in estimation techniques). It seems hardly worth 
changing the probability axioms only to be left upholding this position. 

Regardless of how Bayesians settle this family quarrel about how 

11. See for example, Miller 1987, 305-8 and Earman 1992. 
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best to deal with old evidence, the problem only furthers my criticism 
of Bayesian critiques of methodological principles: methodological 
principles are often based on non-Bayesian ideas about error probabili­
ties, and these ideas run counter to a fundamental Bayesian principle, 
the likelihood principle. If we are to use ideas from statistics to obtain 
a philosophical understanding of reasoning in science-something I 
heartily endorse-then we need to be very clear on the fundamental 
differences between Bayesian and error-probability approaches. That 
is the purpose of the next section. 

10.3 THE LIKELIHOOD PRINCIPLE (LP) AND STOPPING RULES 

One of the claims [of the Bayesian approach] is that the experiment 
matters little, what matters is the likelihood function after experi­
mentation .... It tends to undo what classical statisticians have been 
preaching for many years: think about your experiment, design it as 
best you can to answer specific questions, take all sorts of precautions 
against selection bias and your subconscious prejudices. (LeCam 
1977, 158) 

Why does embracing the Bayesian position tend to undo what classical 
statisticians have been preaching? Because Bayesian and classical stat­
isticians view the task of statistical inference very differently. 

In chapter 3 I contrasted these two conceptions of statistical infer­
ence by distinguishing evidential-relationship or E-R approaches from 
testing approaches, and explained why E-R approaches in general, and 
the Bayesian Way in particular, have appealed more to philosophers 
than classical testing approaches. The E-R view is modeled on deduc­
tive logic, only with probabilities. In the E-R view, the task of a theory 
of statistics is to say, for given evidence and hypotheses, how well the 
evidence confirms or supports hypotheses (whether absolutely or com­
paratively). There is, I suppose, a certain confidence and cleanness to 
this conception that is absent from the error-statistician's view of 
things. Error statisticians eschew grand and unified schemes for relat­
ing their beliefs, preferring a hodgepodge of methods that are truly 
ampliative. Error statisticians appeal to statistical tools as protection 
from the many ways they know they can be misled by data as well as 
by their own beliefs and desires. The value of statistical tools for them 
is to develop strategies that capitalize on their knowledge of mistakes: 
strategies for collecting data, for efficiently checking an assortment of 
errors, and for communicating results in a form that promotes their 
extension by others. 

Given the difference in aims, it is not surprising that information 
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relevant to the Bayesian task is very different from that relevant to the 
task of the error statistician. In this section I want to sharpen and make 
more rigorous what I have already said about this distinction. 

The different positions staked out by error statisticians and by 
those who accept the likelihood principle (e.g., Bayesians), it should 
by now be clear, are not only of concern to philosophers of statistics. 
This opposition, I have been urging, while crystallized in formal statis­
tical principles, is implicated, if only informally or implicitly, in a clus­
ter of disputes in philosophy of science. Overlooking this distinction in 
underlying principles, we saw in section 10.1, has permitted what are 
essentially question-begging appraisals of methodological rules to go 
unchallenged. Further, the secret to solving a number of problems 
about evidence, I hold, lies in utilizing-formally or informally-the 
error probabilities of the procedures generating the evidence. It was 
the appeal to severity (an error probability), for example, that allowed 
distinguishing among the well-testedness of hypotheses that fit the 
data equally well (the alternative hypothesis objection, chapter 6). 

Having been reminded of the philosophy of science ramifications 
of the dispute between opposing statistical philosophies, I want to re­
visit that dispute, but this time I want to go deeper into its core. 
Whereas in thinking of the key difference between Bayesians and error 
statisticians one most often thinks of the former's willingness to assign 
prior probabilities to hypotheses and the latter's insistence upon meth­
ods that do not require such assignments, the difference I now want 
to concentrate on is more fundamental. In this place, more than any 
other, one can see the chasm that divides the Bayesian from the 
error-statistician. 

Stopping Rules 

Let me begin with a question, as I did with hunting for statistical 
significance in chapter 9. The situation now resembles that case, but 
instead of hunting for a statistically significant property, we will imag­
ine that the researchers have an effect they would like to demonstrate, 
and that they plan to keep experimenting until the data differ statisti­
cally significantly, say at the .05 level, from the null hypothesis of "no 
effect." (In other words, the researchers keep going until they get a 2-
standard-deviation difference .. 05 is the computed or "nominal" level of 
significance.) We can call this a "try and try again" procedure. The ef­
fect may be anything one would like to consider-that a subject can 
do better than chance at guessing an ESP card, that one treatment does 
better than some other (with regard to some symptom), that the dis­
crepancy from some parameter value is real-or any of the other kinds 
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of examples we have considered. You are presented, say, with the sta­
tistically significant data ultimately arrived at. The question is whether 
it is relevant to your appraisal of the effect that the data resulted from 
the try and try again procedure. 

For a simple example, imagine a subject of an ESP experiment, 
Zoltan. During each trial of the experiment Zoltan must predict ahead 
of time the next ESP card in a deck of cards. Suppose that after a long 
series of trials Zoltan scores a relative frequency of successful predic­
tions that exceeds the relative frequency expected by chance alone by 
an amount sufficient to attain a .05 significance level. Would it be rele­
vant to your evaluation of the evidence if you learned that Zoltan had 
planned all along to keep running trials for as long as it took to reach 
the (computed) significance level of .05? Would you find it relevant to 
learn that after, say, 10 trials, having failed to rack up enough successes 
to reach the .05 level of statistical significance, Zoltan went on to 20 
trials, and failing yet again he went to 30 trials, and then 10 more, and 
on and on until, say on trial 1,007, he finally attained a statistically 
Significant result? 

A plan for when to stop an experiment is called a stopping rule. So 
my question is whether you would find knowledge of the stopping 
rule relevant in assessing the evidence from a statistical test. If you 
would you are in good company, for that is how standard error statis­
tics answers the question. From the Bayesian point of view, however, 
you are incoherent! 

The Likelihood Principle 

Having alluded more than once to the likelihood principle (LP), I 
will now say more specifically what it asserts.I2 The LP is regarded as 
having been articulated by non-Bayesian statisticians, principally 
George Barnard (1947) and R. A. Fisher (1956). But, as it is their prin­
ciple now, I will let the Bayesians do the talking. I3 

In their classic piece, Edwards, Lindman, and Savage (1963) spell 
out the LP as follows. They consider two experiments involving the 
same set of hypotheses HI up to Hn' Let D be an outcome from the first 

12. There is also something called the "weak likelihood principle," but since 
that is not in dispute between Bayesians and error statisticians I will not discuss it. 
Richard Miller (1987) uses the term to mean something different. What he has in 
mind is a principle sometimes called the law of likelihood (e.g., by Hacking; noted 
in section 6.6). The formal likelihood principle should not be confused with these 
other notions. 

13. I do not think there are more than a handful of non-Bayesian ("likeli­
hoodists") who still accept the LP. 
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experiment and D' from the second. They ask, "Just when are D and 
D' thus evidentially equivalent, or of the same import?" (p. 237). Their 
answer is when, for some positive constant k, 

P(D' I Hi) = kP(D I H;) 

for each i. That is, D and D' are eVidentially equivalent when the likeli­
hood of Hi given D is a multiple of the likelihood of Hi given D'. That 
is because the posterior probabilities of the hypotheses come out the 
same, as the interested reader can check. 

A reminder: P(D I H) is called the likelihood of H, but for a non­
Bayesian this can be calculated only where H is a simple statistical hy­
pothesis-not a disjunction. That is why, for example, where we con­
sidered P(D I not-H), we gave it a different name (the Bayesian catchall 
factor). In discussing the LP, however, the Bayesian often wishes to 
identify a conflict between Bayesian and non-Bayesian treatments of 
evidence. To demonstrate this conflict the Bayeshm has to consider 
only examples in which P(D I H;) is calculable for a non-Bayesian, that 
is, where these likelihoods are calculated the same way for Bayesians 
and non-Bayesians. I will also maintain this restriction. 

To this end, the LP is often stated with reference to hypotheses 
about a particular parameter ,..., such as the probability of success (on 
a Binomial trial) or the mean value of some characteristic. L. J. Savage 
(1962) states it this way, where x and y (rather than D' and D) now 
refer to the two results: 

According to Bayes's theorem, P(x I JL) •.. constitutes the entire evi­
dence of the experiment, that is, it tells all that the experiment has to 
tell. More fully and more precisely, if y is the datum of some other 
experiment, and if it happens that P(x I JL) and P(y I JL) are propor­
tional functions of JL (that is, constant multiples of each other), then 
each of the two data x and y have exactly the same thing to say about 
the values of JL. (P. 17; I substitute P for his Pr and JL for his A) 

It is a short step from this reasoning to see the conflict with classical or 
"orthodox" theory. As Lindley (1976) puts it, 

we see that in calculating [the posterior], our inference about JL, the 
only contribution of the data is through the likelihood function .... 
In particular, if we have two pieces of data Xl and x2 with the same 
likelihood function ... the inferences about JL from the two data sets 
should be the same. This is not usually true in the orthodox theory, and its 
falsity in that theory is an example of its incoherence. (P. 361; emphasis 
added. I replace his q with JL)14 

14. Where the likelihoods are proportional for the hypotheses under consider­
ation they are sometimes said to be the same likelihood function. That is how 
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Savage's Message at the 1959 Forum 

It was this conflict that was uppermost in Savage's mind when in 
1959 he led a forum attended by several leaders in statistics. He de­
clared: 

In view of the likelihood principle, all of these classical statistical ideas 
come under new scrutiny, and must, I believe, be abandoned or seri­
ously modified. (Savage 1962, 18) 

Attendees at this forum included P. Armitage, I. J. Good, G. Barnard, 
M. S. Bartlett, E. S. Pearson, D. Lindley, D. R. Cox, and others, repre­
senting a mixture of statistical schools. Savage announced to this dis­
tinguished group that all the classical statistical notions-all the no­
tions under" error statistics" -significance levels and tests, confidence 
levels and interval estimates, criteria based on error probabilities-all 
are suspect. They are suspect because they come into conflict with 
the LP. 

The conflict is most pronounced, Savage explains, on the relevance 
of stopping rules. While it is widely held that the import of the evi­
dence depends on the stopping rule in examples like the one above, in 
fact, Savage warns, this violates the LP. The LP tells you that it can 
make no difference to the import of evidence whether the experi­
menter had planned to "try and try again" until a (computed) .05 sig­
nificant result is achieved, or whether the experimenter had planned 
to run just one· experiment, with some fixed sample size, and let the 
chips fall where they may. Let us refer to the former, try and try again 
plan, as the optional stopping plan, and the latter, prespecified plan as 
the fixed sample size plan. Why, according to the LP, does a result have 
exactly the same thing to say about fL when generated through op­
tional stopping as when generated through a fixed sample size plan? 
Because the probabilities of the results from the two experiments 
(given fL)-Le., the likelihoods-are proportional to each other. 

Zoltan's 1,007 trials-whether by optional stopping or fixed sam­
ple size-consist of a string of k successes and 1,007 - k failures. It can 
be pictured as a string of 1,007 ss andfs, such as 

s,s,j,s ,f,f,f,s,f,f,s,f,s,. . . . . . . . . . . . . 

This string is the outcome x. The hypothesis of interest is a hypothe­
sized value for fL-the probability of success on each trial. The posterior 
probability accorded to fL with either experimental plan is a function of 
the prior probability and the likelihood, P(x I fL). And in both cases, 

Lindley is using "same likelihood function" here. It will be less confusing to just say 
that their likelihoods are proportional. 
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P(x I IJ.) = IJ.k( 1 - lJ.)l007-k. That is, the data x enter into the Bayesian 
computation the same way whether they arose from the optional stop­
ping plan or the fixed sample size plan. 

In general, suppose that you collect data of any kind whatsoever­
not necessarily Bernoullian, nor identically distributed, nor indepen­
dent of each other ... -stopping only when the data thus far col­
lected satisfy some criterion of a sort that is sure to be satisfied sooner 
or later, then the import of the sequence of n data actually observed 
will be exactly the same as it would be had you planned to take ex­
actly n observations in the first place. (Edwards, Lindman, and Savage 
1963, 238-39) 

This is called the irrelevance of the stopping rule. Those who accept the LP 
hold to the irrelevance of the stopping rule.IS 

How then, in contrast, do error statisticians render stopping rules 
relevant? By operating with a different notion of relevant evidence. In 
their view, it is relevant to what the data are saying about the popula­
tion parameter IJ. to learn that the result in front of them-x-came 
from the try and try again (optional stopping) method. Mathemati­
cally, this corresponds to the fact that x does not enter the error statisti­
cian's computations by itself but always by considering error properties 
of the experimental procedure from which x arose. Information about 
stopping rules does not show up in likelihoods, but it sure shows up in 
a procedure's error probabilities. 

Edwards, Lindman, and Savage, quite rightly, regard this differ­
ence in attitude on the relevance of stopping rules as a central point of 
incompatibility between the two approaches. That is why it is so im­
portant for us. To the holder of the LP, the irrelevance of the stopping 
rule is a point in its favor, but to the error statistician the situation 
is exactly the reverse. P. Armitage (1962), the most forthright error 
statistician at the 1959 Savage forum, puts it plainly: 

I think it is quite clear that likelihood ratios, and therefore posterior 
probabilities, do not depend on a stopping rule. Professor Savage, Dr 
Cox and Mr Lindley take this necessarily as a point in favour of the 
use of Bayesian methods. My own feeling goes the other way. I feel 
that if a man deliberately stopped an investigation when he had de­
parted sufficiently far from his particular hypothesis, then "Thou shalt 
be misled if thou dost not know that." If so, prior probability methods 

15. There are certain exceptions where the stopping rule may be "informa­
tive," but I keep to examples that Bayesians do not regard as falling under this qual­
ification. 
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seem to appear in a less attractive light than frequency methods, 
where one can take into account the method of sampling. (P. 72) 

343 

The error statistician wants to take the method of sampling into 
account because, as was known in 1959, the try and try again method 
allows experimenters to attain as small a level of significance as they 
choose (and thereby reject the null hypothesis at that level), even 
though the null hypothesis is true. 16 If allowed to go on long enough, 
the probability of such an erroneous rejection is one! So the actual or 
overall significance level is not .05 but 1! 

Optional Stopping Leads to High or Maximal Overall 
Significance Levels 

Just as, in chapter 9, we calculated the actual significance level to 
be the probability of hunting down some statistically significant factor or 
other given that none are really correlated, here we calculate the actual 
or overall significance level as the probability of finding a statistically 
significant difference from a fixed null hypothesis at some stopping point 
or other up to the point at which one is actually found. The overall 
significance level accumulates. 

We need to be extra careful with the term statistically significant dif­
ference in the optional stopping case. Here, one keeps taking more and 
more samples until the observed difference is computed to be statistically 
significant, until it is, say, 2 standard deviations away from the null 
hypothesis. The computed significance level with an optional stopping 
plan refers to the significance level that would be calculated under a 
fixed sample size plan-.05. Say it took k tries to achieve a difference 
computed to be .05 statistically significant. The actual or overall sig­
nificance level is the probability that out of k tries at least one would 
be computed to be .05 statistically significant, even if the null hypothe­
sis is true. 

Unlike the case of hunting, there is a substantial literature on how 
to run and calculate overall significance levels-error probabilities­
for tests with different stopping rules. These kinds of tests are called 
sequential. Sequential tests have long been part of the error-statistician's 
tool box. One reason they are so useful is that often it is estimated that 
a smaller number of samples is required with a sequential than with a 
fixed sample size test. Medical trials, especially, are often deliberately 
designed as sequential. Armitage, as it happens, is a leader in the devel-

16. Feller (1940) is the first to show this explicitly. Other early discussions of 
this result include Anscombe 1954 and Robbins 1952. The result is also implicit in 
Good 1956 and Lindley 1957. 
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opment of sequential trials, having devoted whole books to their use 
and interpretation within the error statistical framework. 

Example 10.1: Armitage: The Effect of Repeated Significance Tests 

In his Sequential Medical Trials, Armitage (1975) discusses the effect 
of repeated significance tests. He illustrates with a common example 
from medicine. Suppose that each patient scores in some numerical 
fashion the effectiveness of two different treatments, say two types of 
painkillers A and B. Drug A is administered one week, drug B on a 
different week. The recorded observation on each patient is the differ­
ence between the two scores. Imagine that a new Significance test is 
performed after each patient's scores are obtained, with a view toward 
finding a difference (in either direction) computed to be statistically 
significant at the .05 level. The null hypothesis assumes that drugs A 
and B are equally effective. By the time 30 patients are sampled, the 
probability of computing a statistically significant difference even 
though the null hypothesis is true is around .3-not .05. So with 30 
patients, the actual probability of rejecting the null hypothesis erron­
eously is not .05 but around .3. We would say that the calculated (or 
fixed sample size) significance level is .05, but that the actual or overall 
level is .3. Armitage gives the overall significance level for each number 
of patients (based on the standard test of the difference between means 
called the t-test), as shown in table 10.1. 

Before we rule out the null (or "mere chance") hypothesis and 
argue that the result is indicative of a genuine difference, we want to 
be able to sustain a reliable argument from error. We want to be able 
to say that our procedure would probably have ruled in favor of the 
"mere chance" explanation, were that the case. But the procedure of 
trying and trying again cannot be said to have a good chance of ruling 
in favor of the null hypothesis-even if the null is true. With enough 
significance tests, the try and try again procedure will almost never 
pass the null hypothesis even if it is true. In their useful booklet on 
statistics for doctors, Bjorn Andersen and Per Holm (1984) provide a 
humorous analogy for this unfairness toward the null hypothesis: 

The procedure might be compared with new rules for determination 
of the world championship in heavy-weight boxing: Only the reign­
ing champion is allowed to strike. The fight is over, whenever the 
contender is out for the count of 10. The contender (like Ho) has little 
chance of winning, no matter how "good" he is. (P. 57) 

A Funny Thing Happened at the 1959 Savage Forum 

Now Savage knows all about the effect of optional stopping-he 
knows all about how the try and try again method ensures reaching 
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TABLE 10.1 The Effect of Repeated Significance Tests (the "Try and Try Again" 
Method) (Armitage 1975, p. 29) 

Number of patients 
(differences in scores) n 

2 
10 
20 
30 
40 
50 

100 
infinity 

Probability of a 0.05 "significant" 
result at or before this stage, 

given the null hypothesis is true 

0.05 
0.09 
0.26 
0.29 
0.31 
0.33 
0.39 
1.00 

statistical significance. In his opening remarks at the 1959 forum, Sav­
age rehearses how "the persistent experimenter can arrive at data that 
nominally reject any null hypothesis at any Significance level. when 
the null hypothesis is in fact true" (Savage 1962, 18). Because the per­
sistent experimenter is thereby assured of rejecting a perfectly true null 
hypothesis, the standard error statistician denies that such a rejection 
provides genuine evidence against the null. But Savage audaciously 
declares that the lesson to draw from the optional stopping effect is 
just the reverse of the one the error statistician draws. The problem is 
not with the data arrived at by a procedure of trying and trying again, 
the problem is with significance levels! 

These truths [about the optional stopping effect] are usually misinter­
preted to suggest that the data of such a persistent experimenter are 
worthless or at least need special interpretation .... The likelihood 
principle, however, affirms that the experimenter's intention to per­
sist does not change the import of his experience. (Savage 1962, 18) 

I shall come to the business of the relevance of "intentions" in a 
moment. Savage's argument is this: if calculating the significance level 
is altered (by the stopping rule), then there must be something wrong 
with significance levels because likelihoods are unaffected. According 
to the LP, says Savage, "optional stopping is no sin," so the problem 
must lie with the use of significance levels (1964, 185). But why 
should we accept the likelihood principle? 

Yes, the LP follows from Bayes's theorem, but significance tests are 
non-Bayesian techniques. Apparently, the LP is regarded by some as 
so intrinsically plausible that it seems any sensible account of inference 
should obey it. Bayesians do not seem to think any argument is neces­
sary for this principle, and rest content with echoing Savage's declara­
tion in 1959: "I can scarcely believe that some people resist an idea so 
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346 CHAPTER TEN 

patently right" (1962, 76). However much Savage deserves reverence, 
that is still no argument. Ironically, what prompted Savage's famous 
declaration as to the patent rightness of the LP was a heretical confes­
sion by George Barnard. Barnard-the statistician whose arguments 
Savage claims (p. 76) convinced him (in 1952) of the irrelevance of 
optional stopping-had just announced to the forum that he had 
changed his mind! 

Explaining why he now thinks that stopping rules do matter, Bar­
nard describes an example quite like the one with which I began this 
section: 17 

Suppose somebody sets out to demonstrate the existence of extrasen­
sory perception and says HI am going to go on until I get a one in ten 
thousand significance level." Knowing that this is what he is setting 
out to do would lead you to adopt a different test criterion. What you 
would look at would not be the ratio of successes obtained, but how 
long it took him to obtain it. And you would have a very simple test 
of significance which said if it took you so long to achieve this in­
crease in the score above the chance fraction, this is not at all strong 
evidence for E.S.P., it is very weak evidence. (Barnard 1962, 75) 

By altering the test criteria accordingly, Barnard continues, one would 
avoid misinterpreting the evidence. 18 That is just what error statisti­
cians recommend-thereby making them incoherent from the Bayes­
ian standpoint. 

The Argument from Intentions 

Startled by this turnabout, Savage reminds Barnard of the persua­
sive argument he himself urged (in 1952) against the relevance of stop­
ping rules. 

The argument then was this: The design of a sequential experiment 
is, in the last analysis, what the experimenter actually intended to do. 
His intention is locked up inside his head. (Savage 1962,76) 

The experimenter's intentions about when to stop sampling are locked 
up in his head, and it seems absurd for intentions to influence what 

17. The suggestion Barnard made to the forum was that stopping rules matter 
when you do not have explicit alternatives. He himself was a likelihoodist and not 
a Bayesian, although he came to give that up as well. (See, for example, Barnard 
1972.) 

18. In practice, the alteration is generally to lower the computed or nominal 
significance level sufficiently so that the overall significance level is still .05. Armi­
tage and others have done extensive work on this for a variety of types of sequen­
tial trials. 
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WHY You CANNOT BE JUST A LITTLE BIT BAYESIAN 347 

the data have to say. Since significance levels take stopping rules into 
account, significance levels let experimenter's intentions count. In 
their joint paper, Edwards, Lindman, and Savage remark: 

The irrelevance of stopping rules is one respect in which Bayesian 
procedures are more objective than classical ones. Classical proce­
dures ... insist that the intentions of the experimenter are crucial to 
the interpretation of data. (Edwards, Lindman, and Savage 1963, 
239) 

Although Savage (1962, 76) declared himself uncomfortable with 
the argument from intentions, it is repeated again and again by follow­
ers of Savage. Howson and Urbach think it substantiates some rather 
dire conclusions about significance tests: 

A significance test inference, therefore, depends not only on the out­
come that a trial produced, but also on the outcomes that it could 
have produced but did not. And the latter are determined by certain 
private intentions of the experimenter, embodying his stopping rule. 
It seems to us that this fact precludes a significance test delivering any 
kind of judgment about empirical support .... For scientists would 
not normally regard such personal intentions as proper influences on 
the support which data give to a hypothesis. (Howson and Urbach 
1989,171) 

In their view, apparently, to take account of the experimenter's sam­
pling plan is to take personal intentions into account and is unscien­
tific, while the properly scientific way of assessing evidential support is 
to ask for the agent's personal degrees of belief in hypotheses. 

In fact, the whole insinuation that to regard optional stopping as 
relevant is to make private intentions relevant is fallacious. Any and 
all aspects of what goes into specifying an experiment could be said to 
reflect intentions-sample size, space of hypotheses, prediction to test, 
and so on-but it does not mean that paying attention to those speci­
fications is tantamount to paying attention to the experimenter's in­
tentions. Yet Howson and Urbach are pretty plainly arguing that since 
a significance test's error probabilities are determined by the experi­
menter's personal intentions and since intentions should not matter to 
support, a test's error probabilities (e.g., significance levels) do not or 
should not be relevant to support. Are Bayesians just committing a 
gross fallacy here? 

They are, but they cannot see it. They have got Bayesian glasses 
on, and they will not take them off. Through Bayesian glasses, there is 
no place in the inference scheme to record the effect of the sampling 
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348 CHAPTER TEN 

plan-at least not once the data are in hand. So, they view it as locked 
inside someone's head. 

Recall hunting for a statistically significant difference in the infant 
training example again (chapter 9). Suppose the hunter reports the 
single factor found to be statistically significant out of 20 that are 
checked (e.g., late weaning and left-handedness). We have this one 
statistically significant result before us, but where, one might ask, is 
the fact that it was the single factor found significant in a hunting expe­
dition through 20 factors? Is it locked up in the experimenter's head? 
Not if he or she is an honest hunter, nor if the one scrutinizing the 
result is an error statistician. But that means having an eye for error 
probabilities-being able to see, in particular, that the actual proba­
bility of erroneously declaring statistical significance in this case is 
not .05 but over .6. The Bayesian glasses have a substantial blind spot 
here. 

Likewise with optional stopping. If one is wearing Bayesian glasses, 
that is, if one adheres to the LP, then two experiments that give the 
same (Le., proportional) likelihoods to a hypothesis have the same evi­
dential bearing on the hypothesis. If one is wearing Bayesian glasses, 
then, once the data are available, one cannot make out any difference 
between that data having arisen from a try and try again method or 
from a (nonsequential) experiment where the subject declares ahead 
of time, "If I have not shown statistical significance in exactly n trials 
then conclude I have not shown the effect." One cannot see the differ­
ence because the likelihoods are unchanged. One may well know there 
is a difference in sampling plans, but that just means one knows they 
had different intentions, and that cannot possibly make a difference to 
the meaning of evidence. That, at any rate, is the way things look 
through Bayesian glasses. That is the way things look to anyone peer­
ing at evidence through the LP. Ian Hacking, in his Likelihood testing 
period, also gives the argument from intentions: 19 

Can testing depend on hidden intentions? Surely not; hence optional 
stopping should not matter after all. (Hacking 1965, 109) 

Examples of philosophers espousing the argument from intentions 
could easily be multiplied. 

Notice a certain similarity with justifying why novelty should mat­
ter. If a violation of novelty is nothing more than that the experimenter 
intended to find a way to account for the data, then it looks as if propo-

19. That account, developed in Hacking 1965, was based on Hacking's likeli­
hood rule of support noted in section 6.6. 
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nents of novelty appeal to the psychological intentions of the investiga­
tor. Once the aim of novelty is recognized to be severity, violating nov­
elty shows up as a problem (when it is one) with a test's severity; and 
the effect on severity, whether formally or informally calculated, 
shows up in a procedure's error probabilities. In precisely the same 
way, the error statistician has a perfectly nonpsychologistic way of tak­
ing account of the impact of stopping rules, as well as other aspects of 
experimental plans. The impact is on the error probabilities (operating 
characteristics) of a procedure.20 

In the optional stopping plan, the difference in the test procedure 
clearly shows up in the difference in the set of possible experimental 
outcomes. Certain outcomes possible in the fixed sample size (non­
sequential) version of the test are no longer possible.21 If the stopping 
rule is open -ended, then the possible outcomes do not contain any that 
fail to reject the null hypothesis! 

It might be asked: But does the difference in error probabilities 
corresponding to a difference in sampling plans correspond to any real 
difference in the experiments? Absolutely. The researchers really did 
something different in the try and try again scheme and, quoting Armi­
tage, "thou shalt be misled" if you do not know this. It is not just that 
incorrectly reporting a test's error probabilities incorrectly reports what 
happened in obtaining a result, it also incorrectly reports what should 
be expected to happen (with various probabilities) in subsequent experi­
ments on the phenomenon of interest. It must be remembered that 
every error statistical inference includes a statement about future ex­
periments, whether or not they will be carried out. With an incorrect 
report of a test's error probabilities, an experimenter seeking to check 
or repeat the previous results would be misled. The reported error 
probabilities would not be close to those that would actually be found 
in such repetitions. 

I think enough has been said to banish the common allegation that 
letting stopping plans matter is tantamount to letting intentions matter. 
As such, we can reject the argument that the LP must be embraced on 
pain of unjustly letting intentions enter into the appraisal of evidence. 

20. The only time it seems unwarranted to draw a distinction is if the experi­
menter stops after the first test because a statistically significant result is achieved 
on the first try. But in that case the difference between the computed and the over­
all significance level is extremely small, and should make no difference in a "non­
automatic" use of tests. I discuss what is wrong with automatic or recipelike uses 
of tests in chapter II. 

21. The sample space differs but because the likelihoods are proportional, the 
difference cancels out for a holder of the LP. 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:15:21.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



350 CHAPTER TEN 

But, if threats will not win us over, the Bayesian tempts with the good­
ies that await those who accept the LP. 

Bayesian Freedom, Bayesian Magic 

A big selling point for adopting the LP, and with it the irrelevance 
of stopping rules, is that it frees us to do things that are sinful and 
forbidden to an error statistician. 

This irrelevance of stopping rules to statistical inference restores a 
simplicity and freedom to experimental design that had been lost by 
classical emphasis on significance levels (in the sense of Neyman and 
Pearson) .... Many experimenters would like to feel free to collect 
data until they have either conclusively proved their point, conclu­
sively disproved it, or run out of time, money or patience .... Classi­
cal statisticians ... have frowned on [this]. (Edwards, Lindman, and 
Savage 1963, 239) 

Breaking loose from the grip imposed by error probabilistic require­
ments returns to us an appealing freedom. 

LeCam, a leading error statistician (cited at the start of section 
10.3) hits the nail on the head: 

It is characteristic of [Bayesian approaches] ... that they ... tend to 
treat experiments and fortuitous observations alike. In fact, the main 
reason for their periodic return to fashion seems to be that they claim 
to hold the magic which permits [us] to draw conclusions from what­
ever data and whatever features one happens to notice. (LeCam 
1977, 145) 

In contrast, the error probability assurances go out the window if you 
are allowed to change the experiment as you go along. Repeated tests 
of significance (or sequential trials) are permitted, are even desirable 
for the error statistician; but a penalty must be paid for perseverance­
for optional stopping. Before-trial planning stipulates how to select a 
small enough significance level to be on the lookout for at each tria122 

so that the overall significance level is still low. That is what Armitage's 
work on sequential clinical trials is all about. 

But the Bayesian pays no penalty, or so it seems. I. J. Good, a vet­
eran Bayesian, often puts it this way: 

Given the likelihood, the inferences that can be drawn from the ob­
servations would, for example, be unaffected if the statistician arbi-

22. This is the level that would be required to be reached on any given signifi­
cance test so as to stop the trials. Setting it small enough ensures that the probability 
of an erroneous rejection of the null is still small in sequential trials. 
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WHY You CANNOT BE JUST A LITTLE BIT BAYESIAN 

trarily and falsely claimed that he had a train to catch, although he 
really had decided to stop sampling because his favorite hypothesis 
was ahead of the game .... On the other hand, the "Fisherian" tail­
area method for significance testing violates the likelihood principle 
because the statistician who is prepared to pretend he has a train to 
catch (optional stopping of sampling) can reach arbitrarily high sig­
nificance levels, given enough time, even when the null hypothesis 
is true. (Good 1983, 36) 

351 

"Arbitrarily high significance levels" means Significance levels as small 
as one wants. Elsewhere in Good's Good Thinking: 

The way I usually express this "paradox" is that a Fisherian [but not 
a Bayesian] can cheat by pretending he has a train to catch like a 
gambler who leaves the table when he is ahead. (Good 1983, 135) 

As often as my distinguished colleague presents this point, I remain 
baffled as to its lesson about who is allowed to cheat. The significance 
tester-as Good well knows-does not allow reaching arbitrarily high 
(meaning small) significance levels through optional stopping. The sig­
nificance tester is not allowed to change the sample size at wilL stop­
ping just because he is ahead. When error statisticians perform sequen­
tial tests, the overall (and not the computed) significance level must be 
reported. To the error statistician, what would be cheating would be to 
report the significance level you persevered to attain, say .05, just as if 
the test were the ordinary nonsequential sort. 

Good's point seems to be this: Error statisticians are forced to fret 
about a consideration the Bayesian is free to ignore. Wearing our error 
probability glasses-glasses that compel us to see how certain proce­
dures alter error probability characteristics of tests-we are forced to 
say, with Armitage, that "Thou shalt be misled if thou dost not know 
that" the data resulted from the try and try again stopping rule. To 
avoid having a high probability of following false leads, the error statis­
tician must scrupulously follow a specified experimental plan. But that 
is because we hold that error probabilities of the procedure alter what 
the data are saying-whereas Bayesians do not. The Bayesian is per­
mitted the luxury of optional stopping and has nothing to worry about. 
The Bayesians hold the magic. 

Or is it voodoo statistics? 

Armitage's Example 

To some, the magic is accomplished by smoke and mirrors and 
wearing Bayesian glasses. At the 1959 forum, Armitage, building on 
his earlier remarks, went on to say that 
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[Savage] remarked that, using conventional significance tests, if you 
go on long enough you can be sure of achieving any level of signifi­
cance; does not the same sort of result happen with Bayesian meth­
ods? The departure of the mean by two standard errors corresponds 
to the ordinary five per cent level. It also corresponds to the null 
hypothesis being at the five per cent point of the posterior distribu­
tion. Does it not follow that by going on sufficiently long one can be 
sure of getting the null value arbitrarily far into the tail of the poste­
rior distribution? (Armitage 1962, 72) 

Armitage's point can be simply put as follows. In many cases, re­
jecting a null hypothesis Ho' say at level of significance .05, corresponds 
to a result that would lead a Bayesian to assign a low (e.g., .05) poste­
rior probability to Ho' This occurs with so-called uniform or uninforma­
tive priors. (That this is so is,often touted by Bayesians as a point in 
their favor: Whereas the most an error statistician can say is that this 
procedure has a low [.05] probability of erroneously rejecting the null, 
the Bayesian, thanks to his prior probability assignment, can assign 
the low probability to the specific hypothesis Ho' )23 Hence, Armitage 
reasons, if error statisticians-if they go on sampling long enough­
are assured of reaching a .05 significant result, even though Ho is true, 
then Bayesians-if they go on sampling long enough-would be as­
sured of reaching a low (.05) posterior probability in Ho' even though 
Ho is true. (The assurance here is with high probability or, in the limit, 
with probability one.) That is: 

1. In certain cases, rejecting a null hypothesis H o' say at level of 
significance .05, corresponds to a result that would lead a Bayesian to 
assign a low (e.g., .05) posterior probability to Ho' 

2. If one is allowed to go on sampling long enough (i.e., the try 
and try again procedure), then, even if Ho is true, one is assured of 
achieving a .05 statistically significant difference from the null hypoth­
esis Ho' 

3. Therefore, if one is allowed to go on sampling long enough, 
then, in the cases described in (1), one is assured of reaching a low 
posterior probability in Ho' even though Ho is true. 

Now the error statistician is not allowed to go on trying and trying, 
at least not without paying a penalty. The penalty, we said, is that the 
overall significance level-in the extreme case I-must be reported. 
The stopping rule matters. But Bayesians are free! They are allowed to 
go on sampling and the stopping rule does not alter the likelihoods, 

23. See, for example, DeGroot 1973. 
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hence the posterior is just the same as if the case were nonsequential. 
It follows that, in going on long enough, a Bayesian is assured of as­
signing a low posterior probability to Ho even though Ho is true. 

So, who is allowed to mislead? 
Although Savage wants to deny Armitage's implication, he appears 

to grant it, though fuzzily, and skips to a different sort of example. 
While I think there are problems with this different example as well 
(see Rosenkrantz 1977, 199), I want to keep to Armitage's kind of ex­
ample.24 

Armitage's example goes like this. The null hypothesis Ho is an as­
sertion about a population parameter j.L. As in example 10.1, j.L might 
measure the mean difference in the effectiveness of two drug treat­
ments. Ho asserts that the treatments are equally effective, that is, that 
j.L equals O. 

Ho: The treatments are equally effective: J-l equals O. 

The experiment records X which, in this case, is the mean difference 
in scores accorded to the two drug treatments in a sample of n patients. 
The sample size n, however, is not fixed but is determined by a stopping 
rule. The stopping rule-an example of a try and try again plan-is to 
keep taking more samples until Ho is rejected at the .05 level, by the 
usual prespecified significance test: 

(1) Stopping rule: Keep sampling until Ho can be rejected at the .05 
level. 

That is, the stopping rule is to keep sampling until X is 2 standard devi­
ations away from a (the hypothesized value of j.L in Ho) in either direc­
tion. The standard deviation here is the standard deviation of the statis­
tic X, but for simplicity, let us just abbreviate it as s.d.2s So we have 
(letting IX! be the absolute value of X) 

(1) Stopping rule: Keep sampling untillXI 2:: 2 s.d. 

Following this stopping rule, one is assured of achieving a .05 signifi­
cant difference even if Ho is true. But with a so-called uninformative 

24. The example Savage skips to involves comparing two simple hypotheses. 
Rather than lending plausibility to Savage's cause, Rosenkrantz (while himself a 
Bayesian) thinks it shows that Savage goes too far in ignoring the stopping rule. 
Rosenkrantz's analysis has been questioned by Seidenfeld (1979b, n. 4). 

25. This would more properly be written as s.d.(x). When the standard devia­
tion is estimated, as is most often the case, it is called the standard error, but it 
seems simpler to stick with a single term. Armitage takes the random variable X to 
be Normally distributed with mean fL and standard deviation 1. In that case, s.d.(x) 
is n- 1/1 • 
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or diffuse prior probability assignment to JL, such an occurrence would 
correspond to assigning a low posterior probability to Ho. Hence, fol­
lowing this stopping rule, the Bayesian would be assured of assigning 
a low probability to Ho even though Ho is true. This is Armitage's argu­
ment. No satisfactory answer has been forthcoming, nor is there one. 
Armitage is right. 

Berger and Wolpert 

To my knowledge, there are only a handful of Bayesians (or other 
holders of the LP) who have specifically addressed Armitage's example: 
most just accept Savage's dismissal of it. 26 Berger and Wolpert (1988), 
in their interesting monograph, show themselves to be as ardent a pair 
of proponents of the LP as it is likely to have. Still, even they concede 
Armitage's point. But, as they want to retain the LP, some defensive 
moves are called for. 27 

Since Berger and Wolpert treat Armitage's example in terms of 
confidence intervals, 1 will too. Recall example 8.2. Given some result, 
one forms an interval within which the parameter of interest, JL, is 
hypothesized to lie. As is standard, we can use a lowercase x to repre­
sent the observed value of the random variable X. (This is easier to 
read than XObS here.) The standard 95 percent confidence interval takes 
this form 

(2) Estimate that fJ. is within 2 standard deviations of the observed 
meanx. 

(1 use 2 rather than the exact value of 1.96.) That is, the 95 percent 
confidence interval is 

(2) Estimate that fJ. equals x ± 2 s.d. 

Berger and Wolpert agree that a Bayesian would use this interval in 
the usual fixed sample size case, adding: 

Of course, he would not interpret confidence in the frequency sense, 
but instead would (probably) use a posterior Bayesian viewpoint with 
the noninformative prior density. (Berger and Wolpert 1988, 80) 

26. No one, to my knowledge, has identified the flaw in Savage's use of "the 
simple general formula" on page 73 of Savage 1962. 

27. In a forthcoming paper, "Reasoning to a Foregone Conclusion," Ka­
dane, Schervish, and Seidenfeld set out mathematical conditions under which 
Bayesians are and are not allowed to reason "to a foregone conclusion" erron­
eously. 
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Whereas the frequentist says only that this particular estimate was 
generated by a procedure with a 95 percent probability of correctly 
including the value of f.L, the Bayesian can assign the particular esti­
mate a posterior probability.28 In particular, with the so-called nonin­
formative prior, they would assign it a .95 posterior probability. We can 
now see how Armitage's argument goes through. 

Berger and Wolpert continue: "Suppose now that the experi­
menter has an interest in seeing that f.L = ° is not in the confidence 
interval. He could then use the stopping rule" (1) above (ibid.; I replace 
e with f.L). Let us rewrite the stopping rule to relate directly to confi­
dence intervals. The null hypothesis Ho asserts that f.L = 0. Rejecting 
Ho-finding x statistically significant from O-is equivalent to ° not be­
ing included in the interval estimate formed with x. Hence assuring 
that f.L = ° is not in the 95 percent confidence interval is equivalent to 
assuring that the null hypothesis Ho is rejected at the .05 level. So the 
stopping rule in (1 )-keep sampling until Ho is rejected-stated in 
terms of confidence intervals is 

(1) Keep sampling until the 95 percent confidence interval formed 
excludes o. 

So the Bayesian experimenter interested in keeping ° out of the inter­
val is free to use stopping rule (1). At the same time, Berger and 
Wolpert concede, "the [Bayesian] conditionalist, being bound to ignore 
the stopping rule, will still use (2) as his confidence interval, but this 
can never contain zero" (ibid., 81). 

(The term "conditionalist" comes from the fact that, for a holder of 
the LP, inference must be conditional on the actual x observed.) 

Hence Berger and Wolpert allow that "the frequentist probability" 
that intervals formed by this procedure would include 0, even when ° 
is the true value, equals zero! Equivalently, there is zero probability of 
accepting the hypothesis that f.L = 0, even when that hypothesis is true. 
In short, they find they cannot get around the conclusion that, despite 
the fact that f.L does equal 0, 

the experimenter has thus succeeded in getting the conditionalist to 
perceive that IJ. ,., 0, and has done so honestly. (Pp. 80-81) 

Thus, they concede Armitage's point-the very point that Savage had 
denied or skirted. 

Now for the defensive moves. Berger and Wolpert are at pains to 

28. It leads to a posterior distribution for 1.1. equal to a normal distribution with 
mean X and a standard deviation equal to n-'I,. 
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uphold the LP. In examples such as Armitage's, Berger and Wolpert 
maintain, the LP only "seems to allow the experimenter to mislead a 
[Bayesian] conditionalist. The 'misleading: however, is solely from a 
frequentist viewpoint, and will not be of concern to a conditionalist" 
(ibid., 81). Bayesians remain unconcerned, presumably, because they 
are not in the business of calculating error frequencies. 

Despite their professed lack of concern, Berger and Wolpert, like 
Savage, are plainly uncomfortable with Armitage's result. They leave 
off the example suggesting that in appraising the plausibility of the LP 
we should trust our intuitions in one of the other examples they of­
fer-one where the LP gives the intuitively correct inference-"rather 
than in extremely complex situations such as [Armitage's example]" 
(ibid., 83). But the example we are to trust does not involve optional 
stopping,29 and the confidence interval example is rather ordinary. 
Armitage tells us it is a standard situation in clinical trials. 30 

Examples analogous to Armitage's have been produced by others, 
notably Alan Birnbaum. 31 To the error statistician, such examples are 
counterexamples to adopting the LP: 

Thus it seems that the likelihood concept cannot be construed so as 
to allow useful appraisal, and thereby possible control, of probabilities 
of erroneous interpretations. (Birnbaum 1969, 128) 

I shall come back to Birnbaum in chapter II. 
lt should be emphasized that this problem exists even for so-called 

objective Bayesians (those who strive to determine objective prior 
probabilities). That is the reason I said it was the outgrowth of a differ-

29. Perhaps the open-endedness of the stopping rule makes the case exotic, 
but less dramatic and still seriously troubling cases are generated with stopping 
rules only as high as 100, as Armitage shows in his examples with medical trials. 

30. One Bayesian ploy would be to insist that learning of the use of such a 
stopping rule would make the agent change his prior in such a way that the high 
posterior would be avoided. Not only is the kind of prior that leads to the trouble 
a commonly acceptable one, but such an admission would also conflict with the 
Bayesian insistence that once the evidence is at hand the likelihoods tell all. (As 
always, we are talking about the cases in which stopping rules are uninformative 
according to the LP.) Ironically, since error probabilities are not supposed to matter 
for a Bayesian, this ploy really would seem to appeal to the intentions of the inves­
tigator. Moreover, this Bayesian ploy depends on the agent reasoning that an exper­
imenter using such a stopping rule probably thinks the null hypothesis is true, and 
so revising his prior accordingly. But it seems at least as plausible, if not more so, 
to suppose that an experimenter planning to go on until the null hypothesis is 
rejected really believes that the effect is real and that the null hypothesis is false. 

31. Birnbaum cites a similar result by Neyman from 1938, collected in Ney­
man 1952. 
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ence between Bayesians and error statisticians that runs even deeper 
than the use or nonuse of prior probabilities in hypotheses. It is the 
difference between the irrelevance and the relevance of error probabil­
ities of procedures. If one is Bayesian enough to adhere to Bayesian 
coherency, hence to the LP, one is enough of a conditionalist to reject 
error probabilities and with them the familiar methods of standard er­
ror statistics. 

That the standard methods conflict with the LP is readily accepted 
by leading Bayesians. Take Lindley: 

The most obvious violation of the likelihood principle occurs with 
the idea of a confidence interval, with its concept of repetition of the 
experiment. (Lindley 1976, 361) 

Savage, discussing the 

"nice properties," exemplified by unbiasedness, stringency, minimum 
mean squared error, symmetry (or invariance), a given significance 
level, and so on (Savage 1964, 179) 

declares that 

practically none of the "nice properties" respect the likelihood prin­
ciple. (Ibid., 184) 

That is why I think Berger and Wolpert's initial response to Armitage 
is the honest one from the Bayesian viewpoint; namely, that "the 'mis­
leading' ... is solely from a frequentist viewpoint." After all, it is only 
through frequentist considerations of error probabilities that Armi­
tage's case is problematic, and those considerations violate the LP to 
which Bayesians adhere. 

There, then, we have it. The reason Bayesians cannot be misled 
(in the case of optional stopping) is that they reject (as violating the 
LP) the frequentist viewpoint on which the error calculation depends! 
Anguish over a procedure's high probability of being wrong (in Armi­
tage's example, as high as probability 1) is an error statistician's afflic­
tion. The Bayesian is not so afflicted. If I never check my bank account 
(and I always believe the correctness of my statement), then, in a 
sense, the bank can never mislead me. 

The Relevance of Outcomes Other Than the One Observed 

Let us explore a bit more why error probabilities violate the LP. 
The reason, in a nutshell, is that error probabilities ask what would 
happen for data sets other than the one actually observed. What is 
wrong with us error statisticians, from the Bayesian conditionalist per-
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spective, is that we keep thinking that considerations of outcomes that 
could have resulted-outcomes other than the one that did result­
are relevant for interpreting the evidential import of the data. 

Those who do not accept the likelihood principle believe that the 
probabilities of sequences that might have occurred, but did not, 
somehow affect the import of the sequence that did occur. (Edwards, 
Lindman, and Savage 1963, 238) 

The error statistician has only one way of responding to this allega­
tion. "Guilty as charged!" We remain steadfast no matter how leadingly 
Bayesians ask (echoing a line made famous by Harold Jeffreys), "What 
has what might have happened, but did not, got to do with inferences 
from the experiment?" (Lindley 1976, 361), and no matter how intim­
idating the rhetoric of prominent Bayesians is (e.g., E. T. Jaynes, an 
objective Bayesian): 

The question of how often a given situation would arise is utterly 
irrelevant to the question how we should reason when it does arise. I 
don't know how many times this simple fact will have to be pointed 
out before statisticians of UfrequentistU persuasions will take note of 
it. (Jaynes 1976, 247) 

What we error statisticians must rightly wonder is how many times we 
will have to point out that to us, reasoning from the result that did 
arise is crucially dependent upon how often it would arise. Lacking 
such information prevents us from ascertaining which inferences can 
be reliably drawn. 

In criticizing the hunter, the error statistician notes, "But had this 
one not been statistically significant, it is very probable that you would 
have unearthed some other factor that was-even if none are really 
correlated." What would have happened is at the heart of the worry 
in the try and try again (optional-stopping) plan as well. The severity 
of a test is a measure of the relative frequency with which the test 
would lead to correctly failing (or not passing) a hypothesis in some 
sequence of applications. Virtually all the uses of statistical ideas in 
learning from error throughout this book depend critically on such 
considerations of "would have beens." What makes standard error sta­
tistical tools so useful for scientific inference is that their formal proper­
ties, error probabilities, enable learning about what would be expected 
if various errors exist-the key to experimental arguments from error. 
Yet these error properties and test criteria based on them are what the 
Bayesian is only too happy to declare irrelevant. As Lindley (1971) 
stresses, 
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unbiased estimates ... sampling distributions, significance levels, 
power, all depend on something more [than the likelihood func­
tion]-something that is irrelevant in Bayesian inference-namely 
the sample space. (Lindley 1971, 436) 

359 

In his admirably fair-minded work comparing different schools of in­
ference, Vic Barnett explains why. In the Bayesian view, 

inferences are conditional on the realized value X; other values which 
may have occurred are regarded as irrelevant. ... No consideration 
of the sampling distribution of a statistic is entertained; sample space 
averaging is ruled out. Thus there can be no consideration of the bias 
of an estimation procedure and this concept is totally disregarded. 
(Barnett 1982, 226) 

Bayesian consistency requires rejecting the foundations of the error 
statistical methods, despite the widespread use of these methods 
throughout science. 

This, then, is the bottom line. Our aims, our notions of relevant 
evidence, our criteria for judging satisfactory inference (the "nice prop­
erties"), our notions of probability (with a few exceptions) are strik­
ingly different from those of the Bayesians. Quite aside from whether 
one accepts my position on the value of error statistical ideas, what 
cannot be denied are these differences. The lesson for metamethodol­
ogy is this: Every critique of methodology from the Bayesian perspec­
tive must be seen as contingent upon accepting their aims in favor of 
error statistical ones. If the methodological rule in question turns out 
to concern promoting an error statistical aim (e.g., severity), then a 
Bayesian critique will be misleading if not just question-begging. The 
error statistician's conception of "being misled" is very different from 
that of the Bayesian: perhaps it is a gestalt switch that separates them. 
The philosopher seeking to apply ideas from statistics to the philosophy 
of science needs to decide whether to sign up for the LP (e.g., Bayesian) 
paradigm or the error statistical one, or perhaps something altogether 
different. 

10.4 SOME ANTICIPATED OBJECTIONS 

Some might object that I am overlooking the ways in which some 
manage to be Bayesian while at least a little bit of an error statistician 
at the same time. A main way would be to use Bayesian ways and 
yet strive to assess the reliability of these methods in a genuine error 
probability sense. Such error statistical (or "robust") Bayesians, if I un­
derstand their position, seem to me to fall onto the error statistical 
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side. 32 Nothing in the error probability approach prevents using Bayes­
ian measures as measures of "fit" whose operating properties can be 
investigated. Such developments may well be part of "the historical 
process of development" of error statistical theory to which E. S. Pear­
son alludes (Pearson 1966d, 276). 

Aside from such new and innovative hybrid approaches, am I not 
overlooking the eclecticism that exists in statistical practice? No. I be­
gan this chapter acknowledging that error statistical inferences often 
correspond to procedures Bayesians would countenance, albeit with 
differences in interpretation and justification. It is certainly open to 
error statisticians to apply Bayes's theorem with well-defined statistical 
hypotheses where standard prior probabilities have been found to 
work well. Likewise, Bayesians can and do appropriate standard (er­
ror-statistical) methods by giving them Bayesian justifications. One 
might regard I. J. Good's "Bayes-non-Bayes compromise" as a system­
atic attempt to appropriate error statistical methods in this way.33 In 
practice, dabbling in one or the other of these methodologies even 
without being too clear on the justification is often innocuous. This is 
not the case when Bayesian principles are applied to philosophy of 
science. 

I earlier outlined three main ways of applying a theory of statistics 
to philosophy of science: (1) to solve philosophical problems (e.g., Du­
hem's problem); (2) to model scientific inference; and (3) to carry out 
a metamethodological critique (e.g., appraise novelty requirements). 
For each of these applications, the differences of interpretation and 
justification called for by the Bayesian and error-statistical philosophies 
are serious and are ignored at our peril. 

32. This is not the case for Bayesians who are only willing to employ error­
statistical methods if they can be given a subjective Bayesian interpretation, or who 
employ error probabilities disingenuously (e.g., because the customer wants or ex­
pects them). 

33. Good's compromise, as I understand it, remains fully Bayesian (see note 
32). However, his program has brought forth a number of important relationships 
between error probability and Bayesian calculations. 
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CHAPTER ELEVEN 

Why Pearson Rejected the Neyman-Pearson 
(Behavioristic) Philosophy and a Note on 

Objectivity in Statistics 

The two main attitudes held to-day towards the theory of probabil­
ity both result from an attempt to define the probability number 
scale so that it may readily be put in gear with common processes 
of rational thought. For one school, the degree of confidence in a 
proposition, a quantity varying with the nature and extent of the 
evidence, provides the basic notion to which the numerical scale 
should be adjusted. The other school notes how in ordinary life a 
knowledge of the relative frequency of occurrence of a particular 
class of events in a series of repetitions has again and again an 
influence on conduct; it therefore suggests that it is through its 
link with relative frequency that a numerical probability measure 
has the most direct meaning for the human mind. 

-E. S. Pearson, "On Questions Raised by the Combination of 
Tests Based on Discontinuous Distributions," p. 228 

11.1 INTRODUCTION 

The two main attitudes Pearson is speaking of correspond to two views 
of the task of a theory of statistics: the evidential-relation or E-R view 
and the error probability view. We have traced the key ways in which 
disputes about methodological rules reflect this underlying distinction 
in aims. Philosophers of induction, we said, have typically embraced 
the first of these two views. My primary aim has not been to settle 
this question of aims, but rather to show how a number of disputes in 
philosophy of science reflect this difference in aims, and to build an 
account of experimental learning based on the error statistics ap­
proach. I am also concerned with showing that the error approach is at 
the heart of the widespread applications of statistical ideas in scientific 
inquiry, and that it offers a fruitful basis for a philosophy of exper­
iment. 

361 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:16:01.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



362 CHAPTER ELEVEN 

Despite the widespread use of error statistical methods, the official 
school of inference in which they are formally couched-Neyman and 
Pearson (NP) statistics-has been the subject of enormous controversy 
and criticism. From the philosophy of statistics debates of the '70s and 
early '80s, NP theory emerged with several black eyes, spurring on the 
popular new Bayesian Way. Fetzer (1981); Hacking (1965); Kyburg 
(1971, 1974); Levi (1980a); Rosenkrantz (1977); Seidenfeld (1979a); 
and Spielman (1973); as well as several statisticians have raised doubts 
about the appropriateness of NP theory for statistical inference in sci­
ence. In a 1977 issue of Synthese devoted to the foundations of proba­
bility and statistics, Neyman expressed surprise at the ardor with which 
subjectivists (e.g., de Finetti 1972) attacked NP tests and confidence 
interval estimation methods: 

I feel a degree of amusement when reading an exchange between an 
authority in "subjectivistic statistics" and a practicing statistician, 
more or less to this effect: 

The Authority: "You must not use confidence intervals; they are 
discredited! " 
Practicing Statistician: "I use confidence intervals because they 
correspond exactly to certain needs of applied work." (Neyman 
1977,97) 

Neyman's remarks hold true today. The subjective Bayesian is still re­
garded, in many philosophy of science circles, as "the authority" in 
statistical inference, and yet scientists from increasingly diverse fields 
still regard NP methods (e.g., confidence intervals) as corresponding 
exactly to their needs. 

Howson and Urbach (1989) have attempted to renew the old ef­
forts to cleanse science of NP methods, declaring "that the support en­
joyed by classical methods of estimation among statisticians is unwar­
ranted" (p. 198). These, along with the other NP methods, they 
apparently feel, should be taken to the dump heap and replaced with 
their brand of subjective Bayesianism. Given the new emphasis philos­
ophers of science have placed on taking cues from actual scientific 
practice, this disregard if not outright condemnation of procedures that 
are widely and successfully used across a vast spectrum of science is 
curious and out of place. I think it is time to remedy the situation. 
Philosophers of statistics can no longer operate on the image of the 
philosopher issuing pronouncements on the appropriateness of the sci­
entist's tools-not if they want to contribute to an experimental meth­
odology that will be of relevance to science. 

Much of the reason philosophers have rejected NP methods may 
be traced to the difference in aims just mentioned: these philosophers 
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seek an E-R view and NP does not give them one. To a large extent, 
such criticisms stem from holding to a certain philosophical image of 
the "logic" of statistical inference-that it should mirror deductive logic 
only with degrees-and not at all from finding these methods unpro­
ductive in scientific applications. In this view, a theory of statistical 
inference must provide a quantitative measure of evidential relation­
ship-an E-R measure (whether a measure of support, confirmation, 
probability, or something else). From this perspective, NP methods will 
be judged inadequate for statistical inference unless NP error probabili­
ties can be interpreted as E-R measures. Unsurprisingly, as critics show, 
if error probabilities (e.g., significance levels) are interpreted as E-R 
measures, misleading and contradictory conclusions are easy to gener­
ate. Such criticisms are not really criticisms but flagrant misinterpreta­
tions of the quantities in error statistical methods-misinterpretations 
repeatedly warned against in good textbooks on statistics. I have dis­
cussed criticisms based on E-R misinterpretations of error probabilities 
at length elsewhere (e.g., Mayo 1980, 1981, 1982, 1983, and 1985a), 
and I will not give them much additional consideration. 

A second set of criticisms that can also be seen to follow from the 
E-R image of statistics is that based on assuming the likelihood prin­
ciple. Since this assumption, we saw, is tantamount to assuming the 
irrelevance of outcomes other than the one observed, and therefore to 
rejecting error probabilities, these criticisms beg the question against 
error statistical methods. To remind us, recall the criticism of error sta­
tistical methods based on the "argument from intentions" discussed in 
section 10.3. If one adheres to the likelihood principle (as Bayesians 
do), then it does not matter whether data arose from a try and try 
again method or from a nonsequential experiment-the stopping rule 
is irrelevant. To deem stopping rules relevant-as statistical signifi­
cance tests do-is, from the Bayesian point of view, tantamount to 
making the experimenter's intentions relevant. All the other error sta­
tistical properties are similarly found to be "incoherent" on the likeli­
hood principle. The tables are turned completely, we saw, for an error 
statistician. Given an observed outcome x, the error statistician finds it 
essential to consider the other outcomes that could have resulted from 
the procedure that issued x. Ignoring aspects of the experiment that 
alter error probabilities (e.g., the stopping rule) violates error statistical 
reasoning and permits systematically misleading results. 

However, we can separate out from the critical literature several 
legitimate questions of the epistemological basis of the NP methods: 
How should test results be interpreted in scientific contexts? What is 
so good about tests that are good or "best" on error-probability criteria? 
How can any of the seemingly arbitrary choices of tests and error prob-
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abilities be justified? I grant that without adequate answers to these 
questions, the NP prescriptions can appear to license counterintuitive 
and unsatisfactory results. 

The problem stems from the decision-theoretic framework in 
which NP methods are standardly couched. Although this framework 
has its uses, it does not adequately reflect most of the reasons that 
scientists find these methods correspond precisely to their needs. We 
need a framework that captures the nature and rationale of NP meth­
ods in scientific practice. 

Happily, we already have it. In the error statistical account, formal 
statistical methods relate to experimental hypotheses, hypotheses 
framed in the experimental model of a given inquiry. Relating infer­
ences about experimental hypotheses to severe tests of primary scien­
tific claims is, except in special cases, a distinct step. Standard statistical 
ideas and tools enter into this picture of experimental inference in a 
number of ways, all of which are organized around the three chief 
models of inquiry. Their role is to (i) provide techniques of data genera­
tion and modeling along with tests for checking whether the assump­
tions of data models are met; (ii) provide tests and estimation methods 
that allow control of error probabilities; and (iii) provide canonical 
models of local experimental questions with associated tests and data 
modeling techniques. 

Knowing what we want from our statistical theory, and having the 
elements of our framework at our disposal, it will be easy to cut 
through the seemingly complex arguments from philosophy of statis­
tics. Getting NP tests to do what we want them to do, however, re­
quires diverging from some of the key tenets that are presumed to be 
integral to the NP theory. The focus in this chapter is tests. The key 
tenets of NP testing from which we may be required to diverge are 
at the same time at the heart of many of the criticisms of NP theory. 
Accordingly, my reformulation of NP statistics will simultaneously re­
spond to two challenges: how to answer the main criticisms of that 
approach, and how error statistical methods provide the needed tools 
for learning from error. 

While it seems correct to call my approach a reinterpretation of NP 
statistics, I want to argue that the appropriate use of NP methods is 
already to be found-albeit only by hints and examples-in one of the 
two founders of NP statistics: Egon Pearson (as well as in most of actual 
practice). Egon S. Pearson (not to be confused with his father, KarP), 
although one of the two founders of NP methods, rejected the statisti-

1. Karl Pearson's subjectivist philosophy contrasts with that of his son Egon. 
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tal philosophy that ultimately became associated with NP statistics-or 
so I shall argue. Many contemporary criticisms of NP methods mirror 
Pearson's own reasons for this rejection. Extricating the view E. S. 
Pearson did hold gives a much deeper and more accurate understand­
ing of NP principles than that which comes out in either statistics text­
books or in the presentations of critics of the NP approach. It is against 
these caricatures of NP methods that the criticisms of NP are largely 
directed. Understanding Pearsonian statistics shows how and why 
actual uses of NP methods generally circumvent the pitfalls without 
forfeiting what is central to error statistical methods: the fundamental 
importance of error probabilities. 

11.2 NEYMAN·PEARSON THEORY OF STATISTICAL TESTS (NP TESTS) 

I want to begin by putting aside for a moment the concepts of our new 
framework and broaching NP tests in their more formal rubric. I want 
to get us to consider the tests in their naked mathematical form, the 
better to see the latitude for their use and interpretation. The highlights 
of chapter 5-the examples of NP tests, the discussion of probabilistic 
models, and the hierarchy of models in experimental inquiry-prepare 
us for each of the ideas we now need. As we proceed, the connection 
with severity and arguments from error will emerge. 

To really get down to the bare bones, the NP testing theory can 
be seen to define mathematical functions on random variables. The 
variables may take on different values corresponding to different out­
comes of an experiment. Tests are functions that map possible values 
of these variables (Le., possible experimental outcomes) to various 
hypotheses about the population from which outcomes may have orig­
inated. Commonly, the hypotheses are assertions about some property 
of this population, a parameter, which governs the statistical distribu­
tion of the experimental variable X. As before, I confine myself to cases· 
with only a single unknown parameter, say fl.. A test is like a postal 
system wherein different values of X (different addresses) get sent to 
different values of fl. (different destinations). 

An example already considered several times is the Binomial ex­
periment, the common exemplar being coin-tossing. Here the statisti­
cal variable might be the proportion of heads in n tosses, written as X, 
and the hypotheses, assertions about the (Binomial) parameter p, the 
probability of heads on each toss. The test is a rule that "sends" the 
different observed proportions of heads to various values of the param­
eter p. 

The standard NP test splits the possible parameter values into 
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FIGURE 11.1. NP tests as mapping rules. 

H 

Test Hypothesis and 
Alternative Hypotheses 

two-there are, so to speak, two destinations. One represents the test 
hypothesis H, the other the set of alternative hypotheses J. For example, H 
might assert that p = .5, while J, that p > .5. Hypothesis H here is 
simple because it consists of just one value of p, while J is composite. 
The test maps each of the possible outcomes-the experimental sample 
space-into either H or J; those mapped into H (i.e., into "accepting" 
H) form the acceptance region, those mapped into alternative J form the 
rejection (of H) region. This partition of the sample space is typically per­
formed by specifying a cutoff point or critical boundary X*. Any outcome 
falling outside bound X* falls into the rejection region. 

An example would be to reject H whenever the observed propor­
tion of heads, X, is at least .8. The critical boundary X* is .8. There are 
two ways to specify the critical boundary. The critical boundary may 
be given by specifying a distance measure D between X and H, and indi­
cating "how far" X can be from H before slipping into the rejection (of 
H) region. Equivalently, the cutoff point may be given by specifying 
the significance level a, such that once that level is reached, H is re­
jected. (Recall that the larger the difference D, the smaller the signifi­
cance level.) Leaving these acceptances and rejections uninterpreted 
for now, the formalism of the NP model simply describes the parti­
tioning that results from the mapping rules as illustrated above (fig. 
11.1). 

NP tests focus on the probabilistic properties of these mapping 
rules, that is, on the probabilities with which the rule leads to one or 
another hypothesis, under varying assumptions about the true hy­
pothesis. Two types of errors are considered: first, the test leads to reject 
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H (accept J) even though H is true (the type I error); second, the test 
leads to accept H although H is false (the type II error). The test is 
specified so that the probability of a type I error, represented by IX, is 
fixed at some small number, such as .05 or .01. In other words, the test 
is specified to ensure that it is very improbable for an outcome to fall 
in the "rejection (of H) region" when in fact the hypothesis H is correct. 
Having fixed IX, called the size or significance level of the test, NP prin­
ciples seek out the test that at the same time has a small probability, ~, 
of committing a type II error: accepting H when J is actually the correct 
hypothesis. I - ~ is the corresponding power of the test. That is: 

P(test T rejects HI H is true) ::s IX = probability of type I error. 
P(test T accepts HI J is true) ::s 13 = probability of type II error. 

When, as is quite common, alternative J contains more than a sin­
gle value of the parameter, that is, when it is composite, the value of ~ 
varies according to which alternative in J is true. IX and ~ are the test's 
formal error probabilities. To reemphasize, error probabilities are not 
probabilities of hypotheses, but the probabilities that certain experi­
mental results occur, were one or another hypothesis true about the 
experimental system. Consider, for example, the probability of a type 
I error in testing H with test T This is the probability of getting an 
experimental result that test T maps to "reject H," when in fact His 
true. 

This leads to the cornerstone of NP tests: their ability to ensure that 
a test's error probabilities will not exceed some suitably small values, 
fixed ahead of time by the user of the test, regardless of which hypoth­
esis is correct. These key points about the bare bones of NP tests can 
be summarized as follows: 

An NP test (of hypothesis H against alternative J) is a rule that maps 
each of the possible values observed into either Reject H (Accept J) 
or Accept H in such a way that it is possible to guarantee, before the 
trial is made, that (regardless of the true hypothesis) the rule will 
erroneously reject H and erroneously accept H no more than ex (100 
percent) and !3 (l00 percent) of the time, respectively. 

The "best" test of a given size IX (if it exists) is the one that at the same 
time minimizes the value of ~ (equivalently, maximizes the power) for 
all possible alternatives J. 

Note that the size of a test is the same as the Significance level of 
the cutoff point beyond which H is rejected. That is why tests with size 
IX are often described as tests with significance level IX. The relationship 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:16:01.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



368 CHAPTER ELEVEN 

between severity and size and power will be discussed explicitly in sec­
tion 11.6. 

11.3. THE BEHAVIORAL DECISION PHILOSOPHY: NP TESTS AS 

ACCEPT-REJECT ROUTINES 

The proof by Neyman and Pearson of the existence of "best" tests en­
couraged the view that tests (particularly "best" tests) provide the sci­
entist with a kind of automatic rule for testing hypotheses. Here tests 
are formulated as mechanical rules or "recipes" for reaching one of two 
possible decisions: "accept hypothesis H" or "reject H" (accept alterna­
tive J). The justification for using such a rule is its guarantee of specifi­
ably low error rates in some long run. 

This interpretation of the function and the rationale of tests was 
well suited to Neyman's statistical philosophy. For Neyman, "The prob­
lem of testing a statistical hypothesis occurs when circumstances force 
us to make a choice between two courses of action: either take step A 
or take step B" (Neyman 1950, 258). These are not decisions to accept 
or believe that what is hypothesized is (or is not) true, Neyman 
stresses. Rather, "to accept a hypothesis H means only to decide to take 
action A rather than action B" (ibid., 259; emphasis added). On Neyman's 
view, when evidence is inconclusive, all talk of "inferences" and 
"reaching conclusions" should be abandoned. Instead, Neyman sees 
the task of a theory of statistics as providing rules to guide our behavior 
so that we will avoid making erroneous decisions too often in the long 
run of experience. A clear statement of such a rule is the following: 

Here, for example, would be such a "rule of behaviour": to decide 
whether a hypothesis, H, of a given type be rejected or not, calculate 
a specified character, x, of the observed facts; if x > Xo reject H; if x :s 
Xo accept H. Such a rule tells us nothing as to whether in a particular 
case H is true when x :s Xo or false when x > xo' But it may often be 
proved that if we behave according to such a rule ... we shall reject 
H when it is true not more, say, than once in a hundred times, and 
in addition we may have evidence that we shall reject H sufficiently 
often when it is false. (Neyman and Pearson 1967b, 142) 

Tests when interpreted as rules of inductive behavior make up a key 
portion of the behavioristic (or behavioral) model of tests. Because this 
model is typically associated with Neyman and Pearson theory, defects 
of that model are taken as defects of the theory. My position is that 
there are other, more satisfactory models to direct the use and interpre­
tation of the NP methods, and that they are provided by the present 
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approach to experimental learning. But before getting to that it is im­
portant to do battle with a certain, not uncommon, misunderstanding. 

What the Behavioral Model Does Not Say 

The misunderstanding concerns the construal of "accept" and "re­
ject" on the behavioristic model. Actually, Neyman is quite clear on 
what he intends. Accept H, Neyman says, means to take action A rather 
than B. Accept H does not mean believe H is true. Accept H does not 
mean act as if you knew H was true, in the sense of behaving in any 
and all of the ways you would if you knew that H was true. Supposing 
that the NP model intends this last interpretation of Accept H, Howson 
and Urbach dismiss NP theory as inappropriate for science as well as 
for practical action. If a scientist were to interpret accepting a statistical 
hypothesis in the way Howson and Urbach think NP theory intends, 

he would never bother to repeat the experiment. Moreover, he would 
be happy to stake his entire stock of worldly goods ... on a wager 
offered at odds of, say, 10 to 1 against that hypothesis being true. Or 
suppose a food additive conjectured to be toxic were subjected to a 
trial involving 10 persons and the conjecture were rejected, then the 
manufacturer would be prepared to go directly into large-scale pro­
duction and distribution. This interpretation of acceptance and rejec­
tion has merely to be stated to reveal its absurdity .... Nevertheless, 
despite its immense implausibility, this seems to be the way statisti­
cians standardly interpret the notions. (Howson and Urbach, 1989, 
162-63) 

Their hilarious portrayal of the way they suppose "statisticians 
standardly interpret" the acceptance of a statistical hypothesis has no 
relation to any real statistician. This is not just because in reality statis­
ticians do not strictly follow Neyman's behavioristic model, but be­
cause no such interpretation is licensed by that model. Howson and 
Urbach confidently assert, but on what basis I cannot imagine, that 

it is evident that the behaviour Neyman and Pearson had in mind 
was the acceptance and rejection of hypotheses as being true or false, 
that is, the adoption of the same attitude towards them as one would 
take if one had an unqualified belief in their truth or falsehood. 
(Ibid., 163) 

But this is not at all evident, and Neyman and Pearson could not have 
been clearer in their rejection of anything like the construal that How­
son and Urbach pin on the NP approach. (Nor do any of Howson and 
Urbach's citations offer any evidence otherwise.) 

Neyman's behavioristic model literally identifies the acceptance of 
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H with the adoption of a decision to take some specific action A (rather 
than B) where A is set out at the start. One cannot choose or even 
articulate a test of any hypothesis until one identifies the acceptance 
of H with some one action A. Only then is it possible to determine the 
test's error probabilities, the basis upon which the choice of the test 
depends. The test's error probabilities may be acceptably low as regards 
one action while unacceptably high as regards some other. (For in­
stance, they might be acceptably low regarding deciding to do further 
research on a topic, while unacceptably high regarding taking the act 
of publishing the results.) In the behavioral model of tests, "accept H" 
gets its interpretation from the specific action (pre)designated by the 
test in question. So the Howson-Urbach reading conflicts with the idea 
of fixed, predesignated error probabilities, aside from being a perver­
sion of both Neyman's and Pearson's views. 

Admittedly, from the fact that "accept H" gets its interpretation 
from the specific action designated by a given test, it follows that its 
meaning varies in different tests of H. In the behavioral model of tests, 
its meaning will vary according to the action identified with the result 
"accept H." This is just what Neyman intends. 

Isaac Levi (1980a, 1984) offers perhaps the clearest depiction of 
the behavioristic model of NP among contemporary philosophers of 
statistics. He suggests "that a good approximation to [Neyman and 
Pearson's] intent is obtained by construing them as recommending the 
use of programs for using observation reports as inputs into programs 
designed to select acts" (Levi 1980a, 406). The idea is to have a rule, 
laid out ahead of time, for which action to take upon the occurrence 
of each possible experimental result. Such a "routine" procedure con­
trasts with what Levi calls a "deliberational" procedure. Where Levi 
and I may disagree, if we do, is on whether NP theory also admits of a 
nonbehavioristic (and deliberational) interpretation. Neyman himself 
is quite clear about his philosophy of inductive behavior, and I want to 
look a little at what he says. 

Neyman and His Inductive Behavior 

Neyman's idea of a rule of behavior is innocuous enough. Humans 
notice <;ertain fairly stable patterns, Neyman begins-for example, that 
rain or snow storms follow the appearance of heavy clouds-and form 
various habits in regard to them-for example, taking cover at the 
sight of dark clouds. A similar kind of regularity is recognized, Neyman 
says, in the relative frequency with which a result occurs in repeated 
trials of some game of chance (real random experiments). Mathemati­
cal statistics developed as a way of providing systematic rules for how 
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to act with regard to this latter type of regularity. They are like rules 
for good habits. 

Neyman offers the following, very general definition of a rule of 
inductive behavior: 

Let El' E2, ••• , En' ... be all possible different outcomes of an experi­
ment or of observations relating to some phenomena. Let ai' a2, ••• , 

am' •.. be all the different actions contemplated in connection with 
these phenomena. 
If a rule R unambiguously prescribes the selection of action for each possible 
outcome E;, then it is a rule of inductive behavior. (Neyman 1950, 10) 

The statistical test, then, is a special case of a rule of behavior, one 
where the outcomes occur with some probability, that is, the experi­
mental variable E follows some probability distribution. The acts, on 
Neyman's model, are condensed into two, a1 and a2 , The hypotheses 
are assertions about the probabilities of the possible outcomes Ei-they 
are statistical hypotheses-and the desirability of performing the two 
actions depends upon which statistical hypothesis is true (Neyman 
1950, 258). Correspondingly, the set of (admissible) hypotheses is split 
up into two, Hand J, where J is regarded as not-H. The idea is that if 
hypothesis H (or any of the hypotheses making up region H) is true, 
then action A would be preferable to B, while if any of the hypotheses 
in J are true, action B would be preferable to A. A rule of inductive' 
behavior determining the choice of A or B according to the experimen­
tal outcome E is a test of a statistical hypothesis, 

Why does Neyman call them rules of "inductive behavior" as op­
posed to, say, test rules? He is led to this term because of his scruples 
about the term "inductive inference." Neyman begins First Course in 
Probability and Statistics as follows: 

Claims are occasionally made that mathematical statistics and the the­
ory of probability form the basis of some mental process described as 
"inductive reasoning." However, in spite of substantial literature on 
this subject, the term "inductive reasoning" remains obscure and it is 
uncertain whether or not the term can be conveniently used to de­
note any clearly defined concept. On the other hand, as was first re­
marked inl-937, there seems to be room for the term "inductive be­
havior." This may be used to denote the adjustment of our behavior 
to limited amounts of observation. (P. 1)2 

In addition to wanting to highlight the contrast with "inductive infer­
ence," Neyman was doubtless influenced by the common parlance 

2. Neyman's reference is to Neyman 1967a, 250-90. 
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during the time NP tests were being developed. As Alan Birnbaum 
notes, "the 1920's and 1930's were a period of much critical concern 
with the meanings and possible meaningless[ness] of terms .... These 
concerns were usually pursued in terms of such doctrines as behavior­
ism, operationalism, or verificationism" (Birnbaum 1977, 33). 

The idea of tests as rules of behavior is not all there is to the behav­
ioristic model of tests. The other key features come in when consider­
ing how to select which of the many possible test rules to employ. In 
selecting such a rule one is led to consider that there are four possible 
situations that can result. To paraphrase Neyman 1950, p. 261: 

I. Hypothesis H is true and action A is taken. 
II. Hypothesis J is true (H is false) and action A is taken. 

III. Hypothesis H is true and action B is taken. 
IV. Hypothesis J is true and action B is taken. 

These can be represented using the familiar 2 by 2 square: 

Action A Action B 

H I III 

J II IV 

It is assumed that A is preferable to B when H is true and that B is 
preferable to A if J is. As such, when a test results in situations II and 
III, the test errs by instructing one to take the less preferred action. The 
test rule is to be selected in such a way as to control the probabilities 
of these two types of errors. There aJ;:e, however, several ways of do­
ing this. 

Neyman is led by the consideration that "with rare exceptions, the 
importance of the two errors is different, and this difference must be 
taken into consideration when selecting the appropriate test" (Neyman 
1950, 261). Typically, he finds, one of the two errors is "more serious," 
more desirable to avoid. The behavioral model instructs one to let H­
the test hypothesis-be the one whose erroneous rejection is consid­
ered the more serious. (Situation III is worse than situation IL) This 
error-the one that comes first in importance-is to be made the type 
I error of the test. The test is selected to fix the probability of the type 
I error at some low value and then choose the test that does best (or 
at least reasonably well) as regards the probability of a type II error. 

The paradigm example that seems to fit the behavioristic model is 
acceptance sampling in industrial quality control. Here a sample from 
some batch of products is observed in order to decide whether or not 
to reject the batch as containing too many defectives, say, for shipping. 
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This is a paradigmatic case in which the importance of errors reflects 
economic values, and the differential weighing of the errors reflects 
the losses judged affordable_ The values can also be ethical, as in one 
of Neyman's main illustrative examples. 

Testing the Toxicity of Drugs: Neyman 
In manufacturing drugs, impurities occasionally enter that are suf­

ficiently toxic that minute quantities that escape ordinary chemical 
analysis can be dangerous. Prior to putting a newly manufactured lot 
on the market, it is tested. Small doses are injected into experimental 
animals and the effect recorded. Let X, the variable recorded, be the 
number of deaths among the n animals injected with a specified dose 
of the drug. The experiment is modeled as observing this random vari­
able X. The probability of the different possible number X of deaths 
depends on how toxic the drug is: all or most animals die if the drug is 
toxic. The different values of X, Neyman supposes, may lead to one of 
two possible courses of action: (at) put the lot of drug on the market, 
and (a2 ) return the lot to the manufacturer: 

The two kinds of error connected with actions at and a2 are vt;ry dif­
ferent .... First consider the case where action at is taken when the 
appropriate action is ar This means that the drug is dangerously toxic 
but declared harmless through the unavoidable inaccuracies of the 
experiment .... Error of this kind may cause death to the patients 
treated with the drug. Actual cases of this kind are on record. (Ney­
man 1950, 263) 

Neyman contrasts this with the error of taking action a2-returning 
the lot-when in fact at is appropriate. Although the consequences 
of this error are unpleasant, and may result in financial losses to the 
manufacturer and an increased price of the drug, "the occasional rejec­
tion of a perfectly safe drug is clearly much less undesirable than even 
an infrequent death of a patient" (ibid.). So this type of error is less 
important than the first, and would be identified as the type II error. 

Neyman's test, then, is a rule of inductive behavior with two 
hypotheses, two corresponding actions, and two associated errors, one 
(typically) more important than the other; and the basis for selecting 
among tests is the goal of controlling the probabilities that they would 
lead to these errors. In Neyman's view, "in many cases the relative 
importance of the errors is a subjective matter" and "lies outside of the 
theory of statistics" (Neyman 1950, 263). Such remarks have led to 
misunderstandings (see section 11.6). To understand Neyman's atti­
tude, I suggest we think back to his view regarding the use of statistical 
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models generally (discussed in chapter 5). His attitude seems to be this: 
here is a formal statistical technique that seems to reflect certain fea­
tures of a standard testing context. It is up to you to assign acts to the 
two hypotheses, to ascertain which of the two errors is more important 
to avoid in your testing context (making that one the type I error) and 
to determine how often such an error seems acceptable (which will 
direct you to fix the a level of your test). That is "subjective". The NP 
theory can then use its machinery to find the test that at the same time 
minimizes the probability of a type II error (~). Once the rule is selected 
(and assuming the assumptions are approximately met), hypothesis 
testing is on automatic pilot-on the behavioral model. Applying the 
test just means following the rule. The experimental outcome is ob­
served, and the test tells you whether to take one of two actions, A or 
B, according to whether or not the outcome falls in the rejection region 
of hypothesis H. There is no hemming and hawing, no agonizing over 
the particular case. Your long-run low error rate needs are guaranteed, 
and they are guaranteed objectively. 

All this is fine and dandy, say critics, if your actual needs corre­
spond to the kind of decision-making context envisioned in the behav­
ioristic model; but scientific inquiry does not seem to be such a context. 
The issue is not just whether science involves decision making or 
whether inference can be seen as a kind of decision. Many who are 
happy to regard all of science as decision making-the typical Bayesian 
decision maker-reject the NP theory, not because of its development 
along decision-theoretic lines, but because it does not go far enough in 
its decision-theoretic leanings. (A full decision theory would involve 
not only the losses captured in error probabilities but explicit loss func­
tions, prior probabilities, and all the rest of the "full dress" Bayesian 
approach.) The issue now, raised by both Bayesian and non-Bayesian 
critics of the behavioristic approach, concerns the appropriateness of 
the particular kinds of decision strategies depicted in the behavioristic 
model. Letting a decision to accept or reject a hypothesis turn on 
whether data reaches a cutoff point just seems too, well, too automatic. 
Many statisticians allege that no one, not even Neyman, ever tests a 
scientific claim along the strict behavioristic line. 

I agree with them. My position all along is that the NP account 
admits of a nonbehavioral construal that is more satisfactory and more 
accurately reflects how NP methods are used in experimental learning. 
By and large, however, NP tests are still formulated along the lines of 
the behavioristic model, with the probability of a type I error generally 
set at the conventional levels of .01 or .05. Why are NP methods so 
productively used in science despite their "rule of behavior" formula­
tion? How, paraphrasing Neyman, do they manage to correspond pre-
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cisely to the needs of applied research? There seem to be two main 
reasons: First, many scientific tasks fit the lIassembly line" behavioral­
decision model. At many junctures in the links between experimental 
and data models there is a need for standardized approaches to data 
analysis that allow us to get going with few assumptions, enable results 
to be communicated uniformly, and help ensure that we will not too 
often err in declaring IInormal puzzles" solved or not. Second, the be­
havioral decision approach provides canonical models for nonbehav­
ioral and non-decision-theoretic uses. The behavioral concepts simply 
serve to characterize the key features of NP tools, and these features are 
what enable them to perform the nonbehavioral tasks to which tests 
are generally put in science. 

Although I take the second reason to be weightier, as well as being 
the more interesting for our purposes, the first reason should not be 
disregarded altogether. There are uses for statistics in science for which 
the behavioristic construal is apt and for which NP as a theory for rou­
tine decision making has made for real progress. One type of example 
is discussed by the statistician Irwin Bross. 

Controlling the Noise in Communications Networks 

The context Bross (1971) discusses concerns decisions to report a 
given message, say, that a drug is effective or, more generally, that an 
effect "is real," not spurious. Bross's particular focus is on analgesics. 
The act of reporting that a drug is effective is not tantamount to taking 
any and all acts that would be licensed were it known to be effective, 
a point we have already made. (The act of reporting is distinct from 
subsequent possible actions, say, for physicians to use the drug or to 
buy stock in the drug company.) But a decision to report it as effective 
may have repercussions for subsequent decisions, and tools for routine 
error control may be called for. 

An NP test may be used as a routine for declaring an analgesic 
effective in the following manner. It may stipulate: report a drug effec­
tive only if an observed difference in effect rates is statistically signifi­
cant at, say, the 1 percent level. Following Bross, the various sources 
of error that can creep into scientific reports may be seen as sources 
of noise in a scientific communications network. Noise from random 
sources-which is inevitable in experimental research-is often called 
sampling variation. 3 The adoption of a fixed critical level or size, say 1 
percent, is useful in "controlling the noise in communication net­
works." According to Bross, prior to the advent of controlled clinical 

3. Noises from nonrandom sources are sometimes called biases or extraneous 
variables. 
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trials the noise level in analgesic testing was high enough to impede 
progress seriously (Bross 1971, 503-4). 

To illustrate, Bross describes an uncontrolled drug testing network 
where researchers report favorably on all new drugs tested, noting that 
"some years ago this would not have been an entirely unrealistic 
model for certain networks" (p. 504). If four out of five of these drugs 
are actually ineffective, being no more effective than a standard agent, 
80 percent of the favorable reports would be false. With such a high 
level of noise, no reliance could be placed on the reports. If, on the 
other hand, each member of the network reports favorably only on 
those drugs that pass a test with critical level or size of, say, 5 percent, 
then the proportion of false positive reports is kept low, at 5 percent. 

Thus the use of statistical significance tests as accept-reject routines 
for a thumbs up or down approach on analgesics helped to control the 
noise in the scientific communication network. True, it would not do 
to apply such a behavioristic construal of tests to deciding to accept 
or reject substantive scientific hypotheses directly. Nevertheless, the 
hierarchy of models in an experimental inquiry may also be seen as a 
"communication network," and it is plainly desirable to have tools for 
controlling errors at numerous points in this network of models. Con­
trolling the errors at various segments of the inquiry is what enables 
the overall reliability and severity to be achieved. One could well imag­
ine, for example, how Jean Perrin might have used a routine test to 
give a "yes or no" pronouncement to whether a given grain, after un­
dergoing his technique of fractional centrifuging, was sufficiently uni­
form to be included in the next stage of the Brownian motion analysis 
(chapter 7). One act would be including the grain into the analysis, a 
second would be to subject the grain to further centrifuging. Assurance 
that he would rarely include insufficiently uniform grains as well as 
rarely carry out unnecessary centrifuging was precisely what Perrin 
sought. 

These points go toward illustrating what I gave as the first reason 
that the behavioral model of tests has a serviceable role in research, 
namely, that there are scientific tasks that fit the behavioristic model. 
Even these uses, however, depend upon designing, interpreting, and 
combining several tests in a manner that is decidedly not automatic. 
The second and more important reason that NP tests supply needed 
tools for research is that their methods provide standard or canonical 
models for nonbehavioral and non-decision-theoretic uses. Undoubt­
edly, many of the behavioral concepts with which Neyman chose to 
characterize the key features of NP tests would not have been chosen 
by Pearson. But these concepts succeed in characterizing the features 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:16:01.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



WHY PEARSON REJECTED NEYMAN-PEARSON PHILOSOPHY 377 

of the tests well enough, and these features are what enable tests to 
perform the nonbehavioral tasks to which they are generally put in 
science. In these nonbehavioristic contexts, tests license not acts, but 
arguments or inferences as to what is learned from particular experi­
mental results. The arguments are arguments from error. 

This, I propose, is why behavioral models of tests provide service­
able canonical models for nonbehavioral tasks. The tests can and 
should be seen as tools whose distinctive properties enable them to be 
used to ask a variety of standard questions about errors-quite gener­
ally construed. The result of a single statistical test does not license a 
substantive scientific inference. Instead, each such test, or set of tests, 
teaches the answer to a specific question, and error control at local 
points is the key to arriving at substantive severity arguments. 

11.4 PEARSON REJECTS THE NEYMAN-PEARSON 

(BEHAVIORISTIC) PHILOSOPHY 

Alan Birnbaum (1969, 1977) argued that NP admits of two types of 
interpretations: in one, Neyman's behavioral decision view, we saw 
that the test result is literally a decision to act in a certain way; in the 
other, which Birnbaum called an "evidential" view, the test result is 
interpreted as providing strong or weak evidential support for one or 
another hypothesis.4 While I do not embrace the particular evidential 
interpretation Birnbaum favored, I think he was quite right that in 
situations of scientific research the behavioral interpretation of tests is 

4. Birnbaum called the concept underlying this evidential interpretation of NP 
the confidence concept, which he formulated (1977, 24) as follows: 

(Conf): A concept of statistical evidence is not plausible unless it finds 
·strong evidence for J as against H" with small probability (a) when His 
true, and with much larger probability (1 - 13) when J is true. 

Birnbaum argued that scientific applications of NP tests made intuitive use of some­
thing like the confidence concept. Birnbaum's approach, incomplete at the time of 
his death, sought to make explicit the correspondence between an NP result and a 
statement about the strength of evidence (e.g., conclusive, very strong, weak, or 
worthless). For example, he interprets reject H against J with error probabilities IX, 

13 equal to .01 and .2, respectively, as very strong statistical evidence for H as against 
J. A main shortcoming, as I see it, is that it interprets a test output-say, reject H­
from two tests with the same a, 13 as finding equally strong evidence for J. De­
pending upon the particular outcome and the test's sample size, the two rejections 
may constitute very unequal tests of J-something I take up in later sections. Birn­
baum's rules do not seem to reflect such differences. Further criticism along these 
lines occurs in Pratt 1977. I discuss more generally attempts at "evidential" inter­
pretations of NP methods in Mayo 1985a. 
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intended to apply "in a way which is heuristic or hypothetical, serving 
to explain the inevitably abstract theoretical meanings associated with 
the error probabilities [and] formal 'decisions' such as 'reject H'" 
(Birnbaum 1977, 32-33). The behavioristic formulation of tests, Birn­
baum proposed, should simply be seen as a way of articulating the new 
statistical ideas of the NP approach. That the behavioral construal of 
tests is still with us, I suggest, testifies that they still serve the kind of 
heuristic function that Birnbaum had in mind. 

Birnbaum found clues of these nonbehavioral intuitions in the 
writings of Pearson. One particularly interesting document that Birn­
baum (1977, 33) supplies includes an unpublished remark by Pearson 
in 1974: 

I think you will pick up here and there in my own papers signs of 
evidentiality, and you can say now that we or I should have stated 
clearly the difference between the behavioral and evidential interpreta­
tions. Certainly we have suffered since in the way the people have 
concentrated (to an absurd extent often) on behavioral interpretations. 
(Emphasis added) 

Pearson never articulates just what evidential interpretation he sup­
ports, and I do not think that Birnbaum's evidential model, so far as 
he worked it out (in which NP results are reinterpreted in terms of 
strong or weak evidence for hypotheses), is indicated in Pearson's 
"signs of evidentiality." Nevertheless, I endorse Birnbaum's proposal 
that the behavioral model of NP tests be regarded as a device to com­
municate what the tests could be used for, while requiring reinterpre­
tation in scientific contexts. This, I believe, was also Pearson's view, 
and that is why I say Pearson rejects what have come to be identified as 
the key tenets of the NP behavioral philosophy. What Pearson rejects is 
the philosophy associated with Neyman's inductive-behavior model. 

The Rationale o/Tests according to the NP Behavioristic Philosophy 

Because NP theory developed mathematically in a decision­
theoretic framework (along with the work of Abraham Wald), the sta­
tistical philosophy generally associated with these tools is Neyman's 
behavioral decision one. Often it is referred to as the Neyman-Pearson­
Wald (NPW) approach.s We can identify two closely connected aspects 

5. Even that arch opponent of Neyman, Bruno de Finetti, held that-the expres­
sion "inductive behavior ... that was for Neyman simply a slogan underlining and 
explaining the difference between his own, the Bayesian and the Fisherian formu­
lations" became, with Wald's work, "something much more substantial" (de Finetti 
1972, 176). He called this "the involuntarily destructive aspect of Wald's work" 
(ibid.). 
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of this decision philosophy: first, the justification of tests in terms of 
low (long-run) error rates, and second, the function of tests as routine 
decision rules. While these features, taken strictly, give a caricature 
of tests, even as Neyman intended them, they are at the heart of the 
philosophical criticisms of NP to which we need to respond. 

Long-run (low error-probability) justification. Since the criteria for good­
ness of a test are its low error probabilities in the frequentist sense, the 
justification for using tests is (apparently) solely their ability to guaran­
tee low long-run errors in some sequence of applications. This is not 
a final measure of the degree of support or probability acquired by 
hypotheses-it is not an E-R measure. For example, to reject H with a 
test having a low probability of erroneous rejections does not say that 
the specific rejection has a low probability of being in error, but only that 
it arises from a testing procedure that has a low probability of leading 
to erroneous rejections. Likewise with confidence levels attached to 
particular interval estimates. Critics of NP theory deny that low error 
rates in the long run are relevant to justifying any particular inference. 

Tests as decision "routines" with prespecified error properties. This feature is 
associated with two main criticisms. First, there is the fact that the NP 
decision model does not give an interpretation customized to the spe­
cific result. A test result either is or is not in the prespecified rejection 
region. But intuitively, if a given test rejects H with an outcome several 
standard deviations beyond the critical boundary (between rejection 
and acceptance of H), there is an indication of a greater discrepancy 
from H than if the same test rejects H with an outcome just at the 
critical boundary. Both, however, are identically reported as "reject H" 
(and accept some alternative J), and the probability of a type I error 
(the test's prespecified size) is identical for any such rejection.6 Second, 
there is the problem of how to interpret test results. Deciding to accept 
or reject hypotheses, construed as deciding how to act, does not seem 
to offer the kind of evidential appraisal needed for scientific inference. 

A Dialogue between Pearson and Fisher 

These features are not only the source of contemporary criticisms 
of NP theory. They lie at the heart of R. A. Fisher's original attack on 

6. The point here is that to do no more than report the error probabilities, 
while condoned by the strict NP decision model. is not sufficient to discriminate 
between these two results-one of the sources of the criticisms of NP tests. Other 
uses of error probabilities, however, can make this discrimination along the lines I 
discuss in sections 11. 6 and 11. 7. 
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Neyman and Pearson's reworking of (what Fisher regarded as "his") 
significance tests. In his forceful style, Fisher declared that followers of 
the behavioristic approach are like 

Russians (who) are made familiar with the ideal that research in pure 
science can and should be geared to technological performance, in 
the comprehensive organized effort of a five-year plan for the nation. 
(Fisher 1955, 70) 

Fisher makes a similar comparison with the United States: 

In the U.S. also the great importance of organized technology has I 
think made it easy to confuse the process appropriate for drawing correct 
conclusions, with those aimed rather at, let us say, speeding production, or 
saving money. (Ibid.) 

The allegation is essentially the one cited earlier: NP methods seem 
suitable for industrial acceptance sampling, but not for drawing infer­
ences in science. 

Pearson, however, responds to Fisher's attacks-something critics 
seem to have overlooked. Perhaps this is because it occurs in an ob­
scure, very short (but fascinating) paper, "Statistical Concepts in Their 
Relation to Reality" (Pearson 1955), that is not included in The Selected 
Papers of E. S. Pearson. 

Pearson Responds to Fisher 

What one discovers in Pearson's (1955) response to Fisher (and 
elsewhere in his work) is that for scientific contexts Pearson rejects 
both the low long-run error probability rationale and the nondelibera­
tiona!, routine use of tests. These two features are regarded as so inte­
gral to the NP model that I think it is fair to say that Pearson rejected 
the NP philosophy (but not NP methods).7 Pearson did not publish 
much on his own statistical philosophy per se, but evidence scattered 
throughout his statistical papers offers a fairly clear picture of the ratio­
nale underlying his rejection of these decision features of NP tests. 
These are the "signs of evidentiality" to which Pearson alluded. 

Pearson's Original Heresy 

Let us begin with Pearson's (1955) response to Fisher's main criti­
cism-that the NP model turns tests into a pragmatic, five-year-plan 
type of a process. Pearson insists that 

7. Perhaps it is clearest to say that what Pearson rejected was the Neyman­
Pearson-Wald (NPW) model of NP methods. See also Note 5. 
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there was no sudden descent upon British soil of Russian ideas re­
garding the function of science in relation to technology and to five 
year plans. It was really much simpler-or worse. The original heresy, 
as we shall see, was a Pearson one! (Pearson 1955, 204; emphasis added) 

Interestingly, Fisher directs his attacks at Neyman's behavioral ap­
proach, leaving Pearson out of it.B Nevertheless, Pearson protests here 
that the "original heresy" was really his! 

Pearson does not mean it was he who endorsed the behavioral­
decision model that Fisher attacks. The "original heresy" refers to the 
break Pearson made (from Fisher) in insisting that tests explicitly take 
into account alternative hypotheses, in contrast with Fisherian signifi­
cance tests, which did not. With just the single hypothesis (the null 
hypothesis) of Fisherian tests, the result is either reject or fail to reject 
according to the significance level of the result. However, just the one 
hypothesis and its attended significance level left too much latitude in 
specifying the test, rendering the result too arbitrary. With the inclu­
sion of a set of admissible alternatives to H, it was possible to consider 
type II as well as type I errors, and thereby to constrain the appro­
priate tests. 

In responding to Fisher, Pearson is not merely arguing that NP 
methods can be interpreted in a manner other than a pragmatic 
behavioral-decision one, he is claiming that their original formulation 
(admittedly "heretical" in the above sense) was not even intended to 
capture decision-theoretic aims. Those aims came later, and were not 
his: 

Indeed, to dispel the picture of the Russian technological bogey, I 
might recall how certain early ideas came into my head as I sat on a 
gate overlooking an experimental blackcurrant plot. (Ibid., 204) 

Having sketched for Fisher this marvelous image of his sitting on 
a gate (my own sketch being the frontispiece), Pearson goes on to ex­
plain that his thoughts had not at all to do with speeding up production 
or saving money. Rather, Pearson continues, 

To the best of my ability I was searching for a way of expressing in mathemati­
cal terms what appeared to me to be the requirements of the scientist in 
applying statistical tests to his data. 

8. George Barnard, in a private communication, revealed the part he played 
in Fisher's reception of NP theory. It was Barnard who alerted Fisher to the conse­
quences of proceeding within the behavioristic model of tests favored by Neyman. 
At the same time, Barnard told Fisher that Neyman's model was to be distinguished 
from Pearson's philosophy. Barnard 1985 provides an excellent discussion of histor­
ical developments in statistics, as well as comments from a number of statisticians. 
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After contact was made with Neyman in 1926, the development of a 
joint mathematical theory proceeded much more surely; it was not 
till after the main lines of this theory had taken shape with its necessary 
formalization in terms of critical regions, the class of admissible 
hypotheses, the two sources of error, the power function, etc., that the 
fact that there was a remarkable parallelism of ideas in the field of acceptance 
sampling became apparent. Abraham Wald's contributions to decision theory 
often to fifteen years later were perhaps strongly influenced by acceptance sam­
pling problems, but that is another story. (Pearson 1955, 204-5; empha­
sis added) 

So it was only after the main NP theory had taken shape that a "re­
markable parallelism" with acceptance sampling problems was discov­
ered. And while the NP methods clearly benefited from the mathemat­
ical rigor of the newly developed work in decision theory, the original 
application, as Pearson saw it, was to learning from data in science. 

Pearson proceeds to "Fisher's next objection": to the terms "accep­
tance" and '"rejection" of hypotheses, and to the type I and type II 
errors. His admission is again revealing of his philosophy: 

It may be readily agreed that in the first Neyman and Pearson paper 
of 1928, more space might have been given to discussing how the 
scientific worker's attitude of mind could be related to the formal 
structure of the mathematical probability theory .... Nevertheless it 
should be clear from the first paragraph of this paper that we were not speak­
ing of the final acceptance or rejection of a scientific hypothesis on the basis of 
statistical analysis . ... Indeed, from the start we shared Professor Fish­
er's view that in scientific enquiry, a statistical test is "a means of learn­
ing. " (Ibid., 206; emphasis added) 

Thus, says Pearson, the NP framework, with its consideration of 
alternative hypotheses, grew out of an attempt to provide tests then in 
use with an epistemological rationale-one based on their function as 
learning tools. In this role, the test's output was not supposed to be 
identified with the final acceptance or rejection of a scientific hypothe­
sis. Instead, the test teaches about a specific aspect of the process that 
produced the data. A suitable reformulation of NP tests, I believe, 
grows directly out of the distinct roles that statistical tests play in filling 
out and linking models in an experimental inquiry. Although Pearson 
did not himself propose such a reformulation, Pearson clearly distances 
the original learning function of NP methods from the later behavioral­
decision construal to which Fisher is objecting. He declares in the last 
line of this paper that 

Professor Fisher's final criticism concerns the use of the term "induc­
tive behaviour"; this is Professor Neyman's field rather than mine. 
(Ibid., 207) 
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Pearson Rejects the Long-Run Rationale 
It seems clear that for Pearson the value of NP tests (in scientific or 

learning contexts) does not depend on the long-run error-rate rationale 
found in the decision model. Pearson raises the question as follows, 
the mention of "inference" already in contrast with Neyman: 

How far then, can one go in giving precision to a philosophy of statis­
tical inference? (Pearson 1966a, 172) 

He considers the rationale that might be given to NP tests in two types 
of cases, A and B: 

(A) At one extreme we have the case where repeated decisions must 
be made on results obtained from some routine procedure .... (B) At 
the other is the situation where statistical tools are applied to an iso­
lated investigation of considerable importance. (Ibid., 170) 

In cases of type A, long-run results are clearly of interest, while in cases 
of type B, repetition is impossible or irrelevant. For Pearson's treatment 
of the latter case (type B) the following passage is telling: 

In other and, no doubt, more numerous cases there is no repetition 
of the same type of trial or experiment, but all the same we can and 
many of us do use the same test rules to guide our decision, following 
the analysis of an isolated set of numerical data. Why do we do this? 
What are the springs of decision? Is it because the formulation of the 
case in terms of hypothetical repetition helps to that clarity of view needed for 
soundjudgment? Or is it because we are content that the application of 
a rule, now in this investigation, now in that, should result in a long­
run frequency of errors in judgement which we control at a low fig­
ure? (Ibid., 173; emphasis added) 

Although Pearson leaves this tantalizing question unanswered, 
claiming, "On this I should not care to dogmatize," it is evident from 
his treatment of type B cases that, for Pearson, "the formulation of the 
case in terms of hypothetical repetition helps to that clarity of view 
needed for sound judgment." In addressing this issue, Pearson intends 
to preempt what he calls the "commonsense" objection to long-run 
justifications-precisely the objection lodged by contemporary critics 
of NP theory: 

Whereas when tackling problem A it is easy to convince the practical 
man of the value of a probability construct related to frequency of 
occurrence, in problem B the argument that Nif we were to repeatedly· 
do so and so, such and such result would follow in the long run" is at 
once met by the commonsense answer that we never should carry out a pre­
cisely similar trial again. 
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Nevertheless, it is clear that the scientist with a knowledge of statisti­
cal method behind him can make his contribution to a round-table 
discussion. (Ibid., 171) 

Seeing how the scientist makes his contribution leads to substantiating 
my second claim, that Pearson rejects the routine use and interpreta­
tion of NP tests associated with the behavioral model. For the scientist's 
"contribution to a round-table discussion" turns on the thoughtful use 
of error probabilities to unearth causal knowledge-something not re­
ducible to routine. 

Nonroutine Uses of Tests: An Example of Type B 

Weaving together strands found throughout Pearson's work, one 
can craft a picture of statistical tests much like the one I would pro­
mote, namely, as tools for learning about causal processes by enabling 
a piecemeal series of standard questions (about errors) to be posed and 
reliably answered. In the opening of a 1933 paper (jointly written with 
S. S. Wilks) Pearson writes: 

Statistical theory which is not purely descriptive is largely concerned 
with the development of tools which will assist in the determination 
from observed events of the probable nature of the underlying cause system 
that controls them . ... We may trace the development through a chain 
of questionings: Is it likely, (a) that this sample has been drawn from 
a specified population, P; (b) that these two samples have come from 
a common but unspecified population; (c) that these k samples have 
come from a common but unspecified population? (Pearson and 
Wilks 1966, 81; emphasis added) 

An example that Pearson often employs as a case of type B, where no 
repetition is intended, is the following: 9 

Example of type B. Two types of heavy armour-piercing naval shell of 
the same calibre are under consideration; they may be of different 
design or made by different firms .... Twelve shells of one kind and 
eight of the other have been fired; two of the former and five of the 
latter failed to perforate the plate. (Pearson 1966a, 171) 

Pearson's interest in this naval shell example stems from his own work 
on the statistical assessment of army weapons in World War II and 
after. The experimental variable observed (Le., the statistic) is the dif­
ference, D, between the proportions that perforate the plate from the 

11. 10 3 
two types of shell. Its observed value, Dobs ' equals - (I.e., - - -i. So 

24 12 8 

9. Pearson follows this naval shell example through a number of papers. 
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we have a standard case of a difference in proportions similar to our 
birth-control pill example in chapters 5 and 6. (In both cases, the null 
hypothesis predicts a zero difference.) Statistical tests aid the scientist's 
contribution here by answering a question under (b) about the causal 
origin of the two samples of naval shells: 

Starting from the basis that individual shells will never be identical in 
armour-piercing qualities, however good the control of production, 
he has to consider how much of the difference between (i) two fail­
ures out of twelve and (ii) five failures out of eight is likely to be due 
to this inevitable variability. (Ibid., 171) 

Notably, Pearson does not simply report whether this observed differ­
ence falls in the rejection region (Le., whether a test maps it to "reject 
H"), but calculates the probability "of getting as great or a greater posi­
tive difference" (p. 192) if hypothesis H were true and there was no 
difference in piercing qualities. This is, we know, the significance level of 
the observed difference-a measure that reflects the actual result ob­
served. 

Although testing the "no difference" hypothesis is standard, there 
is not just one plausible way to test it. More than one way has been 
proposed to describe the data and define a distance between data and 
hypotheses. This matter is the basis of a historical debate between Pear­
son and others, which I leave to one side. Although Pearson takes a 
position in this debate (arguing in favor of the test that he regards as 
more nearly describing the experimental situation), he does not feel 
that a single best test needs to be found. Pearson is not perturbed by 
the existence of this latitude in choosing tests, he does not see it as 
presenting a problem. It would only present a problem, he thinks, to 
one who regards tests as giving automatic routines; but, in striking con­
trast with the routine decision model, Pearson held that little turns on 
which of the various plausible tests one employs. Treating the (differ­
ence between two proportions) case in one way, Pearson obtains an 
observed significance level of .052; treating it differently (along Bar­
nard's lines), he gets .025 as the (upper) significance level. 10 In an auto-

10. The first treatment falls under what Pearson calls Problem I (Barnard's 
N2x2 independence trial"). Here the question is restricted to just the 20 shells ob­
served, the total number of failures being fixed at the observed one, 7. The test asks 
whether the observed difference is due to a random partition of the 20 individual 
shells, of whom 7 would fail to perforate in whichever group they are randomly 
included. The second way of treating this case views samples from the two pro­
cesses as random samples from two populations, so the failure rates can vary from 
o to 12 and 0 to 8, respectively. The test asks whether the probability of failure is 
the same in both. This falls under what Pearson calls Problem II (Barnard's N2x2 
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matic routine use of tests this can make a substantial difference. Pear­
son rejects this use of tests. 

The result of either approach would raise considerable doubts as to 
whether the performance of the [second] type of shell was as good as 
that of the [first]. (Ibid., 192)11 

In either case, the data indicate J: the first type of shell is better than 
the second, because in either case J passes a severe test (although one 
is more severe than the other). (Severity for passing J here is 1 minus 
the significance level.) 

Pearson holds that in important cases the difference in error proba­
bilities, depending upon which of these tests is chosen, makes no real 
difference to substantive judgments in interpreting the results: 

Were the action taken to be decided automatically by the side of the 
5% level on which the observation point fell, it is clear that the 
method of analysis used would here be of vital importance. But no 
responsible statistician, faced with an investigation of this character, would 
follow an automatic probability rule. (Ibid., 192; emphasis added) 

So, faced with this type of investigation, no responsible statistician 
would be a strict follower of the behavioristic model of NP tests. 

Surprisingly, the same type of admonishment against an "auto­
matic" use of tests, along with other remarks redolent of Pearson's "in­
ferential" philosophy, occurs not only in Pearson's own papers, but also 
in one or two of the joint papers by Neyman and Pearson. In 1928, for 
example, "they" wrote: 

If then a statistician thoughtlessly decides, whatever be the test, to 
reject an hypothesis when P ::S .01, say, and accept it when P > .01, 
it will make a considerable difference to his conclusions whether he 
uses [one test statistic or another]. But as the ultimate value of statis­
tical judgment depends upon a clear understanding of the meaning 
of the statistical tests applied, the difference between the values of the 
two P's should present no difficulty. (Neyman and Pearson 1967c, 18) 

comparative trial"). For the naval shell example, Pearson regards the former treat­
ment, though preferred by Barnard, as more artificial than the latter. Which of 
several ways to treat the 2x2 case had been much debated by Barnard and Fisher 
at that time. Pearson's position is that the appropriate sample space "is defined by 
the nature of the random process actually used in the collection of the data, " which 
in tum directs the appropriate choice of test (Pearson 1966a, 190). But Pearson 
does not think there is a need for a rigid choice from among several plausible tests. 

11. Pearson's conclusion inadvertently switches the observation to 2 of 12 and 
5 of 8 successful perforations, where originally they had been failures. I have stated 
his conclusion to be consistent with the original results reported in this example. 
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(P here is equal to the significance leveL) In other words, if the decision 
model of NP is taken literally, one accepts or rejects H according to 
whether or not the observed outcome falls in the preselected rejection 
region. Just missing the cutoff for rejection, say, because the observed 
significance level is .06 while the fixed level for rejection is .OS, auto­
matically makes the difference between an acceptance and a rejection 
of H. The "Pearsonian" view rejects such automation in scientific con­
texts because 

it is doubtful whether the knowledge that [the observed significance 
level] was really .03 (or .06) rather than .05 ... would in fact ever 
modify our judgment when balancing the probabilities regarding the 
origin of a single sample. (Ibid., 27) 

Most significant in this joint contribution is the declaration that 

if properly interpreted we should not describe one [test] as more accu­
rate than another, but according to the problem in hand should rec­
ommend this one or that as providing information which is more 
relevant to the purpose. (Ibid., 56-57) 

This introduces a criterion distinct from low error rates, namely, the 
relevance of the information. In addition, clues emerge for connecting 
tests (used nonroutinely) to learning about causes by probing key 
errors: 

The tests should only be regarded as tools which must be used with 
discretion and understanding .... We must not discard the original 
hypothesis until we have examined the alternative suggested, and 
have satisfied ourselves that it does involve a change in the real un­
derlying factors in which we are interested; ... that the alternative 
hypothesis is not error in observation, error in record, variation due 
to some outside factor that it was believed had been controlled, or to 
anyone of many causes. (Ibid., 58) 

This sentiment is clear enough: we should not infer some alternative 
to a hypothesis H until other alternative explanations for the dis­
cordancy with H have been ruled out. The surprise is only that such 
nonbehavioral talk should occur in a joint paper. Its very title-"On 
the Use and Interpretation of Certain Test Criteria for Purposes of Sta­
tistical Inference"-is at odds with Neyman's philosophy, which con­
cerned behavior and not inference. A curious note by Neyman tucked 
at the end of this paper may explain its Pearsonian flavor. 

I feel it necessary to make a brief comment on the authorship of this 
paper. Its origin was a matter of close co-operation, both personal and 
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by letter .... Later I was much occupied with other work, and there­
fore unable to co-operate. The experimental work, the calculation of 
tables and the developments of the theory of Chapters III and IV are 
due solely to Dr Egon S. Pearson. (Neyman and Pearson 1967c, 66; 
signed by J. Neyman) 

This "joint" paper, it appears, was largely a contribution of Pearson's. 

11.5 A PEARSONIAN PHILOSOPHY OF EXPERIMENTAL LEARNING 

I want now to turn to Pearson's discussion of the steps involved in the 
original construction of NP tests (of H: no difference). His discussion 
underscores the key difference between the NP error statistical (or 
"sampling") framework and approaches based on the likelihood prin­
ciple. The previous chapters have amply illustrated the enormous con­
sequences that this difference makes to an account of scientific testing. 
This background should let us quickly get to the heart of why different 
choices were made in the mathematical development of NP error sta­
tistics. The choices stem not only from a concern for controlling a test's 
error probabilities, but also from a concern for ensuring that a test is 
based on a plausible distance measure (between data and hypotheses). 
By recognizing these twin concerns, we can answer a number of criti­
cisms of NP tests. 

Three Steps in the Original Construction of NP Tests 

After setting up the test (or nUll) hypothesis, and the alternative 
hypotheses against which "we wish the test to have maximum discrimi­
nating power" (Pearson 1966a, 173), Pearson defines three steps in 
specifying tests: 

Step 1. We must specify [the sample spacel2] the set of results which 
could follow on repeated application of the random process used in 
the collection of the data .... 

[ 

Step 2. We then divide this set [of possible results] by a system of 
ordered boundaries ... such that as we pass across one boundary and 
proceed to the next, we come to a class of results which makes us 
more and more inclined, on the information available, to reject the hy­
pothesis tested in favour of alternatives which differ from it by in­
creasing amounts. (Pearson 1966a, 173) 

Results make us "more and more inclined" to reject H as they get fur­
ther away from the results expected under H, that is, as the results 

12. Here Pearson calls it the "experimental probability set." 
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become more probable under the assumption that some alternative J 
is true than under the assumption that H is true. This suggests that one 
plausible measure of inclination is the likelihood of H-the probability 
of a result e given H. We are "more inclined" toward J as against H to 
the extent that J is more likely than H given e. 

NP theory requires a third step-ascertaining the error probability 
associated with each measure of inclination (each "contour level"): 

Step 3. \We then, if possible, associate with each contour level the 
chance 'that, if [H] is true, a result will occur in random sampling 
lying beyond that level. (Ibid.) 13 

For example, step 2 might give us the likelihood or the ratio of likeli­
hoods of hypotheses given evidence, that is, the likelihood ratio. At 
step 3 the likelihood ratio is itself treated as a statistic, a function of 
the data with a probability distribution. This enables calculating, for 
instance, the probability of getting a high likelihood ratio in favor of H 
as against a specific alternative J', when in fact the alternative J' is 
true, that is, an error probability. We are already familiar with this kind 
of calculation from calculating severity. 

Pearson explains that in the original test model step 2 (using likeli­
hood ratios) did precede step 3, and that is why he numbers them this 
way. Only later did formulations of the NP model begin by first fixing 
the error value for step 3 and then determining the associated critical 
bounds for the rejection region. This change came about with advances 
in the mathematical streamlining of the tests. Pearson warns that 

although the mathematical procedure may put Step 3 before 2, we 
cannot put this into operation before we have decided, under Step 2, 
on the guiding principle to be used in choosing the contour system. 
That is why I have numbered the steps in this order. (Ibid., 173) 

However, if the rationale is solely error probabilities in the long run, the 
need to first deliberate over an appropriate choice of measuring dis­
tance at step 2 drops out. That is why it is dropped in the standard 
behavioral model of NP tests. In the behavioral model, having set up 
the hypotheses and sample space (step I), there is a jump to step 3, 
fixing the error probabilities, on the basis of which a good (or best) NP 
test determines the rejection region. In other words, the result of step 
3 automatically accomplishes step 2. From step 3 we can calculate how 
the test, selected for its error probabilities, divides the possible out-

13. Where this is not achievable (e.g., certain tests with discrete probability 
distributions), the test can associate with each contour an upper limit to this error 
probability. 
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comes. Yet this is different from having first deliberated at step 2 about 
which outcomes are "further from" or "closer to" H in some sense, 
and thereby should incline us more or less to reject H. The resulting 
test, despite having adequate error probabilities, might have an inad­
equate distance measure. Such a test may fail to ensure that the test 
has an increasing chance of rejecting H the more the actual situation 
deviates from the one H hypothesizes. The test may even be irrelevant 
to the hypothesis of interest. The reason that critics can construct 
counterintuitive tests that appear to be licensed by NP methods, for 
example, certain mixed tests,14 is that tests are couched in the behav­
ioral framework from which the task Pearson intended for step 2 is 
absentY 

Likelihood Prindple versus Error Probability Prindples, Again 

It might be asked, if Pearson is so concerned with step 2, why go 
on to include step 3 in the testing model at all? In other words, if Pear­
son is interested in how much a result "inclines us" to reject H, why 
not just stop after providing a measure of such inclination at step 2, 
instead of going on to consider error probabilities at step 3? This is 
precisely what many critics of NP have asked. It was essentially Hack­
ing's (1965) point during his "likelihood" period. As briefly noted in 
previous chapters, Hacking's likelihood account held that the likelihood 
ratio (of H against alternative J) provides an appropriate measure of 
support for H against J.16 In such a likelihood view, the tests should just 
report the measure of support or inclination (at step 2) given the data. 
For Bayesians also, the relevant evidence contributed by the data is 
fully contained in the likelihood ratio (or the Bayesian ratio of sup-

14. In a mixed test certain outcomes instruct one to apply a given chance 
mechanism and accept or reject H according to the result. Because long-run error 
rates may be improved using some mixed tests, it is hard to see how a strict follower 
of NP theory (where the lower the error probabilities the better the test) can in­
veigh against them. This is not the case for one who rejects the behavioral model 
of NP tests as Pearson does. A Pearsonian could rule out the problematic mixed 
tests as being at odds with the aim of using the data to learn about the causal 
mechanism operating in a given experiment. Ronald Giere presents a related argu­
ment against mixed tests, except that he feels it is necessary to appeal to propensity 
notions, whereas I appeal only to frequentist ones. See, for example, Giere 1976. 

15. A notable exception is the exposition of tests in Kempthorne and Folks 
1971 in which test statistics are explicitly framed in terms of distance measures. See 
also note 28. 

16. Hacking later rejected this approach (e.g., Hacking 1972). Although he 
never dearly came out in favor of NP methods, in 1980 he reversed himself (Hack­
ing 1980) on several of his earlier criticisms of NP methods. 
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port)-the thrust of the likelihood principle (LP)Y We discussed the 
LP at length in chapter 10. To remind us, NP theory violates the LP 
because a hypothesis may receive the same likelihood on two pieces of 
data and yet "say different things" about what inference is war­
ranted-at least to the error statistician's ears. To pick up on this differ­
ence requires considering not only the outcomes that did occur, but 
also the outcomes that might have occurred; and, as we saw, the 
Bayesian (or conditionalist) recoils from such considerations. 

The debate in the philosophy of statistics literature often does little 
more than register the incompatibility between the NP approach on 
the one hand and the likelihood and Bayesian approaches on the 
other. Each side has a store of examples in which the other appears to 
endorse a counterintuitive inference. From the perspective of the aims 
of ampliative inquiry, I have been arguing, we can go further: control 
of error probabilities has a valid epistemological rationale-it is at the 
heart of experimental learning. The main lines of my argument may 
be found in Pearson. Here is where Pearson's rejection of the long-run 
rationale of error probabilities and his nonroutine use of tests come 
together with the Pearsonian logic of test construction. 

Likelihoods Alone (Step 2) Are Insufficient for Pearsonian Reasoning 

Pearson explains why he and Neyman held it essential to add the 
error probability calculations of step 3 to the "measures of inclination" 
at step 2. The concern was not pragmatic, with low error rates (in the 
long run of business), but with learning from experiments. Reflecting 
on this question (in "Some Thoughts on Statistical Inference"), Pearson 
tells of their "dissatisfaction with the logical basis-or lack of it-which 
seemed to underlie the choice and construction of statistical tests" at 
the time. He and Neyman, Pearson explains, "were seeking how to 
bring probability theory into gear with the way we think as rational 
human beings" (Pearson 1966e, 277). 

17. The likelihood principle, we saw in chapter 10, falls out directly from Bay­
es's theorem. Birnbaum is responsible for showing, to the surprise of many, that it 
follows from two other principles, called sufficiency and conditionality (together, 
or conditionality by itself). For an excellent discussion of these principles see 
Birnbaum 1969. Birnbaum's result-while greeted with dismay by many non­
Bayesians (including Birnbaum himself) who balked at the likelihood principle but 
thought sufficiency and conditionality intuitively plausible-was welcomed by 
Bayesians, who (correctly) saw in it a new corridor leading to a key Bayesian tenet. 
A third way would be to steer a path between the likelihood principle and advocat­
ing any principle that decreases error probabilities, thereby keeping certain aspects 
of sufficiency and conditionality when and to the extent that they are warranted. 
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But looking back I think it is clear why we regarded the integral of probability 
density within (or beyond) a contour as more meaningful than the likelihood 
ratio-more readily brought into gear with the particular process of 
reasoning we followed. 

The reason was this. We were regarding the ideal statistical procedure as one 
in which preliminary planning and subsequent interpretation were closely 
linked together-formed part of a single whole. It was in this connexion 
that integrals over regions of the sample space were required. Cer­
tainly, we were much less interested in dealing with situations where the data 
are thrown at the statistician and he is asked to draw a conclusion. I have 
the impression that there is here a point which is often overlooked. 
(Ibid., 277-78; emphasis added) 

I have the impression that Pearson is correct. The main focus of 
philosophical discussions is on what rival statistical accounts tell one 
to do once "data are thrown at the statistician and he is asked to draw 
a conclusion"; for example, to accept or reject for an NP test or com­
pute a posterior probability for a Bayesian. 

Why are error probabilities so important once the "preliminary 
planning and subsequent interpretation" are closely linked? First, if 
one of the roles of a theory of statistics is to teach how to carry out an 
inquiry, then some such before-trial rules are needed. By considering 
ahead of time a test's probabilities of detecting discrepancies of interest, 
One can avoid carrying out a study with little or no chance of teaching 
what one wants to learn; for example, one can determine ahead of 
time how large a sample would be needed for a given test to have 
a reasonably high chance (power) of rejecting H when in fact some 
alternative J is true. Few dispute this (before-trial) function of error 
probabilities. 

But there is a second connection between error probabilities and 
preliminary planning, and this explains their relevance even after the 
data are in hand. It is based On the supposition that in order to correctly 
interpret the bearing of data on hypotheses one must know the proce­
dure by which the data got there; and it is based on the idea that a 
procedure's error probabilities provide this information. The second 
role for error probabilities, then, is one of interpreting experimental 
results after the trial. It is On this "after-trial" function that I want to 
focus; for it is this that is denied by non-error-statistical approaches 
(those accepting the LP)Y The Bayesians, paraphrasing LeCam's re­
mark (chapter 10), have the magic that allows them to draw inferences 

18. Some (e.g., Hacking 1965) have suggested that error probabilities, while 
acceptable for before-trial planning, should be replaced with other measures (e.g., 
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from whatever aspects of data they happen to notice. NP statisticians 
do not. 

Throughout this book I have identified several (after-trial) uses of 
error probabilities, but they may all be traced to the fact that error prob­
abilities are properties of the procedure that generated the experimental result. 19 

This permits error probability information to be used as a key by which 
available data open up answers to questions about the process that 
produced them. Error probability information informs about whether 
given claims are or are not mistaken descriptions of some aspect of the 
data generating procedure. It teaches us how typical given results 
would be under varying hypotheses about the experimental process. 

We know how easy it is to be misled if we look only at how well 
data fit hypotheses, ignoring stopping rules, use-constructions, and 
other features that alter error probabilities. That is why fitting, even 
being the best-fitting hypothesis, is not enough. Step 2 assesses the fit, 
step 3 is needed to interpret its import. In a joint paper, Pearson and 
Neyman (1967) explain that 

if we accept the criterion suggested by the method of likelihood it is 
still necessary to determine its sampling distribution in order to con­
trol the error involved in rejecting a true hypothesis, because a 
knowledge of L [the likelihood ratio] alone is not adequate to insure 
control of this error. (P. 106; I substitute L for their A) 

Let L be the ratio of the likelihood of H and an alternative hypothesis 
J on given data x. That is, 

P(x I H) 
L = --'-----=----'-

P(x I J) 

(where in the case of composite hypotheses we take the maximum 
value of the likelihood). Suppose that L is small, say, .01, meaning H 
has a much smaller likelihood than J does. We cannot say that because 

likelihoods) after the trial. Pearson took up and rejected this proposal. raised by 
Barnard in 1950, reasoning that 

if the planning is based on the consequences that will result from follow­
ing a rule of statistical procedure, e.g., is based on a study of the power 
function of a test, and then, having obtained our results, we do not follow 
the first rule but another, based on likelihoods, what is the meaning of 
the planning? (Pearson 1966c, 228). 

19. It may be objected that there are different ways of modeling the procedure. 
That is correct but causes no difficulty for the after-trial uses of error probabilities. 
Indeed, using different models is often a useful way of asking distinct but inter­
related questions of the data. 
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L is a small value, "we should be justified in rejecting the hypothesis" 
H, because 

in order to fix a limit between "small" and "large" values of L we 
must know how often such values appear when we deal with a true 
hypothesis. That is to say we must have knowledge of ... the chance 
of obtaining [L as small or smaller than .01] in the case where the 
hypothesis tested [H] is true. (Ibid., 106) 

Accordingly, without step 3 one cannot determine the test's severity in 
passing J, and without this we cannot determine if there really is any 
warranted evidence against H. 

The position I want to mark out even more strongly and more 
starkly than Pearson does is that the interest in a test's error probabili­
ties (e.g., the probability of it passing hypotheses erroneously) lies not 
in the goal of ensuring a good track record over the long haul, but in 
the goal of learning from the experimental data in front of us. Compar­
isons of likelihoods or other magnitudes of fit can measure the ob­
served difference between the data and some hypothesis, but I cannot 
tell if it should count as big or small without knowledge of error proba­
bilities. In one particularly apt passage, Pearson explains that error 
probability considerations are valuable because 

[they help J us to assess the extent of purely chance fluctuations that are pos­
sible. It may be assumed that in a matter of importance we should 
never be content with a single experiment applied to twenty individ­
uals; but the result of applying the statistical test with its answer in terms of 
the chance of a mistaken conclusion if a certain rule of inference were followed, 
will help to determine the lines of further experimental work. (Pear­
son 1966a, 176-77; emphasis added) 

We saw how in certain cases of use-constructing hypotheses to fit data 
(e.g., gellerization cases), as well as in cases with optional stopping, 
the chance of mistaken conclusions may be very high. This error­
probability information showed us how easily chance fluctuations 
could be responsible for a large extent of the results. 

Let us go back to the case of Pearson's naval shell. The (after-trial) 
question asked was "how much of the difference between (i) two fail­
ures out of twelve and (ii) five failures out of eight is likely to be due to 
this inevitable variability"? (Pearson 1966a, 171). It is asked by testing 
hypothesis H: 

H: The observed difference is due to inevitable or "chance" variability. 

(Alternative J would assert that it is due to a systematic discrepancy 
in the processes, with respect to successfully piercing the plate.) The 
difference statistic D is the difference between the proportions of suc-
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cessful perforations of the plate from the two types of shell. Using the 
experimental (or sampling) distribution of D he can calculate the statis­
tical significance of a given observed difference Dobs: 

The statistical significance of Dobs = P(a difference as great as Dobs I H). 

He found Dobs to be improbably far from what would be expected were 
H correct. (The difference falls in the rejection region of a test of ap­
proximately .05 size.) Even if no repetitions are planned, this analysis 
is informative as to the origin of this difference. There are many ways 
of expressing this information. 

One, paraphrasing Pearson, is that the observed difference (in 
piercing ability) is not the sort easily accounted for by inevitable vari­
ability in the shells and measurement procedures. The observed differ­
ence, rather, is indicative of the existence of a genuine (positive) differ­
ence in piercing ability. Were the two shells about as good, it is very 
probable that we would not have observed so large a difference-the 
severity in passing J is high. Finding the data indicative of hypothesis 
J, even with larger sample sizes than in this simple illustrative example, 
is just a first step. For simplicity, suppose that hypothesis J includes 
positive discrepancies in piercing rates between the first and second 
types of shell. One may also want to know which of the particular 
discrepancies are indicated by outcome D obs' This further information 
may be obtained from the same experimental distribution, but the hy­
pothesis to the right of the given bar would now be a member of J. We 
can thus learn how large a discrepancy in piercing rates would be 
needed to generate differences as large as Dobs fairly frequently. This 
calls for a custom-tailoring of the interpretation of test results to reflect 
the particular outcome reached. In the next section I shall consider 
two basic rules for interpreting test results that take into account the 
particular outcome observed. While they go beyond the usual NP test 
calculations, they fall out directly from the arguments based on sever­
ity calculations considered earlier. 

11.6 Two ERROR STATISTICAL RULES TO GUIDE THE SPECIFICATION 

AND INTERPRETATION OF NP TESTS 

Before proceeding with our next task, let me remind the reader that it 
pertains to just one piece, albeit a central one, of the series of tasks to 
which statistical considerations are put in the present account. In this 
piece, which is often regarded as statistical inference proper, statistical 
methods (tests and estimations) link data to experimental hypotheses, 
hypotheses framed in the experimental model of a given inquiry. Re-
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lating inferences about experimental hypotheses to primary scientific 
claims is, except in special cases, a distinct step. Yet an additional step is 
called for to generate data and check the assumptions of the statistical 
method. Restricting our focus to statistical tests, what I want to con­
sider is how the nonbehavioral construal of tests that I favor supplies 
answers to two questions: how to specify tests, and how to interpret 
the results of tests. In so doing, the construal simultaneously answers 
the main criticisms of NP tests. 

Because I think it is important to tie any proposed philosophy of 
experiment to the actual statistical procedures used, I am deliberately 
sticking to the usual kinds of test reports-either in terms of the statis­
tical significance of a result, or "accept H" and "reject H" -although it 
might be felt that some other terms would be more apt. Rather than 
knock down the edifice of the familiar NP methods, I recommend ef­
fecting the nonbehavioral interpretation by setting out rules to be 
attached to the tests as they presently exist. They might be called "met­
astatistical" rules. To illustrate, it suffices to consider our by now famil­
iar one-sided test with two hypotheses Hand J: 

H: 1.1 equals 1.10 
J: 1.1 exceeds 1.10' 

Parameter /J. is the mean value of some quantity, and the experimental 
statistic for learning about /J. is the sample mean, X. As many of our 
examples showed, it is often of interest to learn whether observed dif­
ferences, say in the positive direction, are due to actual discrepancies 
from some hypothesized value or are typical of chance deviations. 

The difference statistic D is the positive difference between the ob­
served mean and the mean hypothesized in H. That is, 

D = X - /J.o' 

The NP test, call it r, instructs H to be rejected whenever the value of 
variable X differs from H by more than some amount-that is, when­
ever it exceeds some cutoff point X*. One can work with X or with D 
to specify the cutoff point beyond which our test rejects H and accepts 
J. The cutoff is specified so that the probability of a type I error (re­
jecting H, given that H is true) is no more than ex. Let us suppose that 
the test r is a "best" NP test with small size ex, say, for convenience, 20 

that ex is .03. Then 

20. It is convenient because it corresponds to approximately a 2-standard­
deviation cutoff point. If one were looking for discrepancies in both directions, that 
is, if this were a 2-sided rather than a I-sided test, then the 2-standard-deviation 
cutoff would give, approximately, a test with size 0.05. See note 2, chapter 9. 
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Test y+: Reject H at level .03 iff X exceeds fLo by 2 s.d.(xn ) 

where s.d.(xn ) is the standard deviation of X. For simplicity, let the sam­
ple size n be large enough to assume approximate normality of X ac­
cording to the central limit theorem (say, n is greater than 30). Let us 
review the error probabilities of test y+. 

Error Probabilities of y+ 

a. The type I error is rejecting H when H is true. The probability of 
this occurring, <x, is no more than .02 because that is the preset size of 
the test. This holds because X exceeds its mean by 2 standard devia­
tions less than 3 percent of the time. 

b. The type II error is accepting (or failing to reject) H when His 
false (and J is true). Hypothesis J is a "composite" alternative, since it 
contains all the fL values in excess of fLo' The probability of the type II 
error varies depending on which value in J is the true one. 

The probability of a type II error is usually written as 13, but because 
it will depend for its value on which specific value in J is true, it is 
clearer to use J3(fL/) to refer to the probability of a type II error when 
fL' is true. One should read J3(fL') as follows: 

l3(fL'): the probability that test r+ fails to reject H (and accept J) when 
alternative fL' is true. 

The assertion that the mean equals fL' may be written as hypothesis J': 

1': fL equals fL'. 

J' is a particular "point" hypothesis within the composite alternative J. 
That is, J3(fL/) is the probability of committing a type II error when J' 
is true. So, J3(fL/) can also be written 

l3(fL'): P(test r+ fails to reject HI J' is true). 

Notice that "failing to reject H" in test y+ is equivalent to obtaining an 
X that is not so far from fLo as to reach the (2-standard-deviation) cutoff 
point X*. SO J3(fL/) is the probability that X is less than x*, given that J' 
is true. 

J3(fL') = P(X < X* I J' is true). 

As is plausible, test y+ has a decreasing probability of committing 
a type II error the "more false" H is-the further fL' is "to the right 
of" fLo. One may wish to state this in terms of the complement to the 
probability of a type II error, namely, the power of the test to detect a 
specific simple alternative fL'. That is, 
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The power ofP against J' = p(X;:::: X* I J' is true). 

The power of the test to reject Hwhen J' is true is 1 - ~(f.1'). As would 
be expected, the more discrepant f.1' is from f.10' the higher is test ']'+'s 
power to detect this. 

A test's error probabilities may be used to construct arguments 
from error, arguments based on severity. However, it is important to 
remember that severity is always calculated relative to a specific hy­
pothesis that a given test passes on the basis of a given outcome. You 
cannot assess the severity of a test without considering the process of 
a test's passing a particular hypothesis with one or another outcome of 
a given experiment. So to relate error probabilities to arguments from 
error we need to consider specific kinds of inferences that test T+ can 
license. We can begin with the simple dichotomy of standard NP tests: 
positive and negative results. 

Positive Results: A Rejection of H 

A positive result is the observation of a sample mean that exceeds 
the hypothesized mean f.1o by a statistically significant amount. In the 
standard test ']'+ with a set at .03, a statistically significant difference is 
one that exceeds f.1o by 2 standard-deviation units. Within the NP 
model, this is taken as a rejection of H. That is, the cutoff point, X*, is 
f.1o + 2 s.d.(xn )· 

What is learned from an observed difference Dobs about the exis­
tence of a positive discrepancy from f.1o? For what value of f.1' does J: 
f.1 exceeds f.1' pass a severe test with ']'+? From the pattern of arguing 
from error we get what might be called the rule of rejection (RR): 

RRi. A difference as large as DObs is a good indication that fl. exceeds fl.' 
just to the extent that it is very probable that test r- would have 
resulted in a smaller difference if fl. (the true mean) were as small 
as fl.'. 

Notice that this is the same as saying that Dobs is a good indication 
that f.1 exceeds f.1' to the extent that Jpasses a severe test with D obs' That 
is because "not-J" consists of f.1 values less than or equal to f.1'.21 

From RRi we get a companion rule for what an observed difference 
does not indicate. Let us set it out separately: 

RRii. Dobs is a poor indication that fl. exceeds fl.' if it is very probable that 
test r- yields so large a difference even if fl. is no greater than fl.'. 

21. As discussed in chapter 6, to obtain severity for all of those values it is 
enough that P (a difference smaller than Dob, I fl. equals fl.') is high. See also the rule 
of acceptance (RA) below. 
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The if clause is the same as saying that the claim J: fL exceeds fL' fails 
to pass a severe test (Le., the probability of not getting so large a differ­
ence even if J is false is low). 

In addition to the rule of rejection (RR), I will be setting out a 
rule of acceptance (RA). These rules have many uses. They justify the 
standard prespecified small error probabilities, allow custom-tailoring 
of inferences after the trial, and serve to avoid common criticisms and 
misinterpretations of NP tests. Focusing first on rule RR, I will consider 
each of these uses in turn. 

Rule RR Justifies Preset Significance Levels 

The concern in the case of rejecting the null or test hypothesis H 
is that a rejection of H might be erroneous-that is, the concern is with 
the type I error. By stipulating that H be rejected only if the difference 
is statistically significant at some small level, it is assured that such a 
rejection-at minimum-warrants hypothesis J, that fL exceeds fLo by 
some amount or other. RRi makes this plain. 

If H is rejected, then the hypothesis that passes the test is J, the 
assertion that fL exceeds the null value fLo. To obtain severity, we have 
to consider one minus the probability of such a statistically significant 
result even if H is true (1 - the probability of a type I error). This will 
vary depending on how much the observed result exceeds the minimal 
boundary for declaring a result significant enough to reject H o' namely, 
X*. Its lowest value, however, would be for a result that just makes it 
to the boundary X*. In this case, the observed mean, Xobs' equals the 
cutoff value X* for calling a result "positive." The severity for this 
"worst case" of rejecting H is one minus the probability of a type I error 
(Le., 1 - !3(fLo))' So the assurance given by a test with a low type I 
error is that it tells me ahead of time that whenever r+ rejects HO' J has 
passed a severe test (at least to degree 1 - a).22 

22. To review the argument with a bit more detail, remember that a test y+ 

with low size or significance level ot assures that the cutoff X* beyond which point 
the sample mean is taken to reject H and accept J is one that occurs with no more 
than probability ot when H is true. That is, it ensures that 

1. P(test r- yields a sample mean that exceeds X* I H is true) :s ot. 

But (1) ensures that whenever such a test passes J, the result is that J has passed a 
severe test, the severity being at least 1 - ot. The reason is that (1) is equivalent 
to (2): 

2. P(test r- passes J I H is true) :s ot. 

From which we get 
3. P(test r- does not pass J I H is true) > 1 - ot (or 2: 1 - ot for continuous 

cases). 
And so 

4. if J passes test r-, then J passes a severe test. 
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Custom-Tailoring 

When outcomes deviate from H by even more than the a cutoff, 
rule RR justifies two kinds of custom-tailored results: (a) it warrants 
passing J at an even higher severity value than 1 - a, and (b) it war­
rants passing alternatives J': J.L is greater than J.L', where J.L' is larger 
than J.Lo' with severity 1 - a. With (a) we make the same inference­
pass J-but with a higher severity than with a minimally positive re­
sult. With (b) we keep the same level of severity but make a more 
informative inference-that the mean exceeds some particular value 
J.L' greater than the null value J.Lo' 

To illustrate (b), suppose that null hypothesis H: J.L = .5 in our lady 
tasting tea example is rejected with a result Xobs is equal to .7. (Mean 
J.L, recall, is the same as the probability of success p.) That is, out of 100 
trials, 70 percent are successes. The 2-standard-deviation cutoff was 60 
percent successes, so this result indicates even more than that J.L ex­
ceeds .5. The result is also a good indication that J.L exceeds .6. That is 
because the observed difference exceeds .6 by 2 standard deviations. 
The probability of so large a difference from .6 if J.L were no greater 
than .6 is small (about .03). Thus the assertion "J.L exceeds .6" passes a 
severe test with result .7 (severity .97). 

Avoiding Misinterpretations and Alleged Paradoxes for NP Tests 

Where RRi shows that an a-significant difference from H (for small 
a) indicates some positive discrepancy from Ho' RRii makes it clear that 
it does not indicate any and all positive discrepancies. My failing exam 
score may indicate that I am ignorant of some of the material yet not 
indicate that I know none of it. 

We can make the point by means of the usual error probabilities, 
even without customizing to the particular result. Consider the power 
of a test (1 - the type II error) regarding some alternative J.L'. We 
know: 

The power of y+ against J': J.L = J.L' equals P(X 2: X* I J' is true), 
which equals 1 - 13(J.L'). The test's power may be seen as a measure of 
its sensitivity. The higher the test's probability of detecting a discrep­
ancy J.L', the more powerful or sensitive it is at doing so. If, however, a 
test has a good chance of rejecting H even if J.L is no greater than some 
value J.L', then such a rejection is a poor indication that J.L is even greater 
than J.L'. So-although this may seem odd at first-a statistically sig­
nificant difference is indicative of a larger discrepancy the less sensitive 
or powerful the test is. If the test rings the alarm (Le., rejects Ho) even 
for comparatively tiny discrepancies from the null value, then the ring-
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ing alarm is poor grounds for supposing that larger discrepancies exist. 
As obvious as this reasoning becomes using severity considerations, 
the exact opposite is assumed in a very common criticism of tests. 

Before turning to this criticism, let us illustrate the reasoning in 
both parts of the RR by means of a medical instrument. Imagine an 
ultrasound probe to detect ovarian cysts. If the image observed is of 
the sort that very rarely arises when there is no cyst, but is common 
with cysts, then the image is a good indication a cyst exists. If, however, 
you learned that an image of the sort observed very frequently oc­
curred with this probe even for cysts no greater than 2 inches, then 
you would, rightly, deny that it indicated a cyst as large as, say, 6 
inches. The probe's result is a good indication of a cyst of some size, 
say 1/4 inch, but a poor indication of a cyst of some other (much 
greater) size. And so it is with test results. 

If a difference as large as the one observed is very common even if 
fl. equals fl.', then the difference does not warrant taking fl. to exceed 
fl.'. That is because the hypothesis that fl. exceeds fl.' would thereby 
have passed a test with poor severity. And in comparing outcomes 
from two different tests, the one that passes the hypothesis with higher 
severity gives it the better warrant. How do critics of NP tests get this 
backwards? 

A Fallacy regarding Statistically Significant (Positive) Results 

Criticisms of NP tests, we have seen, run to type, and one well­
known type of criticism is based on cases of statistically Significant (or 
positive) results with highly sensitive tests. The criticism begins from 
the fact that any observed difference from the null value, no matter 
how small, would be classified as statistically significant (at any chosen 
level of significance) provided the sample size is large enough. (While 
this fact bears a resemblance to what happens with optional stopping, 
here the sample size is fixed ahead of time.) There is nothing surprising 
about this if it is remembered that the standard deviation decreases as 
the sample size increases. (It is inversely proportional to n.) Indeed, my 
reason for abbreviating the standard deviation of the sample mean as 
s.d.(xn) in this chapter was to emphasize this dependence on n. A 2-
standard-deviation difference with a sample size of, say, 100 is larger 
than a 2-standard-deviation difference with a sample size of 10,000. 

We can make out the criticism by reference to a Binomial experi­
ment, such as in the lady tasting tea example. The null hypothesis His 
that p, the probability of success on each trial, equals .5. Now, in a 
sample of 100 trials, the standard deviation of Xis .05, while in 10,000 
trials it is only .005. Accordingly, a result of 70 percent successes is a 
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very significant result (it exceeds .5 by 4 standard deviations) in a sam­
ple of 100 trials. In a sample of 10,000 trials, an equally statistically 
significant result requires only 52 percent successes! An alleged para­
dox is that a significance test with large enough sample size rejects the 
null with outcomes that seem very close to, and by a Bayesian analysis 
are supportive of, the null hypothesis. This might be called the Jeffreys­
Good-Lindley paradox, after those Bayesians who first raised it. 

I discuss this paradox at length in Mayo 1985a and elsewhere, but 
here I just want to show how easy it is to get around a common criti­
cism that is based on it. The criticism of NP tests results only by confus­
ing the import of positive results. The fallacious interpretation results 
from taking a positive result as indicating a discrepancy beyond that 
licensed by RR. Howson and Urbach give a version of this criticism 
(along the lines of an argument in Lindley 1972). Their Binomial ex­
ample is close enough to the one above to use it to make out their 
criticism (their p is equal to the proportion of flowering bulbs in a pop­
ulation). The criticism is that in a test with sample size 10,000, the null 
hypothesis H: p = .5 is rejected in favor of an alternative J, that p equals 
.6 even though .52 is much closer to .5 (the hypothesis being rejected) 
than it is to .6. And yet, the criticism continues, the large-scale test is 
presumably a better NP test than the smaller test, since it has a higher 
power (nearly 1) against the alternative that p = .6 than the smaller 
test (.5).23 

The authors take this as a criticism of NP tests because "The thesis 
implicit in the [NP] approach, that a hypothesis may be rejected with 
increasing confidence or reasonableness as the power of the test in­
creases, is not borne out in the example" (Howson and Urbach 1989, 
168). Not only is this thesis not implicit in the NP approach, but it is 
the exact reverse of the appropriate way of evaluating a positive (Le., 
statistically significant) result. The thesis that gives rise to the criticism 
comes down to thinking that if a test indicates the existence of some 
discrepancy then it is an even better indication of a very large dis­
crepancy! 

Looking at RRii makes this clear. Let us compare the import of the 
two 4-standard-deviation results, one from a test with sample size n = 
100, the second from a test with sample size n = 10,000. In the experi­
ment with 10,000 trials, the observation of 52 percent successes is an 
extremely poor indicator that p is as large as .6. For such a result is 
very probable even if the true value of p is actually less than .6, 

23. I am calculating power here with the cutoff for rejection set at .6-the 2-
standard-deviation cutoff. 
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say, if P = .55. Indeed, it is practically certain that such a large result 
would occur for p as small as .55. Were one to take such a result as 
warranting that p is .6, one would be wrong with probability very 
near one. 

In contrast, the observation of 70 percent successes with n = 100 
trials is a very good indication that p is as large as .6. The probability of 
getting so large a proportion of successes is very small (about .03) if IJ. 
is less than .6. The severity of a test that passes "p is as large as .6" with 
70 percent successes out of 100 trials is high (.97). 

Howson and Urbach's criticism, and a great many others with this 
same pattern, are based on an error to which researchers have very 
often fallen prey. The error lies in taking an a-significant difference 
(from H) with a large sample size as more impressive (better evidence 
of a discrepancy from H) than one with a smaller sample size.24 That, 
in fact, it is the reverse is clearly seen with rule RR. The reasoning can 
be made out informally with an example such as our ultrasound probe. 
Take an even more homey example. Consider two smoke detectors. 
The first is not very sensitive, rarely going off unless the house is fully 
ablaze. The second is very sensitive: merely burning toast nearly 
always triggers it. That the first (less sensitive) alarm goes off is a 
stronger indication of the presence of a fire than the second alarm's 
going off. Likewise, an a-significant result with the less powerful test is 
more indicative of a discrepancy from H than with the more powerful 
test.25 Interpreting the results accordingly, the authors' criticism disap­
pears. 

To be fair, the NP test, if regarded as an automatic "accept-reject" 
rule, only tells you to construct the best test for a small size a and then 
accept or reject. A naive use of the NP tools might seem to license 
the problematic inference. Rule RR is not an explicit part of the usual 
formulation of tests. Nevertheless, that rule, and the fallacious inter­
pretation it guards against, is part of the error statistician's use of 
these tests.26 

24. Rosenthal and Gaito (1963) explain the fallacy as the result of interpreting 
significance levels-quite illicitly-as E-R measures of the plausibility of the null 
hypothesis. In this view, the smaller the significance level, the less plausible is null 
hypothesis H, and so the more plausible is its rejection. Coupled with the greater: 
weight typically accorded to experiments as the sample size increases, the fallacy 
emerges. 

25. See Good 1980, 1982 for a Bayesian way of accommodating the diminish­
ing Significance of a rejection of H as the sample size increases. 

26. The probabilities called for by RR would be obtained using the usual proba­
bility tables (e.g., for the Normal distribution). A good way to make use of rule 
RR without calculating exact severity values for each result is to substitute certain 
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Negative Results: Failures to Reject 

Let us turn now to considering negative results, cases where the 
observed difference is not statistically significant at the specified small 
a level. Here the null hypothesis H (/-L = /-Lo) is not rejected. NP theory 
describes the result as "accept H," but one must be careful about how 
to interpret this. As we saw in section 6.5, it would not license the 
inference that /-L is exactly /-Lo-that /-L does not exceed /-Lo at all. How­
ever, as we also saw, we may find a positive discrepancy that can be 
well ruled out. The pattern of reasoning again follows the pattern of 
arguing from error. We can capsulize this by the following rule of ac­
ceptance (RA): 

RAi. A difference as small as Dob, is a good indication that fL is less 
than fL' if and only if it is very probable that a larger difference would 
have resulted from test r+ if the mean were as large as fL / . 

That is, a statistically insignificant difference indicates that J: /-L is less 
than /-L' just in case J passes a severe test. As with the RR, we get a 
companion rule: 

RAii. A difference as small as Dob, is a poor indication that fL is less than 
fL' if it is very improbable that the test would have resulted in a larger 
difference even if the mean were as large as fL'. 

Notice that when the result is negative, the error of interest is a false 
negative (a type II error)-that H will be accepted even though some 
alternative J is true. 

Rule RA Directs Specifying Tests with High Power to Detect 
Alternatives of Interest 

Now r "accepts" H whenever X is less than27 the .03 Significance 
level cutoff. Before the test, one does not yet know what value of X 
will be observed. Ensuring ahead of time that test r has a high power 
1 - 13 against an alternative J': /-L = /-L' ensures that a failure to reject 

benchmarks for good and poor indications. Still focusing on test r+, useful bench­
marks for interpreting rejections of hypothesis H would be as follows: 

1. A r+ rejection of H is a good indication that fL exceeds Xob, - 2s.d.(xn ). 

2. A r+ rejection is a poor indication that fL exceeds Xob, + Is.d.(xn ). 

(I) corresponds to passing the claim that "fL exceeds Xob, - 2s.d.(xn )" with se­
verity.97. 

(2) corresponds to passing the claim that "fL exceeds Xob, + Is.d.(xn)" with se­
verity .16. For a more general discussion of benchmarks for both the RR and RA 
see Mayo 1983. 

27. In continuous cases or discrete cases with fairly large n, it does not matter 
if we take it as < or s. 
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WHY PEARSON REJECTED NEYMAN-PEARSON PHILOSOPHY 405 

H-a case where H passes-is a case that indicates that IJ. does not 
exceed IJ.'. That is, by assuring ahead of time that the power to detect 
IJ.' is high, the experimental tester is ensuring that accepting H consti­
tutes passing severely the hypothesis H': 

H': IL is no greater than IL'. 

Tests should be specified according to the smallest discrepancy from lJ.o 
that is ofinterest. 

Notice that this power calculation is a calculation of severity for 
the case where the result just misses the critical boundary for statistical 
significance. By custom-tailoring this calculation to the particular sta­
tistically insignificant result obtained, the after-trial analysis may war­
rant ruling out values of IJ. even closer to lJ.o. 

A variant on this after-trial question is to ask, with regard to a 
particular alternative IJ.", whether the obtained negative result Xobs 

warrants ruling out a IJ. value as large as IJ.". Severity tells you to calcu­
late the probability that a mean larger than the one observed, (XObJ, 
would have occurred, given that the true value of IJ. were equal to IJ.". 
That is, you must calculate, still referring to test 7"", 

P(X> Xobs IIJ. equals IJ."). 

If this value is high, then Xobs indicates that IJ. is less than IJ.". Equiva­
lently, the claim that IJ. is less than IJ." passes a severe test with the 
obtained negative result Xobs• For, were IJ. as large as IJ.", the probability 
is high that a result greater than the one obtained would have oc­
curred. 

11.7 A NOTE ON OBJECTIVITY 

The task of specifying the analytical tool for an experimental inquiry 
(e.g., tests) is a task we placed within the experimental model of our 
hierarchy. That it lies outside the formalism of standard NP tests has 
often led critics to charge that NP methods do not really get around 
the subjectivity that plagues the subjective Bayesian account. Deciding 
upon test statistics, sample sizes, significance levels, and so on, after all 
involves judgments-and these judgments, critics allege, are what the 
NP will "sweep under the carpet" (to use I. J. Good's phrase): 

You usually have to use subjective judgment in laying down your 
parametric model. Now the hidebound objectivist tends to hide that 
fact; he will not volunteer the information that he uses judgment at 
all. (Good 1976(143) 
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A favorite line of subjective Bayesians is that by quantifying their sub­
jective beliefs they are actually being more objective than users of non­
Bayesian, error probability methods. How do we respond to this 
charge? First, the judgments the NP test requires are not assignments 
of degrees of belief to hypotheses. Although subjective Bayesians seem 
to think that all judgments come down to judgments of prior probabili­
ties, I see no reason to accept this Bayesian dogma. Second, there is a 
tremendous difference between the kinds of judgments in error statis­
tical methods and subjective probability assignments. 

The two main differences are these: First, the choice of statistical 
test may be justified by specific epistemological goals. As rules RR and 
RA helped us to see, the choice of NP test with low error probabilities 
reflects a desire to substantiate certain standard types of arguments 
from error. With increasing experience, experimenters learn which 
types of tests are likely to provide informative results. There is leeway 
in the specification, but it is of a rather restricted variety. Often, differ­
ent studies will deliberately vary test specifications. Indeed, exploiting 
different ways of analyzing results is often the basis for learning the 
most. Second, and most important, the latitude that exists in the choice 
of test does not prevent the determination of what a given result does 
and does not say. The error probabilistic properties of a test proce­
dure-however that test was chosen-allows for an objective interpreta­
tion of the results. Let us elaborate on these two points, making refer­
ence to the results we have already seen. 

Severity and the Epistemological Grounds for Test Specifications 
When tests are used in scientific inquiry, the basis for specifying 

tests reflects the aims of learning from experiment. A low probability 
of a type I error, for example, is of interest not because of a concern 
about being wrong some small proportion of times in a long-run series 
of applications. It is of interest because of what one wants to learn. If 
you can split off a portion of what you wish to learn so that one of the 
canonical experimental models can be used, then specifying the test's 
error properties grows directly out of what one wants to know-what 
kinds and extents of errors are of interest, what kinds of checks are 
likely to be available, and so on. 

What I am arguing, then, is that the grounds for specifying the 
error probabilities of tests stem from the experimental argument one 
wants to be able to sustain. By fixing the type I error at some low value 
(X the experimental tester ensures that any rejection of H, any passing 
of J, is a good indication that J is the case. It should not be forgotten, 
of course, that this depends on a suitable choice of distance measure 
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at step 2 in test construction. In the canonical tests, such as the one 
just described, the choice of distance measure is already accomplished 
for us. 

But as Neyman and Pearson saw, this leaves too much latitude in 
the choice of a test. One must also consider the type II error-failing to 
reject H when H is false. The problem in cases where H is not rejected is 
that the test may have had little power (probability) of rejecting H even 
if a discrepancy from H exists. So severity considerations tell us that a 
failure to reject H cannot be taken as a good indication that H is pre­
cisely true, that no discrepancy from H exists. It is, however, possible 
to find some value of a discrepancy from H that the result "accept H" 
does warrant ruling out. 

What I am proposing, I believe, is a way of drawing out the impli­
cations of Pearson's hints and suggestions. Before the trial, we are in­
terested in how to ensure that the experiment is capable of telling us 
what we want to know, and we set these "worst case" values for the 
probabilities of type I and type II errors accordingly. After the trial, 
with the data in hand, Pearson says we should base our conclusions 
on the actual "tail area" found, which is tantamount to saying, "look 
at the severity values. " 

Telling the Truth with Error-Statistics 

Of course there is no guarantee that an appropriate test will actu­
ally be run. Indeed, the existence of poorly specified and wrongly in­
terpreted NP tests is at the heart of criticisms of that approach. We 
noted the problem of positive results with too-sensitive tests. An even 
more common problem arises when negative results arise from too­
insensitive tests. As A. W. F. Edwards puts it: 

Repeated non-rejection of the null hypothesis is too easily interpreted 
as indicating its acceptance, so that on the basis of no prior informa­
tion coupled with little observational data, the null hypothesis is ac­
cepted .... Far from being an exercise in scientific objectivity, such a 
procedure is open to the gravest misgivings. (Edwards 1971, 18) 

Although such interpretations of negative results occur, it does not fol­
low that they are licensed by the logic of error statistics. They are not. 
And because researchers must provide us with enough information to 
assess the error probabilities of their tests, we are able to check if what 
they want to accept is really warranted by the evidence. 

To illustrate, we can pick up on the study on birth-control pills 
introduced in chapter 5 and scrutinized in section 6.5. The result, re­
call, was 9 cases of a blood-clotting disorder among women treated 
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408 CHAPTER ELEVEN 

with the birth-control pill compared with 8 out of 5,000 in the control 
group. Suppose that the researchers reach the following interpretation 
of their result: "These results indicate that no more than 1 additional 
case of clotting disorders among 10,000 women on the pill would be 
expected." That is, using our abbreviation for the risk increase in the 
population, the researchers infer claim C: 

c: the evidence indicates He: 6. < .0001. 

The rule of acceptance (RA) is the basis for denying that this is a war­
ranted interpretation of the results. 

The observed difference .0002 was not statistically significant; it 
reaches a significance level of .4. We can see right away that an ob­
served difference of .0002 or one even more insignificant would occur 
50 percent of the time even if the actual increased rate of the disorder 
was 2 in 10,000.28 Hence RA tells us that the negative result from this 
study cannot be taken as ruling out increases as small as 2 in 10,000. 
The result is just the sort of thing that would occur half the time in 
studies of substances that cause 2 additional cases of the disorder per 
10,000 women. Such an insignificant difference would therefore be 
even more probable if the pill caused only 1 additional case of the disor­
der in lO,OOO women. Hence the result of this study is a poor indication 
of hypothesis He: A < .0001. The inference in C is not warranted. Such 
an insignificant result would occur more than half the time even if He 
is false. Equivalently, the assertion He passes a test with severity of less 
than .5, on the basis of this result. 

Utilizing a test's error probabilities in this manner, customizing 
even further to take account of the particular result, enables distin­
guishing warranted from unwarranted interpretations of the results, 
and it enables doing so objectively. The objectivity of the assessment is 
afforded by the objectivity of the error probability properties of the test. 
Even without calculating precise severity values, we can distinguish 
(reasonably) warranted and (flagrantly) unwarranted interpretations 
of results. Plenty of shortcut calculations are available for making this 
discrimination (see note 26), and more can be developed.29 

28. This can be seen without any calculations. Label the supposition here as 
alternative hypothesis J': the increased risk is .0002. Now the observed outcome 
does not differ at all from what is hypothesized by J'. But even if J' is true, 50 
percent of the time sample differences would be less than .0002, and 50 percent of 
the time they would be greater. (That is, half of the area under the normal curve 
would be "to the left of" J', and half "to the right.") See also the discussion of this 
example in section 6.5. A longer discussion occurs in Mayo 1985b. 

29. Consider interpreting negative results, that is, acceptances of H, in test T"". 
Rule RA directs us to find a value of 11-, call it 11-+, such that the result indicates that 
II- < 11-+. Equivalently, we are to find the value 11-+ such that the claim" II- < 11-+" 
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The latitude in specifying tests is no different from that in the use 
of other kinds of reliable instruments in science. Understanding the 
properties of the instruments allows scrutinizing what a given reading 
does and does not say. The same holds for tests. It does not matter 
that test specifications might reflect the beliefs, biases, or hopes of the 
researcher. Perhaps the reason for selecting an insensitive test is your 
personal desire to find no increased risk, or perhaps it is due to eco­
nomic or ethical factors. Those factors are entirely irrelevant to scruti­
nizing what the data do and do not say. They pose no obstacle to my 
scrutinizing any claims you might make based on the tests, nor to my 
criticizing your choice of test as inappropriate for given learning goals. 
There is no sort of comparable basis for criticizing your subjective 
degrees of belief. 

Inferences without Numbers 

There is one final objection that may be raised by Bayesians and 
others wedded to E-R accounts of inference. The present account of 
testing licenses claims about hypotheses that are and are not indicated 
by tests without assigning quantitative measures of support or proba­
bility to those hypotheses. But without such assignments of support or 
probability to hypotheses, the E-R theorist, I expect, will deny that the 
present account constitutes a genuine account of inductive or statistical 
inference. Yet this is just to assume that an E-R account is what is 
needed, and that is what those who embrace testing accounts of infer­
ence wish to deny. The Bayesian critic may persist that if I do not se­
cretly really mean to assign some number to the inferences licensed by 
my tests, then what do I mean by evidence indicating hypotheses? My 
answer is the one I have been giving throughout this book. That data 
indicate hypothesis H means that the data indicate or signal that H is 

passes a severe test. Say we take .97 as a benchmark for severity. Then jJ.. + would 
equal X'bS + 2s.d.(xn ). (See also section 6.5.) 

Mathematically, the calculation of jJ.. + (for the case of test r+) is equivalent 
to formulating the upper confidence bound of a (one-sided) interval estimate at the 
corresponding level of confidence. However, unlike the report that "jJ.. is some­
where between jJ..o and jJ.. +," RA instructs a distinct severity assessment for each 
value in the interval. More generally, RA directs us to understand what a specific 
negative statistical result indicates (more or less well) by calculating all or several 
of the upper bounds for different degrees of severity. This would yield what might 
be called severity curves. It most closely corresponds to forming a series of upper 
confidence intervals, one for each confidence level. I have recently come across an 
article by Poole (1987) using what are essentially severity curves in medical statis­
tics. Similar curves are employed by Kempthorne and Folks (1971), but with a 
different interpretation. Clearly, more work is called for in studying statistical prac­
tice and in generalizing these ideas. 
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correct-much as I might say that a scale reading indicates my weight. 
Generally, several checks of a given indication of H (e.g., checks of the 
experimental assumptions) are required before reaching the inference 
that the data indicate the correctness of H. What does it mean to infer 
that H is indicated by the data? It means that the data provide good 
grounds for the correctness of H-good grounds that H correctly de­
scribes some aspect of an experimental process. What aspect, of course, 
depends on the particular hypothesis H in question. One can, if one 
likes, construe the correctness of H in terms of H being reliable, pro­
vided one is careful in the latter's interpretation. Learning that hypoth­
esis H is reliable, I proposed (chapter 4), means learning that what H 
says about certain experimental results will often be close to the results 
that would actually be produced-that H will or would often succeed 
in specified experimental applications. What further substantive claims 
are warranted will depend on the case at hand. 

What is learned receives a formal construal in terms of experimen­
tal distributions-assertions about what outcomes would be expected, 
and how often, if certain experiments were to be carried out. Infor­
mally and substantively, this corresponds to learning that data do or 
do not license ruling out certain errors and mistakes. 

To those who insist that every uncertain inference must have a 
quantity attached, our position'is that this insistence is seriously at 
odds with the kinds of inferences made every day, in science and in 
our daily lives. There is no assignment of probabilities to the claims 
themselves when we say things such as the evidence is a good (or a 
poor) indication that light passing near the sun is deflected, that treat­
ment X prolongs the lives of AIDS patients, that certain dinosaurs were 
warm blooded, that my four-year-old can read, that metabolism slows 
down when one ingests fewer calories, or any of the other claims that 
we daily substantiate from evidence. 

Concluding Remarks 

To summarize, the key difference between standard NP methods 
and those based on the likelihood principle is that the former have an 
interest in and an ability to control error probabilities, whereas the 
latter do not. Criticisms of NP tests that are not merely misinterpreta­
tions arise from supposing that long-run error probabilities are all that 
matter in NP tests, and that the reason error probabilities matter in NP 
tests is their interest in ensuring a low probability of erroneous "acts" 
in the long run. A Pearsonian error statistician denies both of these 
suppositions. For a Pearsonian, the ability to control error probabilities 
matters (in a scientific context) because of the desire to correctly learn 
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WHY PEARSON REJECTED NEYMAN-PEARSON PHILOSOPHY 411 

about underlying causes, distinguish genuine from spurious effects, 
and so on, to all that may be learned by arguing from error_ 

On the Pearsonian view of tests, the greater "seriousness" the be­
havioristic model attaches to the type I error goes over into the concern 
to be assured that a rejection of H is a good indication of the existence 
of a real departure from H, for example, a real effect. The particular 
balance chosen between the two types of errors is not an arbitrary mat­
ter reflecting pragmatic, decision-theoretic values, as Fisher had feared. 
In learning contexts, their specification is guided by the aims of in­
quiry, by what one wants to learn. After the results are in, utilizing 
these error probabilities is the key to scrutinizing objectively inferences 
based on test results. 

In any substantive inquiry, NP methods would need to be used for 
a series of tests aimed at rejecting different types of alternatives and 
errors. Rejecting a "chance" hypothesis H, with its indication that some 
systematic factor is operating, is likely to be only a first step. Ruling 
out other substantive factors may be accomplished with subsequent 
statistical tests linking different experimental and data models. As 
Pearson stressed, there is no need to justify any single test as best; sev­
eral tests may be used to learn the answers to different questions, as 
well as to check each other's assumptions. It is only by understanding 
how standard error statistical methods afford this type of piecemeal ap­
proach that one can capture the manner in which these tools are used 
in day-to-day experimental inquiries. 

However, Pearson's advocacy of a piecemeal, inferential use of NP 
tests requires him to reject the basic tenets of the behavioral decision 
philosophy that has come to be associated with NP methods. There is 
no inconsistency in his rejection. While the interpretation of test re­
sults differs from the behavioral-decision one, still retained is what is 
central to error statistical theory: the focus on a procedure's error prob­
abilities. The control of error probabilities has fundamental uses in 
learning contexts. The link between controlling error probabilities and 
experimental learning comes by way of the link between error proba­
bilities and severity. The ability to provide methods whose actual error 
probabilities will be close to those specified by a formal statistical 
model, I believe, is the key to achieving experimental knowledge. 
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CHAPTER TWELVE 

Error Statistics and Peirce an Error Correction 

Induction (at least, in its typical forms) contributes nothing to our 
knowledge except to tell us approximately how often, in the 
course of such experience as our experiments go towards consti­
tuting, a given sort of event occurs. It thus simply evaluates an 
objective probability. Its validity does not depend upon the unifor­
mity of nature, or anything of that kind. The uniformity of nature 
may tend to give the probability evaluated an extremely great or 
small value; but even if nature were not uniform, induction would 
be sure to find it out, so long as inductive reasoning could be performed 
at all . ... 

But all the above is at variance with the doctrines of almost all 
logicians .... They commonly teach that the inductive conclusion 
approximates to the truth because of the uniformity of nature. 

-c. S. Peirce, Collected Papers, vol. 2, par. 775 

I OPENED CHAPTER 1 with a quote from Popper: "The essays and lectures 
of which this book is composed are variations upon one very simple 
theme-the thesis that we can learn from our mistakes." The theme of 
learning from error has a central place in the experimental program 
based on error statistics that I have been sketching. Nevertheless, from 
all we have said, is it apparent that Popper's account falls far short of 
showing how reliable knowledge is obtained from experiment or how 
that knowledge grows. The present account does not find its home 
in a Popperian framework. It is quite at home, however, within the 
experimental framework of another philosopher who also developed 
an account wherein scientific inference is based on learning from error 
and error correction, namely, C. S. Peirce. Nevertheless, the Peirce an 
error correction thesis has been soundly criticized and found wanting. 
Indeed, as Nicholas Rescher (1978) remarks, "No part of Peirce's phi­
losophy of science has been more severely criticized, even by his most 
sympathetic commentators, than this attempted validation of inductive 
methodology on the basis of its purported self-correctiveness" (p. 2). 

412 
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ERROR STATISTICS AND PEIRCEAN ERROR CORRECTION 413 

Despite the hard times on which Peirce's validation of inductive 
methodology has fallen, I propose to revive the Peircean self-correcting 
doctrine. I want to do so not only to defend a great philosopher from 
whom I have gained many insights, but also, more selfishly, because 
by developing my view of Peirce's error-correcting justification of in­
duction I will at the same time be developing the justification I need 
for error statistical methods in science. The justification for these meth­
ods lies in their ability to control error probabilities, hence sustain 
learning from error, hence provide for the growth of experimental 
knowledge. It seems to me that this is also the essence of Peirce's self­
correcting rationale of inductive methods-when that thesis is prop­
erly understood. While on the one hand Neyman-Pearson and other 
contemporary methods increase the mathematical rigor and generality 
of Peirce's assertions about self-correcting methods, on the other, 
Peirce provides something the formal statistical tools lack (and Pearson 
only hinted at): an account of inductive inference and a philosophy of 
experiment ready-made for just such tools. 

12.1 PEIRCEAN INDUCTION AND NEYMAN-PEARSON STATISTICS 

Peirce's philosophy of experimental testing shares a number of key fea­
tures with the Neyman and Pearson theory. For both, statistical meth­
ods provide not means for assigning degrees of probability, evidential 
support, or confirmation to hypotheses, but procedures for testing (and 
estimation) whose rationale is their predesignated high frequencies of 
leading to correct results in some hypothetical long run. The key simi­
larities between Peirce and the methods later developed by Neyman 
and Pearson were first unearthed by Isaac Levi (1980b)" 

Peirce's inductions are inferences according to rules specified in ad­
vance of drawing the inferences where the properties of the rules 
which make the inferences good ones concern the probability of suc­
cess in using the rules. These are features of the rules which followers 
of the Neyman-Pearson approach to confidence interval estimation 
would insist upon. (P. 138) 

In describing his theory of inference, Peirce could be describing that of 
the error statistician: 

1. Levi also relates Peirce's work to that of R. B. Braithwaite, who devel9ped 
a theory of chance based on rules of testing akin to Neyman and Pearson tests. I 
regret being unable to discuss Braithwaite's work here, but good discussions exist 
in Hacking 1965 and Mellor 1980. 
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The theory here proposed does not assign any probability to the in­
ductive or hypothetic conclusion, in the sense of undertaking to say 
how frequently that conclusion would be found true. It does not pro­
pose to look through all the possible universes, and say in what pro­
portion of them a certain uniformity occurs; such a proceeding, were 
it possible, would be quite idle. The theory here presented only says 
how frequently, in this universe, the special form of induction or hy­
pothesis would lead us right. The probability given by this theory is 
in every way different-in meaning, numerical value, and form­
from that of those who would apply to ampliative inference the doc­
trine of inverse chances. (Peirce 2.748)2 

One finds specific examples in Peirce that anticipate Neyman­
Pearson hypothesis tests and confidence interval methods. A study of 
the statistical mathematics found in Peirce is of interest in its own right, 
but that is not my purpose here. My purpose is to explore how in 
Peirce's philosophy of experiment the formal NP tools become tools 
for scientific induction. (Neyman, remember, had denied them that 
function, and Pearson never fully worked out his "evidential" interpre­
tation of NP tools.) 

The place to begin is with the contrast that Peirce is at pains to 
draw between his view of induction and the more popular inductive 
accounts of his day. The most popular accounts of the time, Peirce tells 
us, are those of the "conceptualists" -the Bayesian theorists of Peirce's 
day-and the followers of Mill-essentially those who viewed induc­
tion as the straight rule, coupled with a premise as to the uniformity 
of nature. With admirable clarity Peirce compares these opposing views 
and forcefully argues against the popular ones. The main contrasts 
show up in the form of conclusion or inference (severe tests); the type 
of relevant information (preliminary planning, predesignation, ran­
dom sampling); and the nature of its justification (self-correcting, 
growth of experimental knowledge). In each, Peirce takes the position 
of our error statistician. 

What We Really Want to Know . .. Error Probabilities 

The key disagreement was and is over the function of probability 
in statistical inference in science: whether probability provides a mea­
sure of evidential strength in a hypothesis, or whether it should be 
used only to characterize error probabilities of test procedures. Al­
though the terminology has changed, it is clear that Peirce adopts the 

2. All Peirce references are to C. S. Peirce, Collected Papers. References are cited 
by volume and paragraph number. For example, Peirce 2.777 refers to volume 2, 
paragraph 777. 
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ERROR STATISTICS AND PEIRCEAN ERROR CORRECTION 415 

second use of probability as the appropriate one for experimental infer­
ence. The supposition that the probability of the conclusion is needed, 
Peirce recognizes, stems from a faulty analogy with deductive infer­
ence. Since deductive inference tells us that if such and such premises 
are true, then a given conclusion is true, it might be thought that in­
ductive inference should tell us that if such and such premises are true, 
then a given conclusion is probable. Peirce denies this: 

In the case of analytic inference we know the probability of our con­
clusion (if the premisses are true), but in the case of synthetic infer­
ences we only know the degree of trustworthiness of our proceed­
ing. (2.693) 

Those who modeled induction on the analogy with deduction were to 
Peirce what Bayesians or other E-R theorists are to NP or error statisti­
cians of today, and the key themes of Peirce's work on induction mirror 
the key issues that divide E-R theorists from error statisticians: the im­
portance of error probabilities, the rejection of prior probabilities, and 
the centrality of the mode of data and hypothesis generation to the 
analysis of test results. 3 

In Peirce's testing model, like that of Neyman and Pearson, the 
experimental conclusion concerns a hypothesis that either is or is not 
true about this one universe, and so the only probability that a fre­
quentist could assign it is a trivial one, 1 or 0.4 Assigning a probability 
to a particular conclusion, for Peirce (recall chapter 3), makes sense 
only "if universes were as plenty as blackberries" (2.684). If people had 
only been careful to keep to the relative frequency notion of probabil­
ity, Peirce scolds, the mistake in analogizing induction to deduction 
would have been apparent. To view slatistical inference as a matter of 
assigning a probability to a conclusion (an a posteriori probability), is, 
for a frequentist like Peirce, tantamount to seeing the problem as 
follows: 

Given a synthetic conclusion; required to know out of all possible 
states of things how many will accord, to any assigned extent with 
this conclusion. (2.685) 

3. An interesting article of Hacking's is relevant in this connection. Hacking 
(1980), discussing Peirce and Braithwaite, admits to having promoted the rejection 
of Neyman-Pearson statistics on the grounds that, failing to provide an E-R ac­
count, it could not be seen as an account of inductive inference. With this article 
Hacking announces that he has changed his mind on this point, and allows that an 
error-statistical account does provide us with an account of inductive inference. 

4. Peirce also has an account of probabilistic inference where that is appro­
priate. But this is not induction. 
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416 CHAPTER TwELVE 

Here "all possible states of things" refers to all possible universes or 
possible ways in which this universe could be. This Peirce sees as "an 
absurd attempt to reduce synthetic to analytic reason, and that no 
definite solution is possible" (ibid.). Moreover, it "implies that we are 
interested in all possible worlds, and not merely the one in which we 
find ourselves placed" (2.686). 

What we really want to know, according to Peirce, is this: 

Given a certain state of things, required to know what proportion of 
all synthetic inferences relating to it will be true within a given degree 
of approximation. (2.686) 

In more modern terminology, what we want to know are the error 
probabilities associated with particular methods of reaching conclu­
sions about this world. Peirce continues: 

Now, there is no difficulty about this problem (except for its mathe­
matical complication); it has been much studied, and the answer is 
perfectly well known. And is not this, after all, what we want to know 
much rather than the other? (Peirce 2.686) 

Peirce goes on to illustrate how, even in his day, "the answer is per­
fectly well known." His numerical illustration is important for us, and 
I will return to it in a later section. 

Denying That Belief Has Anything to Do with It 

A further reason that error statistical methods are congenial to 
Peirce's picture is that their error probability characteristics do not de­
pend on subjective probabilities. Peirce held that 

subjective probabilities, or likelihoods, ... express nothing but the 
conformity of a new suggestion to our prepossessions; and these are 
the source of most of the errors into which man falls, and of all the 
worst of them. (2.777) 

An important part of Peirce's rejection of subjective probabilities is his 
insistence upon a distinction between the proper procedure for a scien­
tific investigation and that for an individual seeking a practical basis 
for action. Peirce an pragmatism (or pragmaticism) is not at all to be 
identified with practicalisml 

While allowing that subjective beliefs and personal opinions may 
have to be appealed to in the area of practical conduct, where expedi­
ency is the rule, and where personal beliefs matter, Peirce thinks that 
"the word belief is out of place in the vocabulary of science" (7.185), 
except when considering actions based on science. In a scientific inves-
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tigation Peirce declares, "I would endeavor to get to the bottom of the 
question, without reference to my preconceived notions" (7.177). The 
aim of science is to predict the future "or the means of conditionally 
predicting what would be perceived were anybody to be in a situation 
to perceive it" (7.186). Its aim is to predict what would be expected 
to occur with various relative frequencies were specified experiments 
carried out-in short, to obtain what I call experimental knowledge. 
Indeed, for Peirce "the essential character of induction is that it infers 
a would-be from actual singulars" (8.236). 

Interestingly, Peirce's central arguments against the use of subjec­
tive probabilities have a naturalistic flavor: inferences based on sub­
jective probabilities, he finds, make a poor showing when they them­
selves are put to the test of experiment. As an example Peirce considers 
their track record in archaeology. Finding the conclusions sanctioned 
by the practitioners of the subjective method "to be more or less funda­
mentally wrong in nearly every case," he declares the method '"con­
demned by those tests" (7.182).5 

This much has so far been brought to light about Peirce's theory 
of induction: 

In the case of analytic inference we know the probability of our con­
clusion (if the premisses are true), but in the case of synthetic infer­
ences we only know the degree of trustworthiness of our proceeding. 
As all knowledge comes from synthetic inference, we must equally 
infer that all human certainty consists merely in our knowing that 
the processes by which our knowledge has been derived are such as 
must generally have led to true conclusions. (2.693) 

12.2 PEIRCEAN INDUCTION AS SEVERE TESTING 

The scientific procedure in whose trustworthiness we are interested is, 
for Peirce, induction, but induction is to be understood as testing. The 
trustworthiness of inductive procedures, I maintain, is a matter of the 
test's severity, as measured formally (quantitative induction) or infor­
mally (qualitative induction). What is my evidence for this reading of 
Peirce? 

First, there is the evidence that Peirce regards induction as severe 
testing. Induction, Peirce tells US, begins with a question or theory: 

The next business in order is to commence deducing from it whatever 
experiential predictions are extremest and most unlikely ... in order 

5. Peirce elsewhere gives astute criticisms of the use of the principle of indiffer­
ence in assigning equal subjective probabilities, which I will not discuss. 
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418 CHAPTER TwELVE 

to subject them to the test of experiment. (Peirce 7.182; emphasis 
added) 

The process of testing it will consist, not in examining the facts, in 
order to see how well they accord with the hypothesis, but on the 
contrary in examining such of the probable consequences of the hy­
pothesis as would be capable of direct verification, especially those 
consequences which would be very unlikely or surprising in case the 
hypothesis were not true. (7.231) 

When the hypothesis has sustained a testing as severe as the present 
state of our knowledge ... renders imperative, it will be admitted 
provisionally ... subject of course to reconsideration. (Ibid.)6 

Further passages to the same effect could easily be multiplied. 
While these and other passages are redolent of Popper, Peirce dif­

fers from Popper in crucial ways-the same ways in which my own 
account differs. Peirce, unlike Popper, is primarily interested in the 
positive pieces of information provided by tests, that is, with the 
hypotheses, modified or not, that manage to pass severe tests. Indeed, 
Peirce often suggests that he equates the proper inductive part of a test 
of experiment with the inference that is reached when a hypothesis 
passes several stringent tests: 

When, however, we find that prediction after prediction, notwith­
standing a preference for putting the most unlikely ones to the test, 
is verified by experiment, whether without modification or with a 
merely quantitative modification, we begin to accord to the hypothe­
sis a standing among scientific results. This sort of inference it is, from 
experiments testing predictions based on a hypothesis, that is alone 
properly entitled to be called indl!lction. (7.206) 

A Peirce an inductive inference, then, accords well with the thesis I 
have advocated: an inductive inference-that which is warranted to 
infer-is what passes a severe test. Whereas one could say nothing 
about the reliability of a Popperian corroboration procedure-the very 
reason I denied Popper supplies a genuine account of learning from 
error-the centerpiece of Peirce's experimental philosophy is his argu­
ment for the trustworthiness of proper inductive test procedures. 

It is impossible to understand Peirce's argument, however, without 
understanding Peirce's doctrine of induction as self-correcting or as 
error-correcting. This requires us to open a door that many Peirce 
scholars already regard as closed, or at least to open it just far enough 

6. Here Peirce is talking about historical hypotheses. See also (Peirce 1958, vol. 
7, p. 89). 
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ERROR STATISTICS AND PEIRCEAN ERROR CORRECTION 419 

to give a different reading of the error-correcting doctrine. This new 
reading of the error-correcting doctrine, I believe, shows how the criti­
cisms of the usual reading are avoided. 

12.3 REVISITING PEIRCE'S ERROR-CORRECTING DOCTRINE 

According to Peirce: 

The validity of induction is entirely different [from deduction] .... In 
the majority of cases, the method would lead to some conclusion that 
was true, and that in the individual case in hand, if there is any error 
in the conclusion, that error will get corrected by simply persisting in 
the employment of the same method. (2.781) 

Throughout Peirce's work, a multitude of such passages can be found, 
each offering different clues to and different facets of his self-correcting 
doctrine. (Several are noted in Laudan 1981a.) What must be kept in 
mind, and often is not, is that induction for Peirce is testing, and testing 
of a certain sort (severe or reliable); it is testing (done severely) that 
he is claiming is self-corrective, and not other methods that philoso­
phers often regard as inductive: 

Induction is the experimental testing of a theory. The justification of 
it is that, although the conclusion at any stage of the investigation 
may be more or less erroneous, yet the further application of the 
same method must correct the error. The only thing that induction 
accomplishes is to determine the value of a quantity. It sets out with 
a theory and it measures the degree of concordance of that theory 
with fact. (5.145) 

Can Peirce sustain his self-correcting thesis as a way of giving a 
rationale for scientific induction? Critics and followers alike say no. 
The literature on this issue is too large to consider here, but fortunately, 
Rescher's excellent discussion (1978) lets me zero in on the key criti­
cism' as waged by Larry Laudan and others. I will follow Laudan's ab­
breviation of the self-correcting thesis: (SCT). Let me begin with a brief 
summary of the main criticism and how I propose to deal with it. 

The main criticism of the SCT is this: whereas Peirce claims to have 
substantiated the SCT for induction generally, he has at most done so 
regarding a certain species of induction, namely, quantitative or statis­
tical induction. This criticism rests on two assumptions: the first con­
cerns the nature of inductive testing for Peirce, of both the "quantita­
tive" and U qualitative" varieties; the second concerns the question of 
what substantiating the SCT requires. As to the first, Peirce's critics 
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420 CHAPTER TwELVE 

typically construe quantitative induction as classic enumerative induc­
tion or "the straight rule" (Le., inference about a population proportion 
from a sample proportion). By qualitative induction, critics understand 
Peirce to mean hypothetico-deductive inference (Laudan 1981b, 238). 
But from all we have already seen, it is clear that neither of these 
modes of inference suffices for a test procedure that is trustworthy or, 
in my terms, reliable or severe. So the first thing we need to do is to 
revise the standard interpretation of Peirce's two types of induction. 

I will be arguing that what distinguishes Peircean quantitative 
from qualitative induction is not that the former is the straight rule 
while the latter is a hypothetico-deductive inference. Both types of in­
ference, in so far as they qualify as Peircean inductions, are inferences 
based on tests with various degrees of severity. What distinguishes 
them is the extent to which their severity or reliability can be quantita­
tively or only qualitatively determined. If the severity is quantitatively 
specified, as in the case of the statistical significance test, then the infer­
ence is a quantitative induction. If severity is only qualitatively as­
sessed, as for example in one of the informal arguments from coinci­
dence we have considered, then it counts as a qualitative induction. 
The difference is a matter of degree. 

Turning to the second issue, critics are fairly clear on what they 
suppose is required for an inductive method to be self-correcting: (a) 
it must be capable of (eventually) rejecting false hypotheses, and (b) it 
must provide a method of replacing rejected hypotheses with a better 
(truer) one (Laudan 1981b, 229).7 Their criticism of Peirce's SeT, in 
the light of their understanding of Peircean quantitative and qualitative 
induction, is this: although quantitative induction pretty well satisfies 
both (a) and (b), qualitative induction only satisfies (a). Laudan puts 
it plainly: 

Such qualitative inductions clearly satisfy the first condition for an 
SCM [self-correcting method], insofar as persistent application of the 
method of hypothesis will eventually reveal that a false hypothesis is, 
in fact, false. But the method ... provides no machinery whatever 
for satisfying the second necessary condition .... Given that an hy­
pothesis has been refuted, qualitative induction specifies no tech­
nique for generating an alternative which is (or is likely to be) closer 
to the truth than the refuted hypothesis. (Laudan 1981b, 238-39) 

Ilkka Niiniluoto (1984), in like fashion, assimilates Peirce an self­
correcting to a view of scientific progress as replacing earlier theories 

7. Laudan regards statement b as the strong thesis of self-correcting. A weaker 
thesis would replace b with b': science has techniques for unambiguously determin-
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with those closer to the truth, leading him also to criticize Peirce for 
not having told us how induction affords such progress. 8 The technique 
for discovering a better alternative, moreover, is supposed to be me­
chanical or routine, and, not surprisingly, critics find that Peirce has 
not provided such a routine. Rescher (1978) objects to this require­
ment and defends the Peirce an seT as claiming only that it is the con­
glomeration of scientific methods that serves to find better alternatives. 
Rescher is right to object, but I think we can show that Peirce is saying 
something more specific about the error correcting role of inductive 
methodology in science. Inductive methods, properly construed, are 
very good at uncovering mistakes and this is what allows them to carry 
out effective tests to begin with. Their effectiveness consists in this: 
when they regard a hypothesis as having passed a test sufficiently well, 
that constitutes good grounds for that hypothesis. 

These points lead to a reworking of the critics' two assumptions 
about the seT. From the severity requirement we actually get a 
strengthened form of condition a: the inductive test procedure must 
have a high, not merely some, probability of rejecting false hypotheses. 
But we must not overlook, as critics seem to, the emphasis Peirce 
places on what is learned when such severe tests do not reject but 
instead pass their hypotheses. For Peirce, as I read him, the seT is 
called upon to justify the acceptance of a hypothesis that has passed a 
severe test (e.g., 2.775). Inductive inference is the inference that is 
warranted when predictions hold up to severe testing. So the proper 
requirement for the seT is not condition b, as the critics state it, but 
rather a condition that takes more literally what error-correction 
means. 

A reworked condition b would have two parts: First, the method 
should be sufficiently good at detecting errors such that when no error 
is detected, when, try as we might, the effect will not go away, experi­
mental knowledge (as we have defined it) is gained. Second, the 
method should be able to detect its own errors in the sense of checking 
its own assumptions or its "own premises" as Peirce puts it (Le., as­
sumptions of experimental tests and data), and it should be able to 
correct violations or "subtract them out" in the analysis. To show that 
scientific induction is self-correcting comes down to showing that se­
vere testing methods exist and that they enable the growth of experi-

ing whether an alternative T' is closer to the truth than a refuted T. I reject both 
of these. 

8. For some commentators, for example, Lenz (1964), what Peirce says about 
qualitative induction is so unclear that they restrict themselves to quantitative. 
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422 CHAPTER 'TwELVE 

mental knowledge. The progress is not of the theory-dominated but of 
the experimentalist variety. My task now is to justify these claims. 

The Path from Qualitative to Quantitative Induction 

First I will argue my thesis about Peirce's notions of quantitative 
and qualitative induction. A major problem in understanding the self­
correcting doctrine is that induction, for Peirce, takes several different 
forms corresponding to different types of test procedures. These differ­
ent test procedures, in turn, are associated with different types of as­
sessments of trustworthiness (Le., of error probabilities) as well as dif­
ferent types of error-correcting tasks. What is more, throughout 
Peirce's work one finds a variety of attempts to delineate types of in­
duction, and one may wonder which delineation to work with. In fact, 
Peirce does not think there is anything hard and fast about his classi­
fication attempts. Although critics are right to notice some shifts in 
Peirce's view on induction, his different schemes for classifying types 
of induction are almost entirely due to his directing himself to different 
kinds of experimental tests in different essays. Most important, if one 
looks at the big picture, a fairly clear-cut image emerges. Induction is 
testing, some qualitative, some quantitative or statistical-all agree on 
this. Where my reading of Peirce an induction is new is that I view 
Peirce's delineation into quantitative and qualitative induction as a 
matter of classifying tests according to whether their trustworthiness 
(or severity) is quantitatively or only qualitatively ascertained. (This is 
the same construal, recall chapter 2, that I suggested for Kuhn's use of 
quantitative inference in normal science.) 

In this reading of Peirce, the difference between qualitative and 
quantitative induction is really a matter of degree, and the degree is a 
function of how well developed its associated measures of trustworthi­
ness are-in particular severity. This reading not only neatly organizes 
the long stories Peirce tells in classifying and subclassifying types of 
induction, it explains the way in which Peirce further subdivides types 
of inductions by their "strength" within a given classification. 

First-order, rudimentary or crude induction. Take Peirce's delineation of 
types of induction in discussing scientific method. Here Peirce divides 
nonstatistical or qualitative induction into first and second orders. The 
first order is the lowest, most rudimentary induction, the so-called 
"pooh-pooh" argument. It is essentially an argument from ignorance: 
Lacking evidence for the falsity of H, provisionally adopt H-where H 
is some general claim or regularity. While Peirce holds this type of 
"crude induction" to be uneliminable in ordinary life, it has little place 
in scientific inquiry. (It corrects itself-but with a bang!) It is only in 
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this very weakest sort of induction, crude induction, that one is limited 
to saying that a hypothesis would eventually be falsified if false. Crude 
induction, Peirce says, is "as weak an inference as any that I would not 
positively condemn" (8.237), and does not even make it into science. 
Once positive information is available, this most rudimentary induc­
tion is to go by the board. Hence, following Peirce, rudimentary induc­
tion is not to be included as scientific induction. It is, however, worth­
while to recognize why not: without some reason to think that 
evidence of H's falsity would probably have been detected, failure to 
detect it is poor evidence for H. It is a highly unreliable error probe. 

Second order (qualitative) induction. It is only with what Peirce calls 
the "Second Order" of induction that we arrive at a genuine test, and 
thereby scientific induction. Within second-order inductions, a 
stronger and a weaker type exist, and they correspond neatly to view­
ing the strength of a testing procedure as reflecting severity. 

The weaker of these is where the predictions that are fulfilled are 
merely of the continuance in future experience of the same phenom­
ena which originally suggested and recommended the hypothesis. 
(7.116) 

The other variety of the argument from the fulfillment of predictions 
is where [they] ... lead to new predictions being based upon the 
hypothesis of an entirely different kind from those originally contem­
plated and these new predictions are equally found to be verified. 
(7.117) 

The weaker type, to put it in our terminology, occurs where violating 
use-novelty destroys the severity requirement. The stronger type is 
stronger because it generally yields a higher severity test. Peirce's divi­
sions by strength within second-order inductions are also a function of 
severity, but the assessment of severity is qualitative, for example, very 
strong, weak, very weak. 

The strength of any argument of the Second Order depends upon 
how much the confirmation of the prediction runs counter to what 
our expectation would have been without the hypothesis. It is en­
tirelya question of how much; and yet there is no measurable quan­
tity. For when such measure is possible the argument . .. becomes an induc­
tion of the Third Order [statistical induction]. (7.115; emphasis added) 

It is upon these and numerous like passages that I base my reading 
of Peirce. Furthermore, a qualitative induction, Peirce is quite clear, 
becomes a quantitative induction when the severity is quantitatively de-
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424 CHAPTER TWELVE 

termined, when, as we might say, an objective error probability can 
be given. 

Third order, statistical (quantitative) induction. This takes us to the 
third-order, statistical or quantitative induction. We enter the third or­
der of induction when, to paraphrase Peirce, it is possible to quantify 
"how much" the prediction runs counter to what our expectation 
would have been without the hypothesis. Quantifying how much, as I 
hope is already clear from earlier discussions, permits quantifying 
trustworthiness by quantifying error probabilities. 

To remind us, consider how a significance level measures how 
much a prediction runs counter to what is expected "without the hy­
pothesis," where this refers to a simple null hypothesis Ho. As always, 
we see the following inversion: the lower the significance level, the 
more the prediction runs counter to the null hypothesis. Hence, the 
lower the significance level required before rejecting Ho and accepting 
the nonnull hypothesis-call it H-the more improbable such an ac­
ceptance of H is, when in fact Ho is true. And the more probable such 
an erroneous acceptance of H is, the higher the severity is of a result 
taken to pass H. This just rehearses what we already know. Other asso­
ciated measures of "how much" are given by standard errors and prob­
able errors, error probabilities all. 

Notice that it is in order for the inductive acceptance of a hypothesis 
H to have strength that we meet the requirement that there be a high 
probability of rejecting hypothesis H, were H false. That is, Peircean 
induction refers to the positive inference-to what can be said to have 
passed a severe test: 

When we adopt a certain hypothesis, it is not alone because it will 
explain the observed facts, but also because the contrary hypothesis 
would probably lead to results contrary to those observed. So, when 
we make an induction, it is drawn not only because it explains the 
distribution of characters in the sample, but also because a different 
rule would probably have led to the sample being other than it is. (Peirce 
2.628; emphasis added)9 

This concern with the probability that the sample would have been other 
than it is in reasoning from the actual sample obtained puts Peirce 
squarely in the error statistics camp. And because one need not be able 
to point to some precise probability, the same self-correcting rationale 
is open to quantitative and qualitative tests. 

As further evidence that Peirce understood the strength of an in-

9. By a "rule" here Peirce means a hypothesis such as most As are Bs. 
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ERROR STATISTICS AND PEIRCEAN ERROR CORRECTION 425 

duction in this way, Peirce often links the strength of induction-even 
in qualitative cases-to achieving what we would term a low standard 
deviation or low standard error (and, correspondingly, to a high se­
verity): 

The results of non-quantitative researches also have an inexactitude 
or indeterminacy which is analogous to the probable error of quanti­
tative determinations. To this inexactitude, although it be not numer­
ically expressed, the term "probable error" may be conveniently ex­
tended. (7.139) 

(A probable error is approximately .7 of a standard deviation.) It is 
convenient to extend the notion of a probable error for the same rea­
son we found it convenient to use the term "severity" both when there 
was a numerical error probability that could be assigned to a test and 
when we could only argue that there was clearly a very high or a very 
low chance of error. They serve analogous roles in argument and, ac­
cordingly, qualitative and quantitative inductions are improved upon 
in analogous ways. The factors Peirce takes to increase or diminish the 
strength of procedure further illuminate the correspondence between 
the "strength of a proceeding" and our severity concept. Peirce explains 
that arguments are strengthened when certain invariabilities exist-in 
effect, factors that by diminishing a standard deviation would increase 
the chance of rejecting a false hypothesis. (See, for example, 7.125.) 

Scientific induction, for Peirce, is inferring or accepting hypotheses 
that pass severe or trustworthy tests. The move from qualitative to 
quantitative induction is achieved by the acquisition of quantitative 
assessments of severity. 

The seT and Quantitative Induction 

In inductive inference, unlike deductive or analytic inference, 
Peirce declared, what we really want to know is the trustworthiness 
of the proceeding or, in more modern terms, the error probabilities. 
Moreover, in the case of quantitative induction, Peirce said, the answer 
to the question we really want to know "is perfectly well known" 
(2.686). Let us now pick up Peirce where we left him in section 12.1. 

In Peirce's example, the inductive inference estimates a Binomial 
parameter p on the basis of the number n of white balls observed in 
a sample of s balls. Referring to the difference between the observed 

proportion 1'2 and the true proportion p as "the error", Peirce (2.686) 
s 

explains that 
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426 CHAPTER TWELVE 

it is found that, if the true proportion of white balls is p, and s balls 
are drawn, then the error of the proportion obtained by the induction 
will be-

half the time within 
9 times out of 10 within 
99 times out of 100 within 
999 times out of LOOO within 
9,999 times out of 10,000 within 
9,999,999,999 times out of 10,000,000,000 within 

0.477e 
1.163e 
1.821e 
2.328e 
2.751e 
4.77e, 

where I have substituted e for the square root of [2 p( 1 - p)]. 
s 

Whereas simple enumerative induction, which is how critics con­
strue quantitative induction, would merely estimate p to be the sample 
proportion, Peirce insists on a second step: attaching an error to this 
estimate. It may be in terms of the "probable error" concept of Peirce's 
day, or the more modern standard error, or, as in contemporary polls, 
a margin of error. 

The SCT and Confidence Interval Estimation Procedures. The data from the 
above chart may be used to form confidence interval estimates (dis­
cussed in chapters 8 and 10). The inductive conclusion in the case of 

the interval estimation asserts that the observed proportion ~ is within 
s 

a certain distance from the true value of p, and attaches to that estimate 
a statement of the overall reliability of that method (as given by the 
confidence level). An example of such an estimate would assert that 
the observed proportion is within 1.821e of the true value p. Although 
the method does not assign a probability to this particular estimate 
being true, that probability being seen as either 0 or 1, the method can 
say that the inference comes from a procedure with. 99 probability of 
covering the true value of p. The inferred estimate, that parameter pis 
within the interval formed, passes a severe test. So Neyman and Pear­
son confidence interval estimation satisfies Peirce's model of induction. 
In contrast to induction by simple enumeration (or the straight rule) as 
Peirce never tires of reminding us, the induction he espouses depends 
entirely on "the manner in which the instances have been collected" 
(2.765). But critics seem to overlook this contrast. 

Isaac Levi puts his finger on how self-correcting works in the case 
of statistical estimation: 

Peirce is not claiming that induction is self correcting in the sense that 
following an inductive rule will, in the messianic long run, reveal the 
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true value of p. His thesis can be put this way: Either the conclusion 
reached via an inductive rule is correct or, if wrong, the revised esti­
mate emerging from a new attempt at estimation based on a different 
sample will with probability at least equal to k be correct. (Levi 
1980b, 138) 

Suppose the induction is to a confidence interval with level k. The idea 
is that if one continues to sample (with replacement) and form a con­
fidence interval with confidence level k, "he would be right with a 
relative frequency which would converge on k in the long run" (p. 
136). The same type of argument is available for other cases of statisti­
cal estimation. 

In the case of hypothesis testing, a claim parallel to Levi's on esti­
mation can be made: if a particular conclusion is wrong, subsequent 
severe (or highly powerful) tests will with high probability detect this. 
For example, in a good test hypothesis Ho is rejected by results improb­
ably far from what is expected were Ho true. Then, if we are wrong to 
reject Ho (and Ho is actually true), we would find we were rarely able 
to get so statistically significant a result to recur, and in this way we 
would discover our original error. If, on the other hand, we find that 
it is easy to keep getting results statistically significantly far from Ho' 

then we have grounds for saying that a real departure from Ho exists. 
To say we have experimental knowledge of a real or systematic depar­
ture from Ho is to say that Ho would be rejected about as often as ex­
pected if such a departure exists. (The expectation comes from the laws 
of large numbers, discussed in chapter 5.) 

Peirce discussed the Gaussian or Normal case as well as the Bino­
mial. Modern statistical theory greatly extends the cases for which "the 
answer is well-known," but the rationale for the inferences it licenses 
is essentially the one that Peirce had already articulated: 

While the induction is probable in this sense, that though it may hap­
pen to give a false conclusion, yet in most cases in which the same 
precept of inference was followed, a different and approximately true 
inference (with the right value of p) would be drawn. (2.703) 

More needs to be said about how formal statistical arguments supply 
tools for substantive error-correcting and learning. Here is where 
Peirce's stress on the intended use of these methods comes in. 

Quantitative Induction and Canonical Models of Error. In developing the er­
ror statistical approach to testing, I have urged that the role of quanti­
tative models such as the Binomial goes far beyond the case in which 
the primary aim is to infer the proportion of Bs in a population of As-
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428 CHAPTER TwELVE 

even though Binomial inference is formally couched in those terms. 
This formal statistical case serves largely as a canonical model for imag­
inatively asking questions about errors, about experimental assump­
tions, about the reality of a given effect, about quantities in laws and 
theories, about causes. I find evidence of this idea in Peirce, if not ex­
plicitly, then by considering how he applies statistical models in his 
examples. 

Immediately after listing the different error ranges for the Binomial 
case above, Peirce remarks that "the use of this may be illustrated by an 
example" (2.687) that sounds very much like running an NP statistical 
significance test. As in many other cases, Peirce applies it to testing if a 
difference is real or systematic as opposed to due to chance. Peirce re­
ports that an observed proportion of white males under one year (ac­
cording to the census of 1870) is .5, while that of nonwhite children is 
.498, the difference being about .01. Peirce asks, "Can this be attributed 
to chance, " or is it systematic? The largeness of the observed difference 
excludes it even from the largest interval formed; it falls beyond 4.77 e, 
"and such a result would happen, according to our table, only once 
out of lO,OOO,OOO,OOO censuses, in the long run" (2.687). In short, the 
observed difference is indicative of a real rather than a chance differ­
ence. Were it due to chance it would, with high probability, have been 
included in the interval. The procedure was a reliable probe of the 
error of ruling out chance; so we can argue that this error is absent. 

In the above illustration, the hypothesis concerned the ordinary 
kind of Binomial population. But Peirce extends this analysis to assess 
hypotheses that are not themselves statistical, but where introducing 
statistical considerations enables a question of interest to be modeled 
as inquiring about a Binomial parameter p. In particular, a question 
that can often be framed by means of parameter p is to let p be the 
probability with which a given agreement or fit between the experi­
ment and a given hypothesis H would occur. Such a question may be 
probed statistically, even where hypothesis H itself is not statistical. Let 
us see how the SCT enters: 

It is true that the observed conformity of the facts to the requirements 
of the hypothesis may have been fortuitous. But if so, we have only 
to persist in this same method of research and we shall gradually be 
brought around to the truth. (Peirce 7.115) 

But the correction is not a matter of getting estimates closer to p. It is 
a matter of finding out whether the agreement is fortuitous; whether 
it is generated about as often as would be expected were the agreement of 
the chance variety. The measure of severity reflects how fast the cor­
rection is likely to be. 
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The seT and the Importance of Hypothesis and Data Generation 
This error-correcting capacity, Peirce stresses, depends upon the 

predesignation of the Binomial property p (or, at least on an argument 
that its violation does not vitiate the induction). 10 I limit myself to one 
of Peirce's many instructive examples: that of Dr. Lyon Playfair. It illus­
trates both a mistake resulting from violating predesignation, as well 
as how, arguing from cases where error probabilities are sustained, the 
original mistake is corrected. Error correction is not a hope for tomor­
row, it is the inductive conclusion of tests we run today. 

The Example of Dr. Playfair. Peirce describes how "so accomplished a rea­
soner" as Dr. Playfair violates predesignation in testing a hypothesis 
about a regularity between the specific gravity of a metal and its atomic 
weight (2.738). Looking at the specific gravities of 3 forms of carbon, 
Peirce tells us, Playfair seeks and discovers a formula connecting them: 
each is a root of the atomic weight of carbon, which is 12. Peirce de­
scribes the test Playfair carries out to judge whether this regularity can 
be expected to hold generally for metals, showing that several alleged 
instances of the formula really involve modifications not specified in 
advance. If one limits the instances to ones for which the formula is 
predesignated, only half satisfy Playfair's formula. Peirce reasons: 

Having thus determined [the] ratio, we proceed to inquire whether 
an agreement half the time with the formula constitutes any special 
connection between the specific gravity and the atomic weight of a 
metalloid. (2.738) 

Of particular interest here is the creative use of a canonical test of a 
proportion. The proportion refers to the proportion or probability of 
agreements with the formula. There is hardly a limit to the kinds of cases 
where a question about this proportion could be posed. 

Peirce then subjects the hypothesis that there is a special connec­
tion (between the specific gravity and the atomic weight of a metal) to 
a test of experiment. The falsity of this hypothesis is that the observed 
agreement is "due to chance" (2.738)-a variant of the standard null 
hypothesis. Peirce asks, How often would such an agreement be found 
even if it were due to chance? To answer this question, Peirce introduces 
statistical considerations into an otherwise nonstatistical case. 

Peirce introduces a hypothetical chance distribution by matching 
the specific gravity of a set of elements not with its own atomic weight 
but with the atomic weight of some other element with which it is 

10. Peirce qualifies this. It is sufficient that the Binomial property to be esti­
mated or tested be prespecified; the value of the proportion need not be. 
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430 CHAPTER TWELVE 

arbitrarily paired. For example, the specific gravity of carbon is com­
pared with the atomic weight of iodine. Note that Peirce is not running 
more trials of Playfair's experiment, but considering "on paper" how 
often agreements with Playfair's formula would occur in a case de­
signed so that such agreements could only be due to chance, and using 
this information about what would occur to argue about the cause of 
the agreements actually found. This strategy is analogous to the other 
introductions of statistics we have seen, whether they are by random 
pairings of treatments and subjects, by manipulations done on paper 
(e.g., Perrin), or by simulation (neutral currents). The logic applied to 
the results is the same as well. 

Peirce finds about the same number of cases satisfying Playfair's 
formula in this chance pairing of elements as Playfair found in compar­
ing the specific gravities and atomic weights of a given element. 
Peirce concludes, 

It thus appears that there is no more frequent agreement with Play­
fair's proposed law than what is due to chance. (2.738) 

So Playfair was mistaken in thinking that the evidence showed a spe­
cial or systematic connection. This example, which merits more atten­
tion than I can give it here, is used by Peirce to make a point about 
predesignation. His point is that the popular inductive accounts are 
insensitive to the effects of violating predesignation, and as a result 
they allow one to persist in Playfair's error. 

While it would be going too far to see in Peirce the anticipation 
of Armitage (chapter 10), it is no stretch to see that error probability 
considerations play identical roles for Peirce and for the error statisti­
cian: before the trial their role is to ensure the severity of the test, after 
the trial it is to assess what induction is warranted. Peirce recognized 
that violations of predesignation need not preclude severity (see chap­
ter 9). By introducing the hypothetical chance element, Peirce is ascer­
taining whether Playfair's inference is warranted despite the violation 
of predesignation. He shows that it is not. Whether it is Peirce's hand­
written pairings on paper or twentieth-century Monte Carlo simula­
tions in high energy physics, the basic strategy is the same. We find a 
way of modeling what it would be like (in this case, in terms of propor­
tions of agreements) if the agreement is accidental or "due to chance." 
In Playfair's case, the actual situation is much like what we would ex­
pect were the observed agreements accidental. 

The seT and the Relevance of Preliminary Planning 

The concern with "the trustworthiness of the proceeding" for 
Peirce, like the concern with error probabilities for Pearson and error 
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statisticians generally, is directly tied to their view that statistical 
method should closely link experimental design and data collection 
with subsequent inferences. Pearson, remember, railed against the ten­
dency to see statistical inference as beginning once "data are thrown 
at the statistician and he is asked to draw a conclusion" (Pearson 
1966e, 278). Peirce had the same problem with the popular inductive 
accounts of his day. Peirce regarded as a conclusive refutation of Mill 
that "an induction, unlike a demonstration, does not rest solely upon 
the facts observed, but upon the manner in which those facts have 
been collected" (2.766). Peirce even introduces a term, "quasi­
experimentation," to include the entire process of generating and ana­
lyzing the data and using them to test a hypothesis. And "this whole 
proceeding," Peirce declares, "I term Induction" (7.115, editor's note). 
Accordingly, for Peirce, the "true and worthy" task of logic is to "tell 
you how to proceed to form a plan of experimentation" (7.59). 

It is this emphasis on the manner in which the data and hypothe­
ses to test are generated, Peirce stresses, that really distinguishes his 
view of scientific induction from the two far more popular views of his 
day (Mill and the conceptualists). That is why the rationale for Peir­
cean induction cannot be divorced from experimental rules for con­
trolling error probabilities. 

This account of the rationale of induction is distinguished from others 
in that it has as its consequences two rules of inductive inference 
which are very frequently violated .... The first ... is that the sample 
must be a random one .... The other rule is that the character [about 
which claims are to be tested] must not be determined by the charac­
ter of the particular sample taken. (Peirce 1.95) 

Hence induction, Peirce says, "must by the rule of predesignation, be 
a deliberate experiment" (5.579). One wishes that Peirce's critics had 
made more of the importance he attaches to these rules of data and 
hypothesis generation. Recognizing their importance is the key to un­
derstanding Peirce's seT: they show that this self-correcting rationale 
has to do with the control of error probabilities. 

Peirce's arguments for these rules are strikingly similar to those 
arising from the contemporary controversy between Neyman-Pearson 
"sampling" and nonsampling philosophies, that is, between error prob­
ability principles and the likelihood principle. As we saw in previous 
chapters (e.g., chapter 10), for those who accept the likelihood prin­
ciple (e.g., Bayesians), once the data are obtained, it is irrelevant for 
assessing their evidential import how they were selected, or whether 
the hypothesis was predesignated (the so-called irrelevance of the sam­
pling rule). For these do not alter likelihoods. But they do alter error 
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probabilities. Just as NP theorists insist on the relevance of predesigna­
tion-along the lines detailed in chapter 9-Peirce is highly critical of 
predesignation being "singularly overlooked by those who have 
treated ofthe logic of [induction]" (2.738). 

It is of the essence of induction that the consequence of the theory 
should be drawn first in regard to the unknown ... result of experi­
ment. ... For if we look over the phenomena to find agreements with 
the theory, it is a mere question of ingenuity and industry how many 
we shall find. (2.775) 

Just as it is only by planning ahead of time that a test can be regarded 
as a reliable error probe, for Peirce "reasoning tends to correct itself, 
and the more so, the more wisely its plan is laid" (5.575). 

Learning from Qualitative Induction 

Now critics claim that for qualitative inductive testing to be self­
corrective, it would have to provide a method of replacing substantive 
hypotheses with better ones, for example, condition h. But Peirce calls 
inferences from data to substantive hypotheses abduction or presump­
tion, not induction. As abductive inference is free to violate predesig­
nation, Peirce holds, it enjoys no such general error-correcting guaran­
tee. Since induction is said only to have the power to correct any errors 
into which it may lead, it is no part of the seT to show that abduction 
is trustworthy. However, the self-correcting rationale is all-important 
when it comes to putting an abductively arrived at hypothesis to the 
test of experiment. 

Inductive testing of the qualitative variety has to do not with re­
placing falsified hypotheses with brand new ones, but with learning 
from rejected hypotheses. A central aim is to learn what modifications 
are called for by the experiments. The rationale for subjecting such 
an abduction to a severe test of experiment is to learn about these 
modifications. Among types of qualitative induction, Peirce places a 
case that "tests a hypothesis by sampling the possible predictions that 
may be based upon it. ... We cannot say that a collection of predic­
tions drawn from a hypothesis constitutes a strictly random sample of 
all that can be drawn. Sometimes we can say that it appears to consti­
tute a very fair, or even a severe sample of the possible prediction" 
(7.216). Here the correction of hypotheses is expected to come about 
through gradual modification. Peirce illustrates with the case of the 
kinetic theory of gases. 

It began with a number of spheres almost infinitesimally small occa­
sionally colliding. It was afterward so far modified that the forces be-
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tween the spheres, instead of merely separating them, were mainly 
attractive, that the molecules were not spheres, but systems. (7.216) 

These modifications "were partly merely quantitative, and partly such 
as to make the formal hypothesis represent better what was really sup­
posed to be the case, but which had been simplified for mathematical 
simplicity" (7.216). Peirce grants that there is "no new hypothetical 
element in these modifications," but it is precisely with these kinds of 
modifications that induction is concerned. One poses a question, say, 
"Suppose I tried to model molecules as having uniform radius?" and 
then learns from the given experimental data how similar or divergent 
that model would be from the experimental phenomena. 

The quantity of interest is not how much the evidence confirms 
the hypothesis tested-in any of the senses of confirmation-but how 
discordant evidence shows a given model to be in a specified respect. 
The problem of assessing the approximate accordance of a model is 
quite different from that of assigning it some E-R measure. There are 
a handful of methods for putting forward deliberately oversimplified 
or canonical hypotheses, because, with the appropriate methodology 
of testing, they serve for learning about these modifications (from re­
jected hypotheses). Experimental learning requires not some update 
of the probability assignment that I start out with, but tools to build, 
correct, and fill out a model. What justifies Peirce's SCT is that induc­
tion-understood as severe testing-supplies such tools. 

Economy and the Piecemeal Breakdown of Inquiries 

Having identified the aim of inductive testing, it is easy to under­
stand Peirce's advice as to the type of hypotheses that are useful to test. 
Peirce considers "what principles should guide us in abduction, or the 
process of choosing a hypothesis" (7.219). He lists three: First. the hy­
pothesis selected for tests "must be capable of being subjected to exper­
imental testing"; second, the hypothesis must explain surprising facts. 
"In the third place," Peirce continues, "is the consideration of econ-
0my" (7.220). 

The first two are familiar, but the third is rather unique to Peirce. 
While a concern for economy sounds as if pragmatic or practical con­
siderations are being appealed to, Peirce's concern is in fact wholly 
epistemological. Considering "economy" in choosing a hypothesis to 
test means we should consider strategically what questions can be put 
to a reasonably severe test with the data that are likely to be actually 
obtainable. This aim, I have argued, leads to "getting small" and to a 
piecemeal approach to inquiry. It is likewise for Peirce. Under economy 
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434 CHAPTER TWELVE 

Peirce dtes the kind of strategy that makes for a shrewd playing of 
20 questions: 

Twenty skillful hypotheses will ascertain what two hundred thousand 
stupid ones might fail to do. The secret of the business lies in the 
caution which breaks a hypothesis up into its smallest logical compo­
nents, and only risks one of them at a time. (7.220; emphasis added) 

These are questions amenable to the yes/no types of answers typical of 
standard statistical tests. 

Considerations of economy, Peirce says, also direct one to try the 
same kind of model to account for the same kinds of phenomena, but 
in different areas. Peirce considers how the model used in the kinetic 
theory (chapter 7) "accounts for those phenomena ... by representing 
that they are results of chance; or ... of the law of high numbers" 
(7.221). 

Giving Good Leave. A third important consideration under economy is 
"that it may give a good 'leave: as the billiard-players say. If it does 
not suit the facts, still the comparison with the facts may be instructive 
with reference to the next hypothesis" (7.221). Even if we primarily 
want to know whether a quadratic equation holds between quantities, 
we would do well to test a linear model first "because the residuals will 
be more readily interpretable." The residuals, or errors-the differ­
ences between the observed and predicted value-may teach more 
about the next hypothesis to try. Hence, "even although we imagine 
that by complicating the hypothesis it could be brought nearer the 
truth" (ibid.), testing a simpler one may be justified because it will 
teach us more. 

An adequate philosophy of experiment, I agree with Peirce, should 
include methodological rules directed at asking fruitful questions and 
arriving at local hypotheses to test, as well as rules for data generation 
and modeling. The former type has generally been left out of discus­
sions of philosophy of statistics, and yet an important asset of standard 
statistical methods is that they can offer canonical models and rules for 
both of these types of rules. The nature and aims of the rules are very 
much in the spirit of Peirce's considerations. They are not mechanical 
or algorithmic, but neither are they mere guesswork. The logic of sd­
ence, for Peirce, is not formal but a systematic methodology for experi­
ment. In a favorite passage, Peirce describes the aim of a theory of 
experiment thus: 

It changes a fortuitous event which may take weeks or may take 
many decennia into an operation governed by intelligence, which 
will be finished within a month. (7.78) 
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ERROR STATISTICS AND PEIRCEAN ERROR CORRECTION 435 

The idea that a central aim of statistical method is to speed things up 
in this way, while overlooked in philosophical discussions, is at the 
heart of the rationale of error statistical methods. The concern is not 
with the kind of speeding up of production that Fisher so disliked 
(chapter II), but rather, we might say, with making good on the "long­
run" claims in the short long run, if not "within a month," then within 
a year or the usual amount of the time for a given scientific research 
project. 

That we have a workable theory of experiment, that we make 
progress with this theory is what the SCT is all about. However, we are 
not quite finished with justifying this thesis; we have to go back down 
to the models of data, experimental design, and data generation. 

12.4 INDUCTION CORRECTS ITS PREMISES 

Justifying experimental inferences depends on being able to justify the 
assumptions of the experimental and data models required. Self­
correcting, or error-correcting, enters here too, and precisely in the 
way that Peirce recognized. This leads me to consider something appar­
ently missed by critics of the SCT, namely, Peirce's insistence that in­
duction "not only corrects its conclusions, it even corrects its premises" 
(3.575; emphasis added). 

Induction corrects its premises by checking, correcting, or validat­
ing its own assumptions. One way that induction corrects its premises 
is by correcting and improving upon the accuracy of its data. The idea 
is a fundamental part of what allows induction-understood as severe 
testing-to be genuinely ampliative. It is why, in an important sense, 
statistical considerations allow one to come out with more than is put 
in. At times, even "garbage in" need not mean "garbage out." 

Peirce comes to his philosophical stances from his experiences with 
astronomical observations: 

Every astronomer, however, is familiar with the fact that the cata­
logue place of a fundamental star, which is the result of elaborate 
reasoning, is far more accurate than any of the observations from 
which it was deduced. (5.575) 

Daily use of the method of least squares taught Peirce how knowledge 
of errors of observation can be used to infer an accurate observation 
from highly shaky data. II Peirce proceeds to apply the same strategy 

11. The method of least squares is a method of finding the best estimate of a 
parameter value. Given a set of observations made independently, the differences 
of the observed values from the best estimate are the residuals or errors. The theory 
of least squares directs one to find the value for which the sum of the squares of 
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436 CHAPTER TwELVE 

from astronomy to an informal, qualitative example to illustrate how 
"a properly conducted Inductive research corrects its own premisses": 

That Induction tends to correct itself, is obvious enough. When a man 
undertakes to construct a table of mortality upon the basis of the Cen­
sus, he is engaged in an inductive inquiry. And 10, the very first thing 
that he will discover from the figures ... is that those figures are very 
seriously vitiated by their falsity. (5.576) 

The premises here are reports on age, and it is discovered that there 
are systematic errors in these reports. How? By noticing, Peirce ex­
plains, that the number of men reporting their age as 21 far exceeds 
those who are 20, while in all other cases ages are much more likely 
10 be expressed in round numbers. How is it that induction helps to 
uncover that there is this subject bias, that those under 21 tend to put 
down that they are 21? It does so by means of formal models of age 
distributions along with informal background knowledge of the root 
causes of such bias. "The young find it to their advantage to be thought 
older than they are, and the old to be thought younger than they are" 
(5.576). Moreover, statistical considerations often allow one to correct 
for bias, that is, by estimating the number of "21" reports that are likely 
to be attributable to 20-year-olds. As with the star catalogue in astron­
omy, the data thus corrected are more accurate than the original data. 
That is Peirce's main point. The thrust of the thesis that induction cor­
rects its own premises is easy to put in terms of our error statistical 
framework: by means of an informal tool kit of key errors and their 
causes, coupled with systematic tools to model them, experimental in­
quiry checks and corrects its own assumptions for the purpose of car­
rying out some other (primary) inquiry. 

These cases of correcting premises underscore what I have main­
tained for Peirce an self-correction generally. It is not a matter of saying 
that with enough data we will get better and better estimates of the 
star positions or the distribution of ages in a population. It is a matter 
of being able to employ methods right now to detect and correct mis­
takes in a given inquiry. The methods stem from canonical models of 
error, here for errors in observations of different types (e.g., from in­
struments, subjects, etc.). To get such methods off the ground, we need 
not build a careful tower where evidence rests on a pile of inferences, 
each as shaky as the ones before (like piles driven into a swamp). Prop­
erly collected and cleverly used, inaccurate observations give way to 
far more accurate data. 

residuals is minimum. That is the best estimate of the value. This canonical method 
was used in the eclipse experiments discussed in chapter 8. 
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Induction Fares Better than Deduction at Correcting Its Errors 

Consider how this reading of Peirce makes sense of his holding 
inductive science as better at self-correcting than deductive science. 

Deductive inquiry ... has its errors; and it corrects them, too. But it 
is by no means so sure, or at least so swift to do this as is Inductive 
science. (5.577) 

An example he gives is that the error in Euclid's elements was undis­
covered until non-Euclidean geometry was developed. Other everyday 
examples arise in checking and rechecking calculations to uncover ar­
ithmetical errors. "It is evident that when we run a column of figures 
down as well as up, as a check," or look out for possible flaws in a 
demonstration, "we are acting precisely as when in an induction we 
enlarge our sample for the sake of the self-correcting effect of induc­
tion" (5.580). In both cases we are appealing to various methods we 
have devised because we find they increase our ability to correct our 
mistakes. 

What is distinctive about the methodology of inductive testing is 
that it deliberately directs itself to devising tools for reliable error 
probes. This is not so for mathematics. Granted, "once an error is sus­
pected, the whole world is speedily in accord about it" (5.577) in the 
case of deductive reasoning. But for the most part mathematics itself 
does not supply tools for uncovering flaws. (Consider, in this connec­
tion, the recent dispute about the correctness of an alleged proof of 
Fermat's last theorem.) 

So it appears that this marvelous self-correcting property of Reason 
... belongs to every sort of science, although it appears as essential, 
intrinsic, and inevitable only in the highest type of reasoning, which 
is induction. (5.579) 

In one's inductive or experimental tool kit, one finds explicit models 
and methods whose single purpose is the business of detecting patterns 
of irregularity, checking assumptions, assessing departures from ca­
nonical models, and so on. Where experimental tests are unable to do 
this-where methods are unable to mount severe tests-then they fail 
to count as scientific induction. 

Random Sampling and the Uniformity of Nature 

In addition to the rule of predesignation, Peirce's SCT requires that 
the selection of the experimental sample be random or approximately 
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SO.12 In fact Peirce is generally credited with defining a random sample. 
Yet the assumption of random sampling is often thought to be an ob­
stacle to justifying statistical inference. In an interesting footnote, Hans 
Reichenbach (1971) makes this remark about Peirce: 

The self-corrective nature of induction was emphasized by C. S. 
Peirce .... I have not been able ... to find a passage in Peirce's work 
where he clearly states a reason for his contention. The fact that 
he constantly connects the problem of induction with that of a fair 
sample ... seems to indicate that he bases the self-corrective nature 
of induction on Bernoulli's theorem .... Such an argument is invalid, 
of course, since the justification of induction must be given before the 
use of probability considerations. (P. 446, n. 1) 

There are many intriguing similarities between Peirce and Reichen­
bach that merit attention, but here I want to dwell on a key point of 
contrast that this passage points up. For it is this classical view of what 
is required to justify induction that Peirce is anxious to deny. 

Peirce views the problem of justifying induction as explaining why 
inductive testing is so successful when it is. He contrasts his explana­
tion with those favored by followers of Mill and "almost all logicians" 
of his day, who "commonly teach that the inductive conclusion ap­
proximates to the truth because of the uniformity of nature" (2.775). 
Inductive inference, as Peirce conceives it (Le., severe testing) does not 
use the uniformity of nature as a premise. Rather, the justification is 
sought in the manner of obtaining data and specifying hypotheses to 
test. It is a matter of showing that methods exist with good error proba­
bilities. For this it suffices that randomness be met only approximately, 
that inductive methods check their own assumptions, and that induc­
tive methods can often detect and correct departures from random­
ness. Says Peirce: 

A sample is a random one, provided it is drawn by such machinery 
... that in the long run anyone individual of the whole lot would 
get taken as often as any other. Therefore, judging of the statistical 
composition of a whole lot from a sample is judging by a method 
which will be right on the average in the long run, and, by the reason­
ing of the doctrine of chances, will be nearly right oftener than it will 
be far from right. 

It has been objected that the sampling cannot be random in this sense. 
But this is an idea which flies far away from the plain facts. Thirty 

12. All that is really required is that a statistical relationship between the sam­
pling and the population of interest be known approximately. 
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ERROR STATISTICS AND PEIRCEAN ERROR CORRECTION 439 

throws of a die constitute an approximately random sample of all the 
throws of that die; and that the randomness should be approximate 
is all that is required. (Peirce 1.94) 

This again shows that Peirce was in the know about mathematical re­
sults (the central limit theorem). (Thirty is the magic number for which 
the distribution of the sample mean is nearly normal. regardless of the 
underlying distributions.) 

Peirce backs up his defense with robustness arguments. For ex­
ample, in an (attempted) Binomial induction Peirce asks, "What will 
be the effect upon inductive inference of an imperfection in the strictly 
random character of the sampling?" (2.728). What if, for example, a 
certain proportion of the population had twice the probability of being 
selected? Peirce shows that "an imperfection of that kind in the ran­
dom character of the sampling will only weaken the inductive conclu­
sion, and render the concluded ratio less determinate, but will not nec­
essarily destroy the force of the argument completely" (2.728). This is 
particularly so if the sample mean is near 0 or 1. Yet a further safeguard 
is at hand, Peirce reminds us: 

Nor must we lose sight of the constant tendency of the inductive pro­
cess to correct itself. This is of its essence. This is the marvel of it .... 
Even though doubts may be entertained whether one selection of 
instances is a random one, yet a different selection, made by a differ­
ent method, will be likely to vary from the normal in a different way, 
and if the ratios derived from such different selections are nearly 
equal, they may be presumed to be near the truth. (2.729) 

Here the "marvel" is its ability to correct the attempt at random sam­
pling. Numerous, even more marvelous methods exist today to check 
randomness and other assumptions. Still, Peirce cautions, we should 
not depend so much on the self-correcting virtue that we relax our 
efforts to get a random and independent sample. But if our effort is not 
successful. and our method not robust, we will probably discover it. 
"This consideration makes it extremely advantageous in all ampliative 
reasoning to fortify one method of investigation by another" (ibid.). 

"The Supernal Powers Withhold Their Hands and Let Me Alone" 

Peirce turns the tables on those skeptical about satisfying random 
sampling-or, more generally, about satisfying the assumptions of a 
statistical model. He declares himself "willing to concede, in order to 
concede as much as possible, that when a man draws instances at ran­
dom, all that he knows is that he tries to follow a certain precept" 
(2.749). There might be a "mysterious and malign connection between 
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the mind and the universe" that deliberately thwarts such efforts. 
Peirce considers betting on the game of rouge et noire. "Could some devil 
look at each card before it was turned, and then influence me men­
tally" to bet or not, the ratio of successful bets might differ greatly from 
.5 (ibid.). But this would equally vitiate deductive inferences about the 
expected ratio of successful bets. We would find systematic departures 
from the Binomial model with p = .5, even where the card game did 
have an equal chance of a red or black card. 

Peirce's argument can be seen as the counterpart to Neyman's jus­
tification for the use of mathematical models of random experiments 
(from chapter 5). Neyman (1952), recall, had explained how probabi­
listic models adequately represent certain real experimental proce­
dures "whenever we succeed in arranging the technique of a random 
experiment, such that the relative frequencies of its different results in 
long series approach" sufficiently the mathematical probabilities in the 
sense of the law of large numbers (Neyman 1952, 19). We can check 
whether we have succeeded in satisfying the statistical model suffi­
ciently. But the experimental procedure whose assumptions are found 
to be satisfied where p is known should work as well when p is un­
known. To suppose otherwise, Peirce is saying, would be akin to sup­
posing a mysterious power can read my mind and deliberately thwart 
my efforts to satisfy assumptions just when p is unknown. 

Peirce therefore grants that the validity of induction is based on 
assuming "that the supernal powers withhold their hands and let me 
alone, and that no mysterious uniformity ... interferes with the action 
of chance" (2.749). But this is very different from the uniformity of 
nature assumption. 

The negative fact supposed by me is merely the denial of any major 
premiss from which the falsity of the inductive or hypothetic conclu­
sion could ... be deduced. Nor is it necessary to deny altogether the 
existence of mysterious influences adverse to the validity of the in­
ductive ... processes. So long as their influence were not too over­
whelming, the wonderful self-correcting nature of the ampliative 
inference would enable us, even so, to detect and make allowance 
for them. (2.749) 

This is the reason for having standard mechanisms, for example, a 
coin-tossing mechanism such as our canonical Binomial experiment 
with p = .5. Finding systematic departures from the deductively de­
rived statistical distribution would be one way of detecting that we had 
failed in a particular case to get the experiment to accord with the 
standard Binomial. We could then subtract out its influence. 
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Not only do we not need the uniformity of nature assumption, but 
also, Peirce declares, "That there is a general tendency toward unifor­
mity in nature is not merely an unfounded, it is an absolutely absurd, 
idea in any other sense than that man is adapted to his surroundings" 
(2.750). But the validity of inductive inference does not depend on 
this. 

The ability to make successful inductions, our success in obtaining 
experimental knowledge, is explained by the properties of our meth­
ods. The properties of the methods are error probabilities. Because we 
can frame questions of interest in term of hypotheses amenable to se­
vere testing, we are able to learn from error and in so doing obtain 
experimental knowledge. That is what Peirce's SeT requires and what 
Peirce means by saying that "the true guarantee of the validity of in­
duction" is that it is a method of reaching a conclusion that is able to 
detect errors: 

This it will do ... because it is manifestly adequate ... to discovering 
any regularity there may be among experiences, while utter irregu­
larity is not surpassed in regularity by any other relation of parts to 
whole, and is thus readily discovered by induction to exist where it 
does exist, and the amount of departure therefrom to be mathemati­
cally determinable from observation .... The doctrine of chances ... 
is nothing but the science of the laws of irregularities .... There is no 
possibility of a series of experiences so wanting in uniformity as to be 
beyond the reach of induction, provided there be sufficiently numer­
ous instances of them, and provided the march of scientific intelli­
gence be unchecked. (2.769)13 

In the final chapter, I shall have more to say about how the error statis­
tical program explains the success of scientific induction. 

13. In aligning myself with Peirce, it should not be thought that I agree with 
a position popularly attributed to him, namely, that truth is the final opinion to 
which inquiry would eventually lead. One gloss is unproblematic, however: the 
true but fixed value of a population mean is the average of all the possible sample 
means. Hence, the average of sample means would eventually equal it. 
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CHAPTER THIRTEEN 

Toward an Error-Statistical Philosophy 
of Science 

IN THE PRECEDING CHAPTERS I have attempted to set out the main ingre­
dients for a non-Bayesian philosophy of science that may be called the 
error-statistical account. The account utilizes and builds upon several 
methods and models from classical and Neyman-Pearson statistics, but 
in ways that depart from what is typically associated with these ap­
proaches enough to warrant some new label. Because the chief feature 
that my approach retains from Neyman-Pearson methods is the cen­
trality of error probabilities, the label "error statistics" seems about 
right. Moreover, what fundamentally distinguishes this approach from 
others is that in order to determine what inferences are licensed by 
data it is necessary to take into account the error probabilities of the 
experimental procedure. In referring to an error-statistical philosophy 
of science, I have in mind the various ways in which statistical methods 
based on error probabilities may be used in philosophy of science. At 
present, when it comes to appealing to statistical ideas in philosophy 
of scientific inference, the Bayesian Way is sometimes thought to be 
the only game in town. What I wish to impress upon the reader is that 
an error-statistical philosophy of science presents a viable alternative 
to the Bayesian Way. 

The application of Bayesian statistics to philosophy of science-the 
Bayesian Way-for all of its flaws, enjoys a simplicity and unity of 
statement: Evidence is linked to hypotheses by way of Bayes's theorem 
and scientific inference is modeled as the application of Bayesian con­
firmation (e.g., evidence confirms hypothesis H when the posterior 
probability of H exceeds the prior probability of H). The rationality of 
a scientific episode is assessed according to how well it admits of a 
Bayesian reconstruction, and methodological rules are appraised ac­
cording to whether they can be justified by Bayesian principles of sup­
port and confirmation. Although there is serious disagreement among 
Bayesians about the result of applying Bayesian principles to each of 
these tasks, at least there is a kind of overarching framework that pro­
spective Bayesian philosophers can look to. Can anything as succinct 

442 
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AN ERROR-STATISTICAL PHILOSOPHY OF SCIENCE 443 

and unified be said of an error-statistical philosophy of science? Indeed 
it can. 

In the error theorist's approach, experimental inquiry is viewed in 
terms of a series of models: primary models, experimental models, and 
data models. In an experimental inference, primary hypotheses are 
linked to models of data by means of experimental tests, and hypothe­
ses are inferred according to whether they pass severe tests. Method­
ological rules are regarded as claims about strategies for coping with, 
and learning from, errors in furthering the overarching goal of severe 
testing, and rules are assessed according to their role in promoting 
that end. 

I do not wish to downplay the complexities of the error-statistical 
approach. It is necessarily more complex to state than an evidential­
relationship view because, rather than starting its work with evidence 
or data, it includes the task of arriving at data-a task that it recognizes 
as calling for its own inferences. A second feature of the error-statistical 
approach that introduces a level of complexity is that it does not equate 
the scientific inference with a direct application of some statistical 
inference scheme. This is in contrast with other attempts that model 
scientific inference on statistical inference, whether Bayesian or non­
Bayesian. 

For example, to apply Neyman-Pearson statistics in philosophy of 
science, it is typically thought, requires viewing scientific inference as 
a matter of accepting or rejecting hypotheses according to whether 
outcomes fall in rejection regions of Neyman-Pearson tests. Finding 
that this distorts scientific inference, it is concluded that it is inappro­
priate to appeal to Neyman-Pearson statistics in erecting an account of 
inference in science. This conclusion, I have argued, is quite unwar­
ranted because it overlooks the ways in which Neyman-Pearson meth­
ods, and standard statistics in general, are actually used in science. 
What I am calling the error-statistical account, I believe, reflects these 
actual uses. 

In the error-statistical account, formal statistical methods relate to 
experimental hypotheses, hypotheses framed in the experimental 
model of a given inquiry. Relating inferences about experimental 
hypotheses to primary scientific claims is, except in special cases, a dis­
tinct step. Yet a third step is called for to link raw data to data models­
the real material of experimental inference. The indirect and piecemeal 
nature of our use of statistical methods, far from introducing an unde­
sirable complexity into our approach, is what enables it to serve as an 
account of inference that is truly ampliative. The complexities notwith­
standing, I wish to impress upon the reader that there is a structure 
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444 CHAPTER THIRTEEN 

and a logic to the error-statistical approach, that its parts hang together 
to provide a full-bodied experimental philosophy. 

To this end, I will address in this closing chapter the main lines 
taken by the error-statistical approach to three chief tasks to which 
statistical accounts are put in philosophy of science: modeling scientific 
inference, solving problems about evidence and inference, and per­
forming a critique of methodological rules. In the final section I shall 
consider yet another task for which one might rightly look to an ac­
count of statistics: that of explaining the success of science-the fact 
that we are so good at predicting, controlling, and learning about ex­
perimental phenomena. The present philosophy of experiment locates 
scientific progress in the growth of experimental knowledge, and ex­
plains that growth in terms of the properties of the methods making 
up error statistics, as broadly conceived. These methods work because 
(1) we are, at least some of the time, able to carry out real random 
experiments (in the sense of chapter 5), and can test if we have done 
so in particular cases, and (2) we are often able to put questions about 
errors in terms of questions that can be answered by real-or simu­
lated-random experiments. Thanks to the limit theorems of statistics 
(and their empirical correlates), (1) and (2) give us reliable experimen­
tal knowledge. 

My aim in this final chapter is to identify for the reader the main 
threads with which the error-statistical approach ties together and per­
forms the tasks expected of an account of experimental inference. 
These sketches do not substitute for the fuller arguments and examples 
given throughout the book. At several points I will deliberately identify 
gaps that still remain to be filled. My hope is to organize the various 
ways in which the error-statistical program might be further pursued 
by others. 

13.1 MODELING EXPERIMENTAL INQUIRY 

In the error-statistical account, experimental inference must be under­
stood within a framework of inquiry. You cannot just throw some "evi­
dence" at the error statistician and expect an informative answer to 
the question of how well it warrants a hypothesis. A framework of 
inquiry incorporates methods of experimental design, data generation, 
modeling, and testing, all of which can be organized around the hierar­
chy of models set out in chapter 5. The framework of models does 
double duty; it also allows addressing systematically the key questions 
of an epistemology of experiment: questions about what data to col­
lect, how to model them, how to check their assumptions, how to use 
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them to learn about experimental processes, and how to relate experi­
mental knowledge to scientific hypotheses. 

Experimental Knowledge and Arguing from Error 

Experimental knowledge is obtained by learning about the (actual 
or hypothetical) future performance of experimental processes, about 
the outcomes that would be expected (with specified frequencies) if 
certain experiments were carried out. Hypotheses about experimental 
processes may be inferred regardless of whether they are part of a sub­
stantive scientific theory. They have their own homes within various 
experimental models. 

Although a single inquiry involves a network of models, an overall 
logic of experimental inference emerges: data e indicate the correctness 
of hypothesis H, to the extent that H passes a severe test with e. All the 
tasks of the interconnected models are directed toward substantiating 
this piece of reasoning. To remind us, hypothesis H passes a severe test 
with e if e fits H, and the test procedure had a high probability of pro­
ducing a result that accords less well with H than e does, if H were false 
or incorrect. 

The severe testing inference corresponds to an informal pattern of 
arguing from error or learning from error. The underlying thesis is this: 

It is learned that an error is absent to the extent that a procedure of 
inquiry with a high probability of detecting the error if and only if it 
is present nevertheless detects no error. I 

Its failing to detect the error means it produces a result (or set of re­
sults) that is in accordance with the absence of the error. Such a proce­
dure of inquiry may be called a reliable (or highly severe) error probe. We 
argue that an error is absent if it fails to be detected by a highly reliable 
error probe. Correspondingly, an assertion that the error is absent has 
passed a severe test. We identified an analogous argument for inferring 
the presence of an error. 

The experimental inference that is licensed is whatever can be re­
garded as having passed a severe test by the given result and the given 
test procedure. The hypothesis that is indicated may not be the full 
hypothesis of interest, but only that part or aspect that has passed a 
severe test. One has to look, in other words, at the argument from 

1. In terms of a hypothesis H, the argument from error may be construed as 
follows: Data in accordance with hypothesis H indicate the correctness of H to the 
extent that the data result from a procedure that with high probability would have 
produced a result more discordant with H, were H incorrect. 
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error that is substantiated (if any) in order to infer which hypothesis 
or which aspect of a hypothesis is experimentally warranted. 

To infer that H is indicated by the data does not mean that a high 
degree of probability is assigned to H-no such probabilities are 
wanted or needed in the error-statistical account. The entire attempt to 
find a quantitative measure of evidential relationship, an E-R measure, 
between evidence and hypotheses is rejected. That H is indicated by 
the data means that the data provide good grounds for the correctness 
of H. One can, if one likes, construe the correctness of H in terms of H 
being reliable, provided care is taken in its interpretation. Learning that 
hypothesis H is reliable, I proposed (in chapter 4), means learning that 
what H says about certain experimental results will often be close to 
the results actually produced-that H will or would often succeed in 
specified experimental applications. By means of statistical tests, we 
check whether in fact this has been learned. 

Take one kind of hypothesis we discussed several times, one as­
serting that a given effect is real or systematic. Perhaps hypothesis H 
asserts that a real correlation exists between a specific gene and a type 
of cancer in a given population of individuals. Suppose experimental 
test results indicate hypothesis H. One thing that the correctness of H 
may be taken to assert is that the incidence of this gene among cancer 
patients will not vary in the manner expected for a chance correlation. 
This leads to pinpointing a corresponding notion of success. We may 
regard an application of H as successful when it is statistically signifi­
cantly different from what would be expected if the correlation be­
tween the gene and cancer were of the chance variety. More formally, 
a successful outcome is one that a specified experimental test would 
take as failing the null hypothesis Ho that the observed correlation is 
merely chance. That H is frequently successful-that H is reliable­
asserts that the null hypothesis would frequently be rejected by a given 
statistical test (about as frequently as the test specifies). 

A parallel interpretation emerges if instead the results indicate that 
H is false and the correlation is spurious. This tells us that things would 
be as if the null hypothesis Ho were true: differences (from what the 
null hypothesis asserts) that are statistically significant at level u would 
be expected about as rarely as the test indicates (Le., u[100 percent] of 
the time). 

I am stating all this in a general way. Information about the actual 
experimental test of interest would be required to interpret, in a more 
specific way, a given assertion that the test result indicates a hypothe­
sis. I discussed the question of interpreting tests in chapter 11 (espe­
cially section 11.7). 
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Three Tasks for Error Statistics 
Experimental inquiry is a matter of building up, correcting, and 

filling out the models needed for substantiating severe tests in a step­
by-step manner. Individual steps are split off and tackled according to 
the same pattern of argument. Standard statistical ideas and tools enter 
into this picture of experimental inference in a number of ways, all of 
which are organized around the three chief models of inquiry. They 
serve three main roles by providing (1) techniques of data generation 
and modeling along with tests for checking if the resulting data satisfy 
the experimental assumptions; (2) tests and estimation methods that 
allow control of error probabilities; and (3) canonical models of low­
level questions with associated tests and data modeling techniques. I 
readily admit that the ways in which error-statistical tools serve these 
functions do not fall out directly from the mathematical framework 
found in statistical texts. There are important gaps that need to be filled 
in by the methodologist and philosopher of experiment as well as by 
statistical practitioners. I have only scratched the surface here. 

The three tasks just listed relate to the models of data, experiment, 
and primary hypotheses, respectively. I shall consider them briefly in 
turn: 

1. The first task involves issues of pretrial planning to generate data 
likely to justify assumptions of the analysis of interest, and after-trial 
checking to test whether the assumptions are satisfactorily met. The 
conglomeration of methods and models from standard error statistics, 
error analysis, experimental design, and cognate methods is the place 
to look for forward-looking procedures in order to obtain data in the 
first place. The work for experimentalists building on error statistics 
is to identify those procedures and the roles they play in substantive 
inquiries. The scientific episode that I have treated most fully is the 
case of Brownian motion (chapter 7). A number of other examples 
discussed by philosophers of science cry out for an analysis of their 
modes of data modeling. Certainly, the whole area of testing assump­
tions (e.g., by distribution-free methods and by special experimental 
designs) calls for a much more detailed and sophisticated discussion 
than I had time for in this book. Newer techniques from the field of 
exploratory data analysis offer yet another treasure chest of canonical 
error discernment strategies based upon visual manipulations (on pa­
per or on computers). 

2. The second task centers on what is typically regarded as statisti­
cal inference proper, namely, specifying and carrying out statistical 
tests (and the associated estimation procedures) or informal analogs to 
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these tests. The error-statistical program brings with it reinterpretations 
of the standard methods as well as extensions of their logic into infor­
mal arguments from error (e.g., as discussed in chapters 5,9, and espe­
cially 11). The criteria for selecting tests depart from those found in 
classic behavioristic models of testing. One seeks not the "best" test 
according to the desiderata of low-error probability alone, but rather 
sufficiently informative tests. 

Accordingly, what directs the choice of a test statistic, and its asso­
ciated reference set and error probabilities, is the goal of ensuring that 
something relevant is likely to be learned. Tests are not used as auto­
matic accept or reject rules-accepting or rejecting hypotheses ac­
cording to whether outcomes fall in the rejection region of a test. 
Rather, one infers those hypotheses that pass severe tests in the man­
ner just described. However, assessing severity typically calls for con­
siderations that go beyond the standard test rule, and for custom­
tailored interpretations of results after the trial. For one thing, because 
the severity calculation must be sensitive to the actual outcome 
reached, it is not enough to know whether the result fell in the rejec­
tion region. Second, the most informative assertion warranted is rarely 
one of the preset statistical hypotheses themselves, but more com­
monly a claim about the discrepancies from those hypotheses that are 
or are not indicated by the data (e.g., chapters 6 and 11). The value of 
the standard tests of preset hypotheses is that they provide the basis 
for learning about such discrepancies. For example, it useful to test a 
null hypothesis asserting a zero difference in means-even knowing 
that the null is strictly false-because it teaches the extent to which an 
effect differs from o. 

Systematic ("metastatistical") rules may be specified to guide the 
appropriate interpretation of statistical results after the trial, such as 
the two I set out in chapter 11: the rule of acceptance (RA) and the 
rule of rejection (RR). While directing the interpretation of test results, 
these rules also prevent vintage misinterpretations of tests and let us 
make short work of what have been mistaken as damaging criticisms 
of Neyman and Pearson tests. For example, the rules RR and RA let 
one see that the choice of an NP test with prespecified low error proba­
bilities reflects the goal of substantiating certain standard types of argu­
ments from error. There is leeway in the specification, but it is of a 
rather restricted variety. Second, and most important, the latitude that 
exists in the choice of test does not prevent the determination of what 
a given result does and does not say. The error probabilistic properties 
of a test procedure-no matter how that test was chosen-allow for 
an objective interpretation of the results. This is the basis for criticizing 
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a given test (e.g., as too sensitive or not sensitive enough) and for find­
ing certain inferences unwarranted. 

3. Experimental inquiries are broken down into piecemeal ques­
tions such that they can be reliably probed by statistical tests or analogs 
to those tests. But how does this piecemeal breakdown work? Even 
more than the first two, the third role I assign to statistics takes us 
beyond statistical methodology, as it is usually conceived, and into 
tasks that call for a full-blown (error-statistical) philosophy of experi­
ment. Here again I have only taken a few preliminary steps. 

I proposed that inquiries are broken down into local questions re­
ferring to standard types of errors or mistakes, construed broadly. 
Strategies for investigating these errors often run to type. I delineate 
four such standard or canonical types of errors: mistaking chance ef­
fects or spurious correlations for genuine correlations or regularities; 
mistakes about a quantity or value of a parameter; mistakes about a 
causal factor; mistakes about experimental assumptions. Statistical 
models are relevant because they model patterns of irregularity that 
are useful for studying these errors. 

In the preceding chapters I have tried to illustrate how reliable 
inferences are made by learning how to tap into one of the known 
patterns of variability. This is not just a matter of splitting things up; 
generally it is necessary to introduce or inject statistical considerations 
into inquiries. Statistical considerations are introduced in two main 
ways: (1) by means of the collection of data, and (2) by means of the 
modeling of the data (manipulations on paper). I discuss these in turn: 

Injecting Statistical Considerations 

1. Suppose that one is interested in a quantity J.t, say the mean 
radius of one of Perrin's populations of gamboge grains. One way of 
introducing statistical considerations is to randomly sample n members 
from the population and average up their values for this quantity. In 
the experimental model this can be described as: observe the value of 
the statistic X-the sample mean. The value of the mean that would 
be observed may be viewed as a random sample from a hypothetical 
population consisting of all the possible n-fold samples of grains that 
could have been taken, with the average radius in each n-fold sample 
recorded. The distribution of these values is the experimental (or sam­
pling) distribution of X. Why should we be interested in this hypotheti­
cal population of sample means? Because the probability distribution 
of X gives us the error probabilities (both of tests and estimates). By 
collecting data in a certain way (e.g., so that random sampling is ap-
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proximately satisfied), Perrin gets his sample mean to be related statisti­
cally to the population mean. The mean of X is itself equal to the popu-
1ation mean f.L and the variability of X in the hypothetical population 
is related in a known way to the variability in the real population of 
grains. Thus the observed sample mean can be used to give an interval 
estimate of f.L and Perrin can attach error probabilities to this estimate. 
Through this trick, what Perrin learns about his hypothetical popula­
tion teaches him about the real population. 

2. The second type of deliberate introduction of statistics is by way 
of data modeling. This was illustrated in Perrin's introduction of statis­
tical manipulations "on paper" to learn about the distribution of his 
Brownian particles. We saw, for example, how Perrin took the ob­
served displacements of a group of Brownian particles and condensed 
them into 9 pigeonholes to see if they would distribute themselves as 
shots fired would distribute themselves around a bull's-eye. By means 
of this and other models of data, Perrin was able to use types of known 
variable phenomena, for example, from random walks, to answer a 
question about the unknown variability of the displacement of 
Brownian particles. (See section 7.4.) 

What justifies these manipulations on paper is not that they repre­
sent actual phenomena, but that by manipulating the data (e.g., into 
bull's-eye rings), Perrin could deduce the probability that a displace­
ment would fall in each of the 9 rings under the hypothesis being 
tested. With this, statistical tests could be run and their error probabili­
ties calculated. And these error probabilities (e.g., severity) do refer to 
actual experimental phenomena. 

Future Projects 

Statistical ideas and tools are clearly taking on a heavy load in the 
present approach, performing many tasks that go beyond extant texts 
on statistical methodology. This is particularly so of the third task of 
breaking down a substantive primary inquiry into piecemeal inquiries 
into errors. The philosopher of experiment seeking to pursue this task 
will be taking up questions that statistics texts barely ask, such as how 
do scientists appeal to a handful of canonical exemplars of learning 
from error?2 An open question, of course, is how well this picture of 

2. This question, as I understand it, enjoins one to identify such exemplars in 
strategies and reasonings in scientific practice, as well as to explain how they work 
in facilitating learning from error. There are descriptive and normative compo­
nents. Work from several areas will be important to draw upon, several which have 
been noted throughout this book (e.g., case studies from the New Experimental­
ists). Some of the empirical work from philosophy of psychology and cognitive sci-
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scientific inference is borne out in general. But several gaps first need 
to be filled. 

Several additional examples of particular canonical models of error 
and of error avoidance strategies need to be articulated. I have largely 
dealt with questions that may be articulated within statistical models, 
and yet experimental inquiry relies on numerous informal exemplars 
and models from outside statistics. 

In addition, I have for the most part restricted my focus to experi­
mental inquiries that could be broken down into relatively low-level 
primary hypotheses. Many, I suspect, would press me to go higher up 
in the hierarchy to more full-blown scientific theories. Even granting 
my main point, that experimental knowledge is highly robust through 
changes in higher-level theories, much more can and should be said 
about the relationships between experimental knowledge and more 
global theories. A task that would need to be tackled by those with an 
understanding of particular fields is how to partition theories so that 
their hypotheses can be severely tested. A place to begin, I think, is 
with the experimental tests of specific laws and key hypotheses, as we 
did, for example, with Perrin's experiments for the Brownian motion 
hypothesis within the kinetic theory, and, in less detail, with the 
eclipse tests for the gravitation law in Einstein's theory. . 

As for what might be done next, recall the program for partitioning 
and eliminating whole chunks of theories of gravity (e.g., "nonmetric" 
theories of gravity), noted in section 6.3, from a discussion by John 
Earman (1992). Looking at historical and perhaps also current theo­
ries, methodologists of experiment might be able to do something anal­
ogous. They may be able to show how sets of theories were or were not 
distinguished by given experiments, and perhaps identify some general 
strategies for making progress in discriminating types of hypotheses. 
Something like this kind of effort at partitioning and discriminating 
theories is what the present program would call for, if one were to 
pursue it at the level of large-scale theories. 

13.2 ARTICULATING AND ApPRAISING METHODOLOGICAL RULES 

In the latter half of this book, I have paid a lot of attention to scrutiniz­
ing particular methodological rules: about varying data, about novelty, 
about predesignation and about stopping rules. I will not review that 

ence could also be valuably appropriated to our project; and in so doing, I submit, 
those areas might be enhanced with a normative dimension that they generally do 
not address. 
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material here, but rq.ther will sketch in a general way what the error­
statistical program calls for when it comes to the task of articulating 
and scrutinizing methodological rules. This task is shaped by the fol­
lowing three theses: 

First, methodological rules can be seen as aiming to avoid key er­
rors that get in the way of good experimental arguments. Second, they 
reflect the requirement that before a hypothesis is warranted it must 
have passed a severe experimental test. Third, one may get at how 
rules work, if they do, by asking, If any and all violations of the rule 
were permitted, how might (flagrantly) unreliable arguments be li­
censed thereby?3 I showed that these three theses hold up with respect 
to some of the more controversial methodological rules. I put them 
forward to be tested by others who seek to pursue the task of meta­
methodology. Let me flesh out and draw some consequences from 
these theses. 

A Naturalistic Metamethodology 

In the present account, methodological rules for experimental 
learning are regarded as strategies that enable learning from common 
types of experimental mistakes. They may be seen to systematize the 
day-to-day learning from mistakes discussed in chapter 1. From the 
history of mistakes made in reaching a type of inference arises a reper­
toire of errors; methodological rules are techniques for circumventing 
and uncovering these errors. Some refer to before-trial experimental 

-planning, others to after-trial analysis of the data. The former include 
rules about how specific errors are likely to be avoided or circum­
vented, the latter, rules about checking the extent to which given er­
rors are committed or avoided in specific contexts. They work together 
to form reliable arguments from error. 

Methodological rules are empirical claims about how to find 
certain things out by arguing from experiments. Accordingly, these 
hypotheses are open to an empirical appraisal: their truth depends 
upon what is actually the case in experimental inquiries. At the same 
time, the present account is normative, in that the strategies are claims 
about how to actually proceed in given contexts to learn from experi­
ments. 

Since the rules are claims about strategies for avoiding mistakes 
and learning from errors, their appraisal turns on understanding how 

3. Even many that are not explicitly about experimental learning would turn 
out. on closer inspection. to be rooted in the aim of arguing from error. I am think­
ing of a rule such as: prefer simple hypotheses. 
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methods enable avoidance of specific errors. One has to examine the 
methods themselves, their roles, and their functions in experimental 
inquiry. To know which rule is called for in a particular context of 
inquiry requires knowing something about what the rule does and 
does not do-how it helps and when it does not help. This will also 
inform us of other ways to get around the same mistake. There is never 
just one way to skin a cat nor to avoid an error. 

Canonical Models of Error 

To further flesh out these ideas, consider an uncontroversial 
method of experimental control. Given the empirical realities of in­
quiring about many causal factors of interest-namely, that extrane­
ous factors may also be responsible for an observed effect E-we can 
reason out why perfect experimental control is desirable: it enables 
avoiding erroneously attributing causes in arguing from observed ef­
fect E. If the method of control is violated and factors are left uncon­
trolled, then, as a matter of empirical fact, the experimental results are 
also showing the influences of these other factors. If, however, a way 
can be found to avoid confounding the effects of extraneous factors 
with the effect of the factor of interest F, then one can still arrive at an 
experimental argument as or nearly as reliable as the one provided by 
literal control. 

An experimental argument based on an ideal case of literal experi­
mental control illustrates the notion of a canonical model. It is an ex­
emplary case of how a causal inference may be warranted with high 
(if not maximal) reliability. A canonical model for a certain type of 
claim is the basis for two kinds of spin-off strategies: first, arriving at 
further canonical models, and second, discovering and scrutinizing 
methods for satisfying the assumptions of these models. As an example 
of the first strategy, the ideal of perfect control gives rise to exemplary 
arguments that approximate or simulate the ideal case, such as argu­
ments based on control groups (e.g., randomized treatment-control 
studies). Having justified the approximation to the ideal case, the stage 
is set for the second type of strategy. As an example of the second 
strategy, consider how rules about keeping subjects and experimenters 
blind, using placebos, and so on, stem directly from the goals of a valid 
comparison of treated and untreated groups. 

Although specific methods and rules about their use are numer­
ous, I suggest that they are all tied to detecting and avoiding a handful 
of error types. More correctly, they are all tied to the handful of canoni­
cal arguments for inquiring about the key errors delineated in chapter 
1: mistakes about a causal factor, an experimental artifact or chance 
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effect, a quantity or value of a parameter, and an assumption of the 
experimental data. There is nothing firm about this list; perhaps it 
should be expanded or contracted. It is simply one convenient group­
ing, reflecting, it seems to me, the manner in which canonical argu­
ments now in use tend to run to type. 

Consider the example of statistical significance tests of a null hy­
pothesis Ho: the effect is "due to chance" within a standard Binomial 
model. This corresponds to a formal statement of a reliable argument 
for affirming an effect is "real" and not due to chance. It is an example 
of a formal canonical model. But as we have seen throughout this 
book, the same pattern of argument is followed in informal arguments, 
such as Hacking's argument from coincidence to rule out the artifact 
explanation (of dense bodies), and Galison's to rule out escaping mu­
ons (e.g., chapter 3). 

Canonical experimental models-whether formally or informally 
given-exemplify cases in which the kinds of errors known to be pos­
sible or problematic in the given type of investigation are handled 
well-that is, ruled out. Also included would be examples of infamous 
mistaken cases, especially cases initially thought to have surmounted 
key problems. It is to be expected, and is wholly unproblematic, that 
different practitioners will worry more or less about certain errors or 
will appeal to different canonical models. The results are communica­
ble, and are capable of being checked with different (intersubjective) 
standards. 

Uncovering a Rule's Rationale 
To get at the underlying rationale of a methodological rule we ask: 

if experiments were allowed to violate freely the methodological re­
quirement in question, would some flagrant error be countenanced? 
some clearly unreliable argument allowed? The answer may stem from 
actual episodes or our past repertoire of errors. This leads to the second 
kind of canonical model: an example of an infamous mistake, a classic, 
demonstrably unreliable argument. Such a chamber of horrors need 
only be populated by a handful of examples to serve its function. 

Having extracted a rule's rationale, it does not follow that satisfying 
the rule is necessary to avoid the given threat to reliability. What fol­
lows is that if the method is violated, then the onus is on the experi­
menter to show that reliability is nevertheless achieved. If it proves too 
impractical or too difficult to circumvent the error while violating the 
rule, then we begin to understand why, in certain contexts, a given 
rule makes good sense. For such experimental contexts, epistemologi­
cal as well as pragmatic and economic, considerations may justify the 
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rule as a kind of cautionary rule, a way to play it safe. Several examples 
come to mind relating to statistical significance tests: 

• Always require predesignation of the hypothesis to be tested. 
• Routinely preset tests with a .05 level of significance. 
• Never decide when to stop sampling after looking at the data. 

Two consequences for the methodological enterprise emerge: First, 
rather than keeping score-either between instances where a rule is 
satisfied and where it is violated, or between proponents and oppo­
nents of a rule-we should seek to find a specific rationale for such 
rules. Second, researchers need not be hamstrung by cautionary rules 
when they can defend the reliability of particular experimental argu­
ments despite their violation. (See, for example, chapter 9.) 

A Role for History 

A naturalistic experimental methodology along these lines re­
quires (a) articulating canonical models or paradigm cases of experi­
mental arguments and errors, and (b) appraising and arriving at meth­
odological rules by reference to these models. Historical cases, if 
handled correctly, provide a unique laboratory for these tasks. The ex­
ample of Brownian motion focused on task a while the Eddington 
eclipse experiment focused on task b. 

In promoting historical cases as providing real data to analyze for 
our methodology of experiment, I do not mean what many historically 
minded philosophers have meant. The data we need do not consist of 
the full scientific episode, all finished and tidied up. The data we need 
are the experimental data that scientists have actually analyzed, de­
bated, used, or discarded. Whether the episode concerns the bearing 
of evidence on large scale or local appraisaL whether the case is recent 
or long past, the focus for these tasks must be on the ways specific data 
were used in arguing for the evidence in the first place. The particular 
data, and discussions and debates over their generation and interpreta­
tion, would need to take center stage, rather than debates about high­
level theorizing. Often the best sources are the scientific reports and 
published debates themselves. This is what made the case of Perrin and 
Brownian motion so illuminating (chapter 7). 

Especially revealing are the processes and debates that take place 
before the case is settled and most of the learning is going on, particu­
larly where there is a reliable record of the data analysis involved. Here 
one can often find how a method's violation may lead to specific prob­
lems in reaching experimental conclusions. This type of scrutiny also 
helps us to better understand the "rationality" of the episode; what 
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stood in the way of obtaining certain information, and why it took a 
certain amount of time for a good argument to be reached. 

I do not think it farfetched to suppose that an adequate methodol­
ogy of experiment would be relevant to the improvement of experi­
mental methods.4 It should help to make explicit the ways in which 
inquirers add to their repertoire of errors, classifying by subject matter 
(e.g., rats, microscopic vegetable particles, star positions) as well as by 
type of error. Looking at historical cases with an eye for failed experi­
mental arguments may prevent their being committed again. A related 
area of research, of interest in its own right, would be to investigate 
how certain mistakes had to be relearned several times until they be-" 
came "canonized" in a systematic way. 

l3.3 PHILOSOPHICAL PROBLEMS OF EVIDENCE AND INFERENCE: 

DUHEM'S PROBLEM 

I regard the error-statistical philosophy of experiment as providing the 
general framework and tools for carrying out the main goals of the 
New Experimentalist program (see chapter 3). I put it forward as a 
fresh perspective from which to reask a number of philosophical chal­
lenges regarding scientific inference based on empirical data. I have 
argued that its requirement of a severe test provides the key to answer­
ing the "alternative hypothesis" challenge (by distinguishing between 

" hypotheses that "fit" the data equally well), and that error-statistical 
reasoning is the proper way to solve Duhem's problem. The former 
issue is treated at length in chapter 6. This may be a good place to 
sketch the error-statistical treatment of Duhem's problem (chapters 4, 
5, and 6), and why I regard it as superior to the Bayesian treatment. 
Hopefully others will pursue this treatment further. 

The task Duhem's problem poses for philosophers of science is to 

provide a way to determine which of the hypotheses used to derive a 
predicted consequence should be rejected or disconfirmed when ex­
periment disagrees with that prediction. In actual scientific episodes H 
is sometimes taken to blame; at other times H is retained while auxil­
iary assumptions are said to be responsible for the anomalous result. 
An adequate model of testing should account for this. 

When Bayesians say they can solve Duhem's problem, as they do, 
what they mean is that they can show how certain subjective probabil­
ity assignments can justify a given apportioning of blame. Solving Du-

4. It might be possible to actually construct, particularly with the use of com­
puters, a tool kit of errors and error simulations. 
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hem comes down to a homework assignment of how various assump­
tions and priors allow the scientific inference reached to be in accord 
with that reached via Bayes's theorem. Nothing is said about whether 
the assignments are warranted or, more important, how a scientist 
should go about determining where the error really lies. Assigning the 
probabilities differently puts blame elsewhere, and the Bayesian "solu­
tion" is not a solution for adjudicating such assignments. (See chap­
ter 4.) 

But scientists regularly tackle and often enough solve Duhemian 
problems, and when they do they employ (formally or informally) the 
logic and a methodology of error statistics. In the error-statistics ap­
proach, the task of finding out whether auxiliary hypotheses are satis­
fied is split off from that of appraising the primary hypothesis H. In 
fact, the chief reason for separating out the models relating data and 
hypotheses is to achieve the aim of correctly apportioning blame (as 
well as praise). Before experimental results can speak for or against a 
hypothesis under test, it is necessary to check and estimate the extent 
of any errors along the way-regarding the data and the auxiliaries. 
This calls for methods to discern whether the experiment was well run, 
to distinguish real effects from artifacts, estimate backgrounds, and 
"subtract out" influences of factors other than some intended one. The 
methods and principles from standard-error statistics are regularly ap­
pealed to in carrying out and giving structure to these tasks. A scientist 
may claim that an extraneous factor, and not H, is to be blamed for an 
anomalous result, but to warrant that claim requires it to have passed a 
reliable test. Some examples may be found by going back to the eclipse 
experiments discussed in chapter 8. 

Several staunch defenders of Newton could well be seen as satis­
fying the subjective probability assignments that would have war­
ranted taking the anomaly as only very slightly decreasing belief in 
Newton and greatly decreasing their belief in auxiliary A that no factor 
other than gravity was operating to produce the observed effect. But 
no one (not even the staunchest Newtonian defenders) thought that 
their strong degree of belief in Newton was evidence of the correctness 
of the various hypotheses they put forward with which to save Newton 
and account for the anomalous deflection. Proposed factors by which 
to save Newton were evaluated according to whether they stood up to 
severe scrutiny-when they did not they were shot down. The con­
cern was with a classic error-that the evidence failed to constitute a 
reliable test in favor of the auxiliary factor hypothesized to accommo­
date the anomaly. The concern turned out to be one that the Newton­
ian defenders could not put to rest. It turned out that in order to con-
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strue the anomalous deflection as passing Newton it was necessary 
to employ precisely the kinds of strategies that would make it easy 
for hypotheses to pass, even if they are false (Le., high error probabili­
ties). 

The eclipse episode, we saw, also included instances where an ap­
parent anomaly was explained away successfully. I am thinking of how 
Eddington was able to explain away the anomaly stemming from one 
of the sets of eclipse results (from Sobral). The evidential appraisal 
turned on the question of whether there were grounds for an error­
either in the data or in the background factors assumed not to be re­
sponsible. The debate was engaged in by scientists with very different 
opinions about Einstein's theory versus Newton, but the appraisal did 
not turn on these opinions, and there was no need to imagine having 
a prior in all the other possible hypotheses (Le., the so-called catchall). 
There was a need, however, for tools to discriminate signals from noise, 
rule out artifacts, distinguish backgrounds, and so on. The relevant ar­
gument turned on a rather esoteric piece of data analysis showing 
(holdouts notwithstanding) that the mirror distortion was implicated. 
The conglomeration of methods and models from standard error statis­
tics-even at that early stage of their development-provided the 
needed tools along with the repertoire of errors gleaned from other 
astronomical experiments. 

The above examples instantiate two distinct strategies by which 
the present approach grapples with Duhemian problems: The first is to 
criticize and bar attempts to explain away anomalies (e.g., as due to 
the Newton-saving factors) on the grounds that they fail to pass severe 
tests (or, even more strongly, that their denials pass severe tests). The 
second is to show that an anomaly may be legitimately blamed on an 
auxiliary factor F (e.g., a mirror distortion) by showing that "F is re­
sponsible" passes a severe test. Clearly, we do not always have a war­
ranted way to attribute blame-we can not always satisfy the require­
ment of the second strategy. But this requirement directs progress with 
Duhemian problems-and it explains the lengths to which scientists 
work to test auxiliaries. 

Allocating blame was possible in the eclipse experiments because 
enough was known to distinguish the patterns of different auxiliaries. 
Just as in our day-to-day repertoire of errors (chapter 1), so it is in 
science. A "too much salt" error in rice is distinguishable from a "too 
much water" error, and a mirror distortion is distinguishable from a 
deflection effect. Duhem's problem is built on the supposition that an 
error or anomaly is silent about its source-and indeed it is silent when 
approached by the white gloves of logical analysis. But in the hands of 
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shrewd inquisitors of error it may be made to speak volumes, and often 
a whisper is enough to distinguish its source from the others. 

13.4 THE GROWTH OF EXPERIMENTAL KNOWLEDGE 

The error-statistical philosophy of experiment locates scientific prog­
ress in the growth of experimental knowledge, and holds that to un­
derstand the growth of experimental knowledge, one should look to 

tests of local hypotheses (normal experimental testing). The aim of 
these tests is not to update the probability assignment in hypotheses, 
but to build, correct, and fill out a model by means of severe tests. 
What justifies error statistics is that its methods have properties that 
enable it to provide such tools. These methods work because (1) we 
are often able to put questions about errors-regularities and irregu­
larities-in terms of questions that can be answered by reaL or simu­
lated, random experiments, and (2) we are, at least some of the time, 
able to carry out real random experiments (in the sense of chapter 5), 
check if we have done so in particular cases, and make reliable infer­
ences even where assumptions are violated. (1) and (2) are the bases 
for severe tests and, by means of these, the growth of experimental 
knowledge. To substantiate these points requires weaving together the 
pieces of the preceding twelve chapters. Here are a few threads. 

Learning What It Would Be Like 

In a very real sense, applying statistical methods may be seen as 
continuing experimentation by other means. 5 Where data are inexact, 
noisy, and incomplete, where extraneous factors are uncontrolled or 
physically uncontrollable, and where these facts pose the most serious 
threats to our ability to find our way around, we often enough have 
learned from our mistakes. From our first successes in our day-to-day 
learning from mistakes, the challenge, the fun, of outwitting and out­
smarting drives us to find ways to learn what it would be like to con­
troL manipulate, and change in situations where we cannot literally 
controL manipulate, or change. The conglomeration of systematic tools de­
signed for these ends I call statistics. 

Statistical models inform us about what would be expected under 
various assumptions about aspects of the underlying experimental pro­
cess. Whether it is by pointing to a statistical calculation, a canonical 

5. I am mimicking a claim by van Fraassen to the effect that an important aim 
of "experimentation is the continuation of theory construction by other means" (van Fraas­
sen 1980, 77). 
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exemplar, a pictorial display, or a computer simulation, the "what 
would it be like" question is answered by means of an experimental 
distribution: a statement of the relative frequency with which certain 
results would occur in an actual or hypothetical sequence of experi­
ments. 

Such answers are not enough by themselves: they are informative 
because of their links to the statistical tools of analysis (tests and esti­
mation methods) that make use of them. This information is used in a 
variety of ways, as we have seen. I will consider two types: 

1. We can use this information to ask what it would be like if vari­
ous different hypotheses about the underlying experimental process 
were incorrect or misdescriptions of a specific experimental process. It 
teaches us what it would be like were it a mistake to suppose that a 
given effect were nonsystematic or due to chance, what it would be 
like were it a mistake to attribute the effect to a given factor, what it 
would be like were it a mistake to hold that a given quantity or param­
eter had a certain value, and what it would be like were it a mistake 
to suppose that experimental assumptions are satisfactorily met. Statis­
tical tests can then be designed to magnify the differences between 
what it would be like under various hypotheses. These "formal" mis­
takes, as it were, are used to probe real mistakes. 

A central role of statistical tests is to demonstrate how results that 
appear to count against the presence of an error can actually be pro­
duced fairly often where the error is committed. A test can be designed 
so that with high probability it would yield a result that it could show 
to be "reasonably typical of a process where the error is committed," if 
in fact it is being committed-but not otherwise. Accordingly, if the 
result is one that the test finds practically incapable of arising under 
the assumption of error, the result is taken as indicating that the error 
is absent. This "indication" generally needs to be bolstered by other 
tests (with the same or different data) before a strong argument from 
error is sustained. 

After learning enough about certain types of mistakes and the 
ways of making them show up, it can be argued that finding no indica­
tion of error despite the battery of deliberate probing with several, 
well-l;lnderstood methods, is excellent grounds for taking the error to 
be absent. To suppose otherwise is itself to adopt a highly unreliable 
method. In the language of chapter 2, this would violate the canons of 
good normal science. 

Appealing to experimental distributions also allows inverting the 
question of what would it be like (under various hypotheses about the 
experimental process). Starting with an experimental result one may 
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ask: What hypotheses would be indicated as having passed a severe 
test with this result? Which hypotheses would pass with only very low 
degrees of severity? (This is essentially what goes on in an estimation 
problem.) Alternately, this inverted question asks: What arguments 
from error (if any) can be substantiated with this experimental result? 
And which are very poorly substantiated? 

2. Information on "what it would be like" serves a second set of 
functions. These pertain to checking experimental assumptions. Where 
we cannot literally control extraneous factors we are often able to esti­
mate the likely extent to which such factors could influence results in 
the experiment at hand. We can then "subtract them out" in order to 
discern the effects of nonextraneous factors of interest. The standard 
statistical significance test, for example, lets us subtract out the effects 
of "sampling error" to discern systematic effects. We can utilize the 
same canonical argument to model lots of effects we would like to 
subtract out. Recall how in discussing Galison's example of neutral cur­
rents (chapter 3), researchers could subtract out approximately the ef­
fect of escaping muons. Where manipulation and control are present, 
we can say "this is what it is like when we vary this factor." Where 
they are absent, we may still be able to ascertain what it would be like 
statistically if we were to vary this factor. 

Discriminating backgrounds, signal from noise, real effects from 
artifact, is the cornerstone of experimental knowledge. Beginning with 
canonical examples-given either in a statistical model (e.g., the Bino­
mial with p = .5) or by way of an exemplary case (e.g., the lady tasting 
tea)-scientists have been able to arrive at spin-off strategies for ac­
complishing these ends in diverse fields. These tools work because they 
employ assumptions that can be checked independently and need only 
to be approximately satisfied. The methods are robust enough that vio­
lating assumptions may weaken but do not destroy the validity of in­
ferences, and the trouble such violations cause is itself often detectable 
and correctable. Finally, even if we fail to satisfy assumptions and even 
if our methods are not sufficiently robust, there is a high probability 
that this will be discovered in subsequent tests. 

In sum, standard statistical models afford very effective tools for 
approximating the experimental distributions needed to convey "what 
it would be like" under varying hypotheses about the process generat­
ing the experimental data, and the error probabilistic properties of 
these tools enable this information to substantiate arguments from er­
ror. One need not look any deeper to justify their use. Adherence to 
misconceptions about what a theory of statistics should do to provide 
a philosophically adequate account of inference, supposing, in particu-
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lar, that it should provide a quantitative measure of the relationship 
between evidence and hypotheses, has let this interesting and power­
ful role of statistical ideas go unappreciated. 

Performing Real Random Experiments 

If a hypothesized error is not detected by a procedure with an over­
whelmingly high chance of detecting it, then there are grounds for the 
claim that the error is absent. We can affirm something positive, that 
the particular error is absent (or is no greater than a certain amount). 
What justifies affirming something positive, it is important to see, is not 
only that the past tests had certain properties-that they were highly 
probative and yet failed to detect a given error. It is also the fact that 
the claim that is inferred is an experimental claim-it asserts what 
would be expected to occur in other trials where given experimental 
assumptions are approximately satisfied. It matters not whether any 
other experiments will actually be carried out; it matters only that the 
inferred claim be understood as an experimental claim. 

Of course I may be wrong about a hypothesis even if it has passed 
severe tests, but if I am I have several effective procedures for finding 
this out: (a) I will find that I am unable to substantiate the assumptions 
of a subsequent experiment, or (b) with high probability I will get dis­
cordant results in a subsequent experiment. This hinges on my ability 
to discern whether experimental assumptions are met sufficiently to 
distinguish (a) from (b). 

This discernment is a product of being able to run experiments 
such that the results may be approximated by certain statistical models. 
These "real random experiments" are found in nature and in games 
of chance (see the discussion of Neyman in chapter 5). We canonize 
these, as it were, in standard mechanisms: mechanisms known to gen­
erate results that are as close to what the statistical model predicts 
about as often as it stipulates. We extend our ability to generate or 
simulate such "real random experiments" by exploiting a series of stan­
dard tests that would with high probability tell us if we are failing. 
Because there are only a few assumptions that need to be checked on 
any given application of a statistical procedure, there are only a hand­
ful of ways that we can fail to satisfy their assumptions. 

The goal of arriving at reliable means of checking and, often 
enough, satisfying experimental assumptions gives rise to distinct 
methodological strategies at the level of experimental design and data 
generation. This goal is one more reason for having standard mecha­
nisms, for example, a coin-tossing mechanism as in the canonical 
Binomial experiment. By varying a known Binomial process so as to 
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violate one of the assumptions deliberately (e.g., cause it to violate 
independence) we can arrive at tests that are very good at detecting 
the violation just when it should. Observing the frequencies of out­
comes to be in conflict with the deductively derived statistical distribu­
tion would be one way of detecting that for some reason we were un­
able to get the experiment to accord with the standard Binomial. We 
could then subtract out its influence. 

It should be kept in mind that for a statistical model to approximate 
an actual experimental procedure, the procedure need not exemplify 
all the properties of the statistical model. There only needs to be close­
ness with respect to a rather coarse property: the relative frequencies 
of certain outcomes calculated from the model need to be close to the 
actual relative frequencies-in the sense defined by statistical tests. 
Appealing to the central limit theorem allows going even further. It 
assures us that, regardless of the underlying distribution, the sample 
mean is approximately normally distributed, even where randomness 
is violated. Using the experimental procedure and deliberately altering 
a known value of mean fL, it can be checked that the procedure detects 
these discrepancies in just the way that is expected. This shows us that 
our instrument is working, that the experimental method is good 
enough to distinguish between parameter values where these are un­
known. Once we have a handful of such canonical procedures, we can 
rely on them to build an increasingly probative and varied arsenal to 
simulate and detect departures from those procedures. 

None of this would satisfactorily explain experimental knowledge 
were it not also the case that we are rather good at asking questions of 
interest in terms of questions about experiments that we can actually 
run or simulate. We may start with a quantity or parameter-it may 
be part of a theory or not-and reign it in, as it were, so that it is a 
parameter of an experimental model. Our statistical inferences relate 
to the experimental model, true, but at the same time they teach about 
the substantive quantity of interest. 

Typically, we introduce statistical features into experiments 
(through data generation, or manipulations "on paper") because we 
are aware that this will create a desired link between an experimental 
parameter and a substantive quantity or question. But we need not 
suppose that this introduction of statistics results from a conscious ef­
fort to appeal to this explanation of successful learning from sample 
data. It is sufficient that certain data generation procedures in fact es­
tablish a relationship between sample data and popUlations, and that 
this permits reliable inferences from the former to the latter. Triggering 
this relationship, in some cases, is an accidental byproduct of day-to-
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464 CHAPTER THIRTEEN 

day research strategies. What the statistical methodologist can do is 
make these triggering mechanisms explicit. In so doing we would un­
derstand at last how by carrying out certain experimental procedures, 
statistical models are approximated sufficiently so that-whether one 
knows it or not-the limit theorems of statistics are working their 
magic. 

By splitting up the inquiry appropriately, the possible irregularities 
are constrained to be related to known patterns of variability. By learn­
ing about these, we learn about experimental phenomena-about 
what would be expected to happen with certain frequencies whenever 
certain experimental conditions are fulfilled. This is the basis of experi­
mental knowledge. Such experimental knowledge resembles what 
Peirce meant by the "experimental purport" of hypotheses. If there is 
experimental knowledge to be had of a phenomenon, then it will be 
detectable by means of these methods. The ability to make successful 
inductions, our success in obtaining experimental knowledge, is ex­
plained by the error-statistical properties of our methods. We make 
progress in experimental knowledge-experimental knowledge 
grows-because we have methods that are manifestly adequate for 
learning from errors. 
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Abrams, S., xvi 
Achinstein, P., 60n. 1, 249 
Ackermann, R. 58, 62n. 2 
actual significance level. 303-5, 310, 315-

17,343,344,350-52 
after-trial analysis, 4, 16, 18, 129, 137, 

144, 149, 205, 236, 448, 452 
alternative hypothesis objection (see also 

severe tests; severity), 174-77, 187-
89,196-200,207,209,212 

Alzheimer's disease, 55, 190, 266-68; and 
ApoE, 267, 268n. 11; and beta amy­
loid, 55, 267n 11; and Dr. Allen D. 
Roses, 266-68 

American Philosophical Association (sym­
posium on Hempel), 112 

ampliative inference, 9, 337,435,440, 
443 

amplifying error patterns, 6 
analgesics, 344, 375 
Andersen, B., 344 
Anderson, A., 289-90; shadow effect, 

287, 289-90 
anomaly, 4, 25,31. 43,50-51,55; assign­

ment of blame for (see also Duhem's 
problem), 25, 107, 114, 147-48; un­
evadable, 51 

anomalies, quantitative, 42-44, 48, 51 
Anscombe, E, 343n. 16 
argument from coincidence, 66-67,216-

17, 237, 454 
argument from error (see also argument 

from coincidence; canonical; learning 
from error; severity): basic pattern of: 
64,404,445; and an argument from 
coincidence, 66; and NP tests, 377, 
411; and passing a severe test, 7, 157, 
184-86, 197,231. 234-35, 445, 460; 
and the significance question, 95, 197; 
as the aim of methodological rules, 
19, 452n. 3; informal side of. 271. 448 

argument from intentions, 346-48, 356n. 
30, 363 

481 

Armitage, P., 341-45, 346n. 18, 349-57, 
430 

Armitage's example, 351-57 
artifacts: distinguishing from real effects, 

xiii, 63, 66, 93, 94, 98, 122, 153, 162, 
190-91,216-17,315,457,458,461; 
ruling out 68, 110,458 

astrology, 32-35,40,49 
Avirov, M., xvi 
Avogadro's number, 27, 216-17, 222-23, 

231-32,234,235,248 

Baccus, E, 76n. 14 
Bailey, D., 154n. 10 
Barnard, G. A., xv, 200, 282n. 18, 

339,341,346, 381n.8, 385, 393n. 
18 

Barnett. v., 359 
Bartlett, M. S., 88-89, 341 
Bayes, T., 112 
Bayes factor, 116n. 7 
Bayesian (see also Bayesian Way): account 

of acceptance of hypotheses, 87, 331n. 
8; catchall factor, 109, 116-19, 148, 
187-88, 190,242, 324-25, 333, 340, 
458; coherence, 76, 83, 86, 339, 340, 
346, 357, 359, 363; conception of in­
ductive inference, x, 99, 108, 321. 
359; conditionalist, 75, 355-57, 391; 
convergence results, 84, 114; decision 
theory, 69n. 6, 87, 115, 119, 374; de­
grees of belief (see also Bayesian, sub­
jective), 10,79, 83, 99, 105, 107-9, 
161,242,332,409; Dutch Book argu­
ments, 76; magic. 350-51; "objectiv­
ism," 406; objectivists, 72n. 8, 335, 
358; personalist, 105, 119, 126, 187; 
principles (see also likelihood principle; 
Bayesian v. error probability prin­
ciples), 125,260, 320, 363; ratio of 
support (BR), 324, 327-30, 333; recon­
structions of scientific episodes, 68, 
90, 100, 106-9, 114, 147, 328, 331, 
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Bayesian (continued) 
335,442; "robust," 359; rule for sup­
port, 322-30, 333, 336; subjective (see 
also Bayesian personalist), 71-77, 82-
83, 85, 88-89, 103, 112-17, 148, 333, 
336, 362,405-6; tempered and/or 
fallen, xiii, 71, 116, 119, 126, 187 

Bayesian v. error probability principles 
(see also likelihood principle), 125n. 
15,320-21, 329, 331n. 8,337-38, 
360,390-92,431 

Bayesian Way (see also Bayesian), x-xiii, 
57, 69-75, 84-91, 177, 201, 403n. 25, 
414,442; and Duhem's problem, 
102-9, 147-48,456-57; as distinct 
from non-Bayesian (see also Bayesian 
v. error probability principles) xii, 68n. 
5,73,82,85-86,91, 100, 125, 161, 
189,195,256,318,443; and Salmon's 
comparative approach, 112-19, 
123-25; and the novelty requirement, 
260,274,297,321-32; and the old­
evidence problem, 332-37; and op­
tional stopping (see optional stopping); 
Bayes's theorem, use in (see also Bayes­
ian reconstructions of scientific epi­
sodes; posterior probabilities; prior 
probabilities), 74-82, 90, 99, 100, 103, 
111-19, 177n. 1, 320, 323n. 2,334, 
340, 345, 360, 391n. 17, 442, 457; fre­
quentist prior, 120; in philosophy of 
science, 19, 59, 68-70, 87, 335; in sci­
ence, 82; posterior probabilities, 77, 
79, 81, 89, 99, 108, 148, 352, 354,· 
355,442; prior probabilities, 73, 83, 
84n. 19, 87, 106, 123, 125-26, 177, 
187, 195, 201, 206, 260, 291, 325, 
330-33,335,338,352,354,374,406 

Beatty, J., 131 n. 1 
before-trial: guarantees 298; planning 5, 

16, 18, 149,205, 206, 350,447,452; 
procedures 236, 392; questions 129 

behavioral decision philosophy (see also 
Neyman-Pearson tests), 364, 368-80, 
384-86,389-90,411,431,448;and 
tests as automatic decision routines, 
349n. 20, 379, 385-86; criticisms of, 
362-65, 374; long-run justification in 
378-80,383,389,406,410 

Berger, J., 321, 354-57 

Bernoulli trials, 151 n. 6, 342 
Bernoulli, J., 169, 438 
bias, 359,436 
Binomial: model of experiment, 150-59, 

162, 165-67, 169-70, 179n. 2, 192-
94,199,205-6, 304n.4, 340, 365, 
401-2,439-40,454,461-62; or "pass­
fail" test, 180-81; probability distribu­
tion, 13, 151,365,425,427-29,463; 
process, 167, 180; statistic, 159, 180 

birth control pills, 141, 147-48, 158, 197, 
206, 300, 385, 408; and blood dotting 
disorders, 141-42, 144, 146, 148, 161, 
407 

Birnbaum, A., 356, 372, 377-78, 391n. 
17; confidence concept, 377n. 4 

Bloor, D., 176 
Born, Max, 128 
Braithwaite, R., 413n. 1, 415n. 3 
Brew, C., xvi 
Bross, 1., 86, 375-76 
Brownian motion,S, 40n. 11, 51, 87, 91, 

196,206,214-33,238,240-49,258, 
315,333,376,447,450-51,455; 
Brown, R., discovery of 214,217-18, 
240 

Brush, S., 219-20, 248n. 23, 249n. 24, 
254,257n. 7, 288 

bull's-eye model, 225-27, 450 
Burian, R., xv 

Campbell, R., 252n. 3, 331 
canonical: arguments from error, xiv, 

SIn. 17, 62, 185, 289; assumptions, 
167; Binomial experiment, 440, 462; 
errors, 18, 129, 150, 172, 191, 196, 
220,447,449,456; exemplar, 39,41, 
450n. 2, 453, 459; experimental argu­
ments, 18, 64-65, 233, 406, 453, 461; 
experimental questions, 140, 145-46, 
150; experiments, 165, 167, 173, 186, 
196; hypotheses, 433; inquiries into er­
rors (see also mistakes: four types), xi, 
95,132,141, 150, 161, 299, 436n. 11, 
447 

canonical models, 40n. 11, 140,287, 317, 
364,451; and Kuhnian paradigms, 
37-39,51-52,56; and Peircean error 
correction, 436; and the task of meta­
methodology 452-55; in Perrin's ex-
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periments, 214-15, 226, 230, 233, 
242-43, 245; of data, 135-36, 139-40, 
157; provided by NP tests, 377, 406, 
428; specifying, 172 

Carnap, R., ix, 40n. 13,73-74, 126; and 
logical probability, 73, 82, 126 

Carnapian Bayesians, 73-74 
Carnol's principle (see also second law of 

thermodynamics),246-48 
Cartwright, N., 58,216,244 
catchall hypothesis (see also Bayesian 

catchall factor), 116 
Cato, M., xvi 
central limit theorem (CLT), 168, 170-72, 

193n. 11,206,397,439,464 
ceteris paribus, clause, 2, 15, 138,239; 

conditions, 132, 139, 140, 144, 147, 
206,239,243 

Chandrasekhar, S., 229n. 14, 245n. 22 
Chatfield, George, xv, xvi 
Chatfield, Isaac, xvi 
Chebychev's inequality, 169n. 17 
checking assumptions: of data models, 

13, 136-38, 160-61, 283n. 21, 364, 
444; of experiment, 156-57,205, 
235-36,238-39,295,435,447, 
461-62 

chi-squared: test, 99, 228n. 13; distribu­
tion, 228 

Clark, P., 248n. 23 
classical thermodynamics, 51, 215, 217, 

246-47 
clinical trials, 375-76 
Cochran, W., 167n. 16 
cognitive science, 51n. 17 
coin-tossing experiments, 12,78, 150-51, 

164-65,167,201,365,462 
communications networks, 375-76 
computed (or calculated) significance 

level, 303, 305, 311, 317, 328, 338-
39, 341, 343-44 

computer-aided heuristic searches, 306-8 
conditional probability, 80, 81 
conditionalist (see Bayesian conditionalist) 
confidence interval estimation, 135,272-

74, 304, 354-57, 362, 395, 414, 426; 
confidence levels in, 379, 409n. 29; 
upper confidence bound, 409n. 29 

controlled experiments, 453 
conventions, 2, 19,40, 51n. 18 

conversion, theory change as (see also 
Kuhn),22,46, 50, 53 

corroboration, 9-10, 14,41 
Cottingham, E. T., 278 
counterfactual degrees of belief, 334-35 
Cox, D. R., 341, 342 
Cramer, H., 158n. 14, 171n. 21 
critical discourse, 22-24, 31-32, 34-35, 

41, 45, 113; unwarranted, 35, 47-49 
Crommelin, A., 286, 287n. 25, 291 
crucial experiments, 214, 217, 239 
crud factor, 316n.9 
curve-fitting problem, 200 

da Vinci, Leonardo, 100-101, 274 
Dancer, J. B., 218 
Darden, 1., 51 n. 17 
data analysis, 92, 136, 156,235 
data generation, 132, 138, 140, 144, 235, 

238-39,243,444,463 
Davidson, C., 133, 136-37, 279, 285, 

287n.25 
decision theory, 87n. 21 
deductive logic, 85, 337,415,437 
de Finetti, B., 71, 319, 362, 378n. 5 
deflection of light, 87, 132-34, 136, 145, 

188-90,251,264,279,280,282-83, 
286-89 

DeGroot, M. H., 352n. 23 
demarcating scientific inquiry, 36 
dense bodies, 66, 121-22, 190,237, 315, 

454 
Descartes, R., 252n. 2 
difference in proportions, 142, 328, 384-

85, 396 
displacement distribution, 219, 222-24, 

229-31 
distance measure (see also statistical sig­

nificance level), 134, 143, 158, 158n. 
14,160, 162-64,172,179n.2,228, 
233,300,366, 390n. 15,406 

distribution-free methods, 157, 161 
Dorling, J., 87, 103-6, 108, 1l0, 147, 

335; and his homework problem 
104-7, 111 

double-blind techniques, 18, 149 
double-counting of data, 257, 259, 285, 

306, 327 
"due to chance," 154, 173, 228, 299, 300, 

344,429-30,446,454 
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Duhem, P., 102, 103, 107, 110 
Duhem's problem, 2, 34,70, 102-4, 106-

11, 14~ 335, 36~456-58 
Dyson, E. W., 133, 136-37,279,285, 

287n.25,291 

Earman, J., xiv, 84,107, ).15,119,187-
91,199, 204n.18, 285, 292n.28, 334, 
336n. 11,451 

eclipse experiments (1919). 42, 91. 110, 
132, 137, 141. 145, 188, 189, 204n. 
18,206,264,278,292,295,451, 
455, 458; mirror distortion, 148,458; 
Principe, 278, 282-84; Sobra!. 132, 
133, 135, 137, 148,278,282-86,289, 
458 

eclipse plates, 136-37, 148 
Eddington, A., 110, 133, 135-37, 148, 

278-80,282,284-87,289,292,455, 
458 

Edwards, A. W. E, 75, 319, 339-40, 342, 
347, 350, 358,407 

Efron, B., 100 
Einstein, A., 110, 134, 137,214,218, 

220-21,224,232,233,236,245n.22, 
247,251,264,282,284,334; general 
theory of relativity (GTR), 110, 188-
90,264,284,292,458 

"Einstein effect" (see also eclipse experi­
ments), 279, 286n. 23, 287, 289 

Einstein's law of gravitation, 132-33, 145, 
188,278-79,288,291-92,334,451 

Einstein-Smoluchowski (E-S) theory, 
215,218-22,229-31,235,238,240, 
247, 258, 333 

empirically equivalent hypotheses, 203-4 
epistemology of experiment, 7, 18,59,63-

64,67-68,71,144,145,150,253,444 
error probabilities (see also error statistics, 

severity, statistical significance level), 
72, 73n. 9, 89, 122, 124n. 14, 227, 
320; after-trial function of. 392-93; al­
tered by "hunting," 300-304; altered 
by stopping rules (see also stopping 
rules), 342, 347-52, 363; and method­
ological principles, 337-38; and Peir­
cean induction, 413-14, 424-26, 438; 
and postdesignation, 297-98, 305, 
429; and severity, 242, 331; as central 
to error statistics, 365,442,447-48; 

before-trial function of. 392, 430; 
grounds for specifying, 406-8, 448; in 
contrast to evidential-relation mea­
sures (see also Bayesian v. error proba­
bility principles; likelihood principle), 
99, 256n. 5, 320, 361-63; in "pass­
fail" tests, 181; in the case of the lady 
tasting tea, 159-60; in one-sided test 
Y+, 397; of type I and type II errors, 
367, 372-74 

error probability principles (EPP), 297, 
314,320 

error probability statisticians (see error sta-
tistics) 

error probe, 183, 432, 437 
error repertoire,S, 18, 110,452,458 
error statistical philosophy of science (see 

also error statistics), 442; a naturalistic 
metamethodology in, 19, 148-50, 
452; a role for history in, 455-56; and 
injecting statistical considerations, 
449-50; three tasks for, 447-49; view 
of experiment in, 7; view of statistics 
in, 459 

error statistics (see also error probabilities; 
error statistical philosophy of science; 
Neyman-Pearson tests; severity), xi­
xiv, 16,58-59,89, 415n. 3; and Du­
hem's problem (see also Duhem's prob­
lem), 108-10,456-58; and indicating 
hypotheses, 186, 263, 398, 404n. 26, 
408,409,411, 445n. 1,460; and Peir­
cean error correction (see also Peirce), 
412-15,435; and the relevance of out­
comes other than the one observed, 
320-329, 357-58; and the relevance 
of stopping rules, 337-59; and the 
Rule of Acceptance (RA), 395,404, 
406-8, 448; and the Rule of Rejection 
(RR), 395, 398,400,403,406, 448; ap­
plied to large-scale theories, 191,451; 
Bayesian criticisms of. 85-86, 362-64; 
bridge with Salmon, 115; (experiment­
er's) tool kit in, xii. 99,136,167,315, 
436, 456n. 4; Giere's use of. 268; in 
contrast to Bayesian model (see also 
Bayesian Way; Bayesian v. error proba­
bility principles), 99-100, 118, 178, 
332, 388; in scientific reasoning, 91; 
telling the truth with, 407 
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ESP, 261, 339, 346 
estimating effects of backgrounds, 5, 63, 

253 
estimation (see confidence interval esti­

mation) 
Euclid,437 
evidential-relationship (E-R) approach, 

58,72,74,337,363,409,415,443, 
462; E-R measure, xii, 73, 257, 363, 
403n. 24, 433, 446; E-R vs. testing ac­
counts, 72-73, 172, 179n. 3, 254, 256, 
337,415n.3 

Exner, F. M., 218 
experiment, 7: life of its own, 12, 61, 128; 

done on paper (see manipulations on 
paper) 

experimental arguments, 67, 98, 217, 
226,238,253,406,453,455,456 

experimental assumptions, satisfying (see 
also checking assumptions), 156,230, 
242 

experimental control, 15, 140,218,240 
experimental design, 5, 68, 132, 135, 

138-40, 144, 145, 147, 156, 185, 
205-6,218,235,243,350,431,444 

experimental distributions, 10, 12, 98, 
134, 143, 152, 155, 158, 184,270, 
395, 410, 449, 460; of a Bayes ratio, 
329 

experimental effects, 11, 43, 242 
experimental hypotheses, 17, 253, 443 
experimental knowledge, 10-13,27, 63, 

110, 186,411,427,445,451,461, 
463-64; and normal science, 31, 36, 
45; and Peircean induction, 417, 421, 
441; and progress, 62, 250, 444, 459; 
growth of, 17, 19, 56,413,421,441, 
459; in Brownian motion experi­
ments, 215, 217, 224, 229, 233, 240, 
242-43, 249-50 

experimental learning, 184, 190, 200, 
240,433 

experimental testing models (see also hier­
archy of models of experimental in­
quiry), 37-38,48, 155, 157; and un­
derdetermination, 190; in eclipse tests, 
283; justifying assumptions of (see 
checking assumptions); shared, 53 

experimental test statistic, 142, 155, 158, 
206,448 

experimental testing, 27, 157,240; con­
text, 241, 248, 298 

experimental tool kits (see also error statis­
tics), 136, 186, 206, 226, 240, 245-46, 
317n.9,436,437 

exploratory data analysis, 447 

"false negatives," 149 
falsificationism (see also Popper, K.), 174 
falsifying hypothesis, 14-15,25, 147 
falsifying statistical claims, 2, 16 
Faraday, M., 240 
Feller, W., 171n. 21, 343n. 16 
Fermat's last theorem, 437 
Fetzer, J. H., 362 
Feyerabend, P., 175 
file drawer problem, 313n. 8 
Finch, P. D., 173 
Fisher, R. A., 10, 57, 68, 71, 76-77, 79, 

82,92, 109, 122, 153, 154n.lO, 
155n.12, 157n.13, 243, 339, 378n.5, 
379-82, 386n.lO, 411, 435 

Fisherian tests, 16, 73, 351, 381 
fit (see also distance measure), 134, 143, 

162, 179n.2, 360 
fixed sample size plan, 341-42 
fluctuation phenomena, 245-46 
Folks, L., 89n. 22, 92, 158n. 14, 390n. 15, 

409n.29 
forward-looking methods, 59, 68, III, 

126 
fractional centrifuging, 236, 376 
Franklin, A., 58,61, 68, 87, 100, 331n. 8 
frequentist statistics, 77, 89n. 23, 164, 

172,343 
frequentists, 10,77, 79, 116, 119-20, 

122, 126, 195, 356-58 
Fresnel's (wave) theory, 262, 268 
Freudian theory, 299 
Fuertes-De La Haba, A., 141, 143, 197, 

198n. 14 

Gaito, J., 403n. 24 
Galison, P., 58, 60-63, 65, 68, 92-94, 96-

99,158,162,454,461 
gamboge, 218, 224, 226, 229, 231, 234, 

236-37,449 
games of chance, 51, 80, 91, 150, 165, 

173 
Garber, D., 336 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:17:32.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



486 INDEX 

Gardner, M., 248n. 23, 252n. 3, 257 
Gaussian distribution (see Normal distri­

bution) 
gellerized hypothesis tests (see also use­

constructed hypotheses), 201-4, 327n. 
5; gellerization, 267, 326-27, 394 

Giere, R., xiv, 58,62, 89-91, 110, l31n. 
1,168,254,257,261-65,267-69, 
274, 304-6, 316, 322, 325-26, 390n. 
14 

Gilinsky, N., xv 
Glymour, C., xiv, xv, 73, 272, 285, 294, 

297,306-14,317,322,333,334,336; 
bootstrapping, 107n. 2 

Good, I. J., xv, 71, 82, 201n. 17, 336, 
341, 343n. 16, 350-51, 360,402, 
403n.25,405 

goodness of fit tests, 99, l31, l37, 146, 
160, 180 

Gooding, D., 60n. 1 
Goodman, N., 176 
Gouy, L., 218, 241, 246, 247 
Greenspan, E., 316 
Grene, M., xv 
Grue,200, 212n.23 
Grtinbaum, A., xiv, 8n. 1,209-10 
GSSK (Glymour, Scheines, Spirtes, and 

Kelly 1987), 272, 294, 297, 306-14, 
317 

Hacking, 1., xiii, xv, 12,44, 58,61-62,65, 
66, 68n. 5, 121, 192,200,216,237, 
315, 339n. 12, 348, 362, 390, 392n. 
18,413n. 1,415n. 3,454 

Hannaway, 0., 60n. 1 
Hardcastle, G., xv 
Hardcastle, V., xv 
Harman, G., 216 
Hempel, c., 112-l3, 255 
Hendricks, William, xv 
Henkel, R., 299, 302 
Hesse, M., 176 
heuristic novelty (see use novelty) 
hierarchy (or series) of models of experi-

mental inquiry, xi, xii, 11, 16, 128-32, 
140, 144, 150, 189,205,253,435, 
443-44,447; and standard statistical 
inference 130; as a communications 
network 376; in eclipse tests 283; in 

Brownian motion experiments 214, 
218,222,238, 239n.20 

--, data models, 128-30, l32-33, 
135-40, 145-47,152-56,411,447;in 
Brownian motion experiments 222-
29, 241-43; in testing birth control 
pills 143 

---, experimental models, 128-30, 
l33-36, 145-48, 375-76, 405; in 
Brownian motion experiments 222-
24,228-9,241-43 

---, primary models (see also primary 
hypothesis or question), 128-32, 140, 
147,443,447; in Brownian motion ex­
periments 219,221-23,241-43,249 

Hintikka, J., 74, 
historicist approach, 102,257 
Hodges, J., 165-66 
Holm, P., 344 
honest hunters, 311-l3, 315 
Horwich,~, 334n. 10 
Howson, C., 71, 74, 75, 85-87, 99, 103, 

108, 109,252n. 3,260,274, 322-27, 
330, 331, 333-34, 347, 362, 369-70, 
402-3 

Hoyningen-Huene, P., xv, 33n. 4 
Hull, D., xvi, 41-42, 228 
HumeD., 8 
"hunter" (see also honest hunters), 301-2, 

311-12, 358 
hunting for statistically significant correla­

tions (see also postdesignated tests, 
"hunter"), 294, 297, 299-302, 304-7, 
328, 348; with a shotgun, 300, 312 

HWPF group (Harvard, Wisconsin, Penn­
sylvania, and Fermilab), 93-98, 163 

hypotheses constructed after-the-fact (see 
use-constructed hypotheses) 

hypothetical population (of sample 
means),449 

hypothetical series of experiments, 94, 
97,142,163-64,171,207,233,460 

hypothetico-deductive approach, 28, 102, 
107, 1l3, 126, 174, 420 

identically distributed, 171 
independence, 97n.25, 167, 171,435n. 

11,463 
indicating hypotheses (see error statistics, 

severe tests) 
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induction, 422, 431, 433, 435, 437, 438, 
440; problem of (see also uniformity of 
nature) 8 

inductive behavior (see also behavioral 
decision philosophy), 368, 370-71, 
378n. 5, 382 

inductive intuition, 73-74 
inductive logic, xi, 1, 60, 74, 85 
infant training, 299, 328, 329, 348 

Jaynes, E. T., 358 
Jeffrey, R., 73n.lO, 86n.20, 336 
Jeffreys-Good-Lindley Paradox, 402 
Jeffreys, H., 287-88, 291-92, 358,402 
Jevons, W. S., 241 
Jones, B., 240n. 21 

Kadane, J., 354n. 27 
Kahneman, D., 90 
Kelly, K., 272, 294, 297, 306-14, 317 
Kempthorne, 0., 89n. 22, 92, 158n. 14, 

320, 390n. 15,409n.29 
Keynes, J. M., 252, 255 
kinetic theory of gases, 214, 215-20, 222-

23,233,245-47,432,434,451 
Kish, 1., 299-302, 311, 316, 328 
Kozlowski, S., xvi 
Kuhn, T. S., ix, 3, 20-56, 57, 60, 62, 85, 

102, 103, 112-17, 126, 177, 191, 277; 
and crisis, 23, 25, 31,42-43,47-48, 
50-51,54; and holism, xi, 20,57,215; 
and incommensurability, 22, 115; and 
normal science (see Kuhnian normal 
science); and paradigms (see also ca­
nonical models), 19, 22-23, 37-38, 
49-50, 215; and revolutionary theory 
change (gestalt switch), 22, 46, 52, 55; 
circularity thesis of, 47-49; demarca­
tion criterion of, 23, 31, 35-6,49,55, 
146, 191; meets Bayes, 112-16 

Kuhnian normal science, xv, 21-27, 30-
32, 57, 114, 186,241,460; constraints 
of 48-49, 52, 54-55; normal science 
as normal testing, 26-42, 57, 146; nor­
mal testing exemplars, 38-41; puzzle­
solving in, 22-35, 39, 40n. 12, 50n. 
16, 53, 55, 191-92 

Kuhn-Popper comparison, 21, 23,32, 
37n.9, 41, 44, 54; rabbit/duck, 24-26, 
45 

Kyburg, H. E. Jr., ix, xiv, 69, 73n. 9, 76n. 
14,82-86,362 

"lady tasting tea," 153-58, 162-64, 192, 
199,206,401,461 

Lakatos, I., xi, 2-4, 12, 15, 16,26, 37n. 9, 
45,57,102-3,175,208,239-40,254; 
hard core, 3; methodology of scientific 
research programmes, 3, 12 

Larson, V., xvi 
Laudan, 1., xi, xv, 19n. 4, 38, 40n. 13, 46, 

149,175-76,252,419-20 
Law of Large Numbers (LLN), 165-71, 

245-46,440,444; Binomial, 169; Bort­
kiewicz, 1. von, 166; empirical law, 
165, 167-68; theoretical (mathemati­
cal) law, 166, 168 

law of likelihood, 339n. 12 
learning from error (see also argument 

from error; canonical; severe tests), 
xii, xiv,!, 4, 7, 13, 16-19, 64-65, 
452; and demarcating scientific in­
quiries, 55; and the justification of 
error statistics, 412-13, 445, 464; in 
Perrin's experiments, 217; the fun of, 
459 

least squares, 286, 435 
LeCam, 1., lOOn. 28, 337, 350, 392 
Lehmann, E., 165-66 
Leibnitz, G. W., 252n. 2 
Lenz, J., 421n. 8 
Leplin, J., 149n. 5 
Levi, I., xv, 73n. 9, 75, 362, 370, 413, 

426-27 
likelihood (see also likelihood principle), 

118,200n. 16,340,342,345,348, 
350, 389, 390, 393n. 18, 394 

likelihood principle (LP) (see also Bayesian 
v. error probability principles), 118n. 
11, 125n. 15,297,319,321,331, 
336-42, 345, 348-51, 354-59, 363, 
390-92,410,431; and stopping rules, 
337, 342n. 15; weak, 339n. 12 

likelihood ratio (see also Bayesian ratio 
of support), 324n. 3, 389, 390, 
392-93 

Lindemann, F. A., 290 
Lindley, D. V., 71, 83, 86, 88, 99, 340-43, 

357-59,402 
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488 INDEX 

Lindman, H., 75, 319, 339-40, 342, 347, 
350, 358 

Lloyd, E., BIn. 1 
Lodge, 0., 290-91; ether modifications 

287,290-91 
logics of confirmation 72-73, 255, 330 
logical empiricism xi, 1, 57, 60, 102, 113-

15, 126, 321 

Mach, E., 246, 249 
Maher, P., 87, 331 
manipulations on paper, 67, 96, 223, 

225-27,239,430,447,450,463 
margin of error, 272-73 
Masterman, M., 37n. 10 
maximally likely alternative hypotheses, 

200-202, 327 
Mayo, D., xvi, 141, 196, 198n. 14,259, 

281,305,363,377n.4,402,404n.26, 
408n.28 

Mayo, Elizabeth, xvi 
Mayo, Louis J., xvi 
mean, arithmetic, 142, 162, 340; of a pop­

ulation, 153n. 8, 168, 170, 172, 282n. 
19, 450; of a sample, 152-53, 167-68, 
172, 282n. 19, 396,449-50, 463; ofa 
sample mean, 171, 441n. 13 

mean-square displacement, 231-32 
Meehl, P. 316n. 9 
Mellor, D. H., 413n. 1 
Mendel, G., 325 
Mercury, orbit, 258, 261, 288, 291, 334 
meta-analysis, 313n. 8 
metamethodology, xiii, 70, 72, 149, 312, 

319,360,442,452 
metastatistical rules (see also error statis­

tics; Neyman-Pearson tests), 196, 395-
96,448 

methodological falsification, 240 
methodological rules, 18, 19, 129, 148-

49,191, 338,444,451-52,454-55 
methodological underdetermination 

(MUD) (see also underdetermination), 
174-77,192,200,203,204,212 

Mill, J. S., 252, 255, 414, 431, 438 
Miller, J., xvi 
Miller, R., 204-5, 336n. 11, 339n. 12 
mistakes: four types (see also artifacts; 

checking assumptions), 18, 150,449, 
453-54,460 

mixed tests, 390 
models of experiment (see hierarchy of 

models) 
modus tollens, 2, 3 
molecular reality (see also Brownian mo­

tion), 216-17, 249 
molecular-kinetic theory, 51, 218, 247, 

248 
molecules (see also Brownian motion), 

215,217,244,247 
Monte Carlo simulations, 96-97, 163-64, 

167-68,230,313-14,430 
Morrison, D., 299, 302 
Moyer, D., 281n. 17,290 
multiple-universe context, 78, 79 
muonless events, 93-98, 162-64 
muons, 93, 454 
Musgrave, A., xv, 8n. 1, 22, 208, 252n. 3, 

254-56,258,260 

Nageli, K., 245-46 
National Endowment for the Humanities, 

xiv, xv 
National Science Foundation, xv 
Nature, 291 
naval shells, armor-piercing, 384-86, 394 
negative results (see statistically insignifi-

cant results) 
neutral currents, 92-99, 162-64, 190, 

430,461 
New Experimentalism, 12, 57-65,67-69, 

72,91, 100, 126, 138, 450n. 2, 456 
Newall, H. E, 287, 290; corona effect 287, 

290 
Newsweek,251 
Newton, I., 104, 137, 261, 279, 283-88, 

290,457 
Newton's law of gravity, 29, 279, 289-90, 

458 
Neyman, J., 10, 76, 79, 82, 124n. 14, 

157n. 13, 165-68, 173,229-30,305, 
356n. 31, 362, 368-74, 376, 378n. 5, 
381n.8, 382, 387-88, 391, 393,414, 
440,462 

Neyman and Pearson (NP) (see also 
Neyman-Pearson tests), x, xi, 77, 109, 
317,350,368-69,380,382,386,388, 
393,407,415,426; argument against 
hunting 300, 307-13; (error) statisti­
cian (see error statistics); methods 16, 
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INDEX 489 

68, 71. 73, 332n. 9, 361-65,413, 
415n. 3,442-43; stance on predesigna­
tion 294-98, 302, 314-18 

Neyman-Pearson (NP) tests (see also error 
probabilities; error statistics; statistical 
significance tests), 159,310-11,362, 
365-68,372,375-76,395-405,413n. 
1. 428; acceptance and rejection re­
gions 366, 374, 385,443; and mixed 
tests 390n. 14; as accept-reject rou­
tines 368, 403; behavioral construal 
(see behavioral decision philosophy); 
Birnbaum's evidential view of. 377; 
"best" test, 367, 396; critical boundary 
of. 366, 379, 382,405; criticisms of. 
388, 396, 399,401. 410; custom­
tailoring of (see also metastatistical 
rules), 395, 399, 400, 404-5, 408, 
448; distance measure in (see also dis­
tance measure), 366; objectivity of (see 
also objectivity), 405-11; one-sided v. 
two-sided, 300n. 2, 395, 396n. 20; 
Pearson's non-behavioral construal of. 
382-95; size of. 367, 379,401; three 
steps in the construction of. 388-94; 
type I error, 159-60,308-9,311,367, 
372-74, 379, 381-82, 396-97, 399, 
406-7,411; type II error, 159,367, 
372,374,381-82,397,400,404,407 

Neyman-Pearson-Wald (NPW) approach, 
378, 380n. 7 

Nickles, T., 274n. 15 
Niiniluoto, I., 420 
noise, 63, 162,215,245,375-76,458, 

461 
Normal approximation, 155n. 12, 171. 

193nn. 11-12,206 
Normal distribution, 39, 171. 193, 220-

23, 225-27, 229-30, 234, 239n. 20, 
242-44,246, 282n. 19, 353n.25, 
355n. 28, 397,427,463; standard, 
172 

normal testing (see Kuhnian normal sci­
ence; error statistics) 

normative, 19, 24, 450n. 2; epistemolo­
gist 320; naturalism (see also, error sta­
tistical philosophy of science), 18 

novelty (see also severity and novelty; 
use-novelty requirement), 252-58, 
330-32; temporaL 210, 256-59, 332, 

335; use (heuristic), 256, 258-64, 271. 
277,292,295, 335-36,423; theoreti­
caL 208, 256 

null (or test) hypothesis, 151. 388; a 
Bayesian posterior assignment to, 352; 
as a "no-effect" hypothesis, 338; as 
strictly false, 311, 448; fixed, 343; in a 
binomial modeL 154, 160, 193,201, 
401,454; in a "try and try again" pro­
cedure, 344-45, 352-53, 355; in 
checking assumptions, 161; in neutral 
currents experiments, 95n. 24, 163; in 
treatment-control experiments, 141-
42; that a correlation is "due to 
chance" (see also due to chance), 300-
301,308,328,446 

Nye, M., 216, 249 

objectivity, 83, 161, 374,405-6,411; and 
observation, 60, 63; in interpreting 
test results (see also meta statistical 
rules), 405-8 

"old evidence problem" (see also Bayesian 
Way), 105, 295, 332, 335-36 

optional stopping (see also stopping rules), 
341-58,401 

Ostwald, w., 246, 249 
overall significance level (see actual sig­

nificance level) 

paint by number, 100-101 
paradigm (see Kuhn) 
paradoxes of confirmation, 212n. 23, 255 
parameter, 12, 142, 151, 152, 231n. 15, 

365 
Parzen, E., 169n. 17, 170n. 19, 222n. 7, 

229n. 14 
Pearson, E. S. (see also Neyman and Pear­

son), 10,57,76-77,79,82,92,294, 
317,341,360,361,364-65, 376-95, 
407,410-11,413,414,431; and his 
heresy, 380 

Pearson and Fisher, 379-82 
Pearson, K., 228n. 13, 364n. 1 
Peirce, C. S. (see also predesignation), xv, 

10, 15,44,77-79,82, 121. 252, 277, 
283,294,298,305,314,412-41,464; 
and error statistics, 413, 424, 430-
431; and economy, 433-34; and quali­
tative induction, 417, 419-20, 422, 
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490 INDEX 

Peirce, C. S. (continued) 
423, 425, 432; and quantitative induc­
tion, 44, 417, 419-20, 422-25, 427; 
and severe testing, 417-20, 422-24, 
430, 432-33, 435, 438; discussion of 
Dr. Lyon Playfair, 429-30; objections 
to subjective probability, 77,414,416; 
self-corrective thesis (SCT), 412-13, 
419-21,424-26,428-33,435-38,441 

Perrin, J. (see also Brownian motion), 5, 
51. 196,214-18,220-49,315,333, 
376,430,449-51,455 

Personalism (see Savage; Bayesians) 
philosophy of experiment (see also error 

statistical philosophy of science), 130, 
131,138,298,361,450 

piecemeal (see also canonical): canonical 
questions 18, 191. 215, 316; inquiries, 
128,150,191,205,214,237,450,464; 
learning from errors, 17; strategy, xi, 
98,213,41 I. 433, 443, 449; tests, 17, 
41. 129 

Pinch, T., 60n. 1 
Pitt, J., xv 
Poincare, J. H., 247 
Poole, C., 409n. 29 
Popper, K., xii, xv, 1-4, 7-17, 19-25, 30n. 

3,31,32,34, 36n. 7, 37n.9,40-42, 
45,47,54,55,57,102,146-47,182n. 
6,207-11,252,263,264,277,284, 
412,418; and demarcation, 23, 32; 
and falsification (corroboration), ix, 2, 
4,7, 13, 14,25, 73, 207, 211, 418; 
and novelty (see also novelty), 264; 
and severity, 24, 25, 206-11, 217; and 
the three decisions, 2, 13, 146; view of 
tests, 4, 25, 28, 45, 46, 52, 207-11 

Popper-Lakatos school. 255-56 
positive results, 398, 407 
postdesignated tests, 297, 301-2, 304-6, 

311-12, 314, 316-17 
power (see also error probabilities; 

Neyman-Pearson tests; severity), 160, 
181n. 5, 182, 196,359,367,382,392, 
402n. 23, 407, 425; and severity, 
397-98 

pragmatism, 416 
Pratt, J. W., 377n. 4 
predesignation, 257, 294-98,306,312, 

314,370,413,429-31,437,451 

primary hypothesis or question (see also hi­
erarchy of models of experimental in­
quiry), 129, 451; addressed by statisti­
cal hypotheses, 134; as distinct from 
experimental assumptions, 148; in the 
eclipse experiments, 137; in experi­
ments on birth-control pills, 141-42; 
may itself be a hypothesis about an er­
ror, 150-51; the falsity of is localized, 
190 

prior probabilities (see Bayesian Way) 
probability (see also Bayesian; error proba­

bilities; relative frequency): distribu­
tions, 121. 231n. 15, 371; frequentist. 
124n. 14, 164,207,248,355, 359;fi­
ducial. 79n. 16; interval valued, 74n. 
12; logical. 73, 207; models, 161, 164, 
168, 173; propensity notion, 89n. 23 

probable errors, 135, 137,232, 282n. 20 
progress' (see also experi,mental knowl-

, edge): in experimental methodology, 
63, 149; of science, 19, 24, 45n. 15, 
62,420,459 

protocol statements, 15 
Putnam, H. 28n. 1 

Quincke, 218 
Quine, W. Y., 175 
Quine and Duhem problem (see Duhem's 

problem) 

Ramsay, W., 218, 241 
random assignment, 157 
random experiment, 185, 370; real 165-

67,173,224,229-30,444,459,462 
random number table, 165, 168 
random sample, 120, 152, 167-68,223-

24,228,242,304,432,437-39,449 
random variable, 155, 160, 167, 185, 

226,365 
random walk, 51. 222n. 7, 229-30, 245, 

450; model. 246 
randomization, 18 
randomized treatment-control studies (see 

treatment-control experiment) 
randomness, 167,295 
realism, 63, 66n. 4, BOn. 1, 186,215 
Redhead, M., 252n. 3, 323, 331 
reference class problem, 120, 172,298 
regression, 278, 281 
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INDEX 491 

Reichenbach, H., ix, 120, 126, 162,438; 
notion of frequentist priors, 126 

relative frequency, 10, 124n. 14, l32, 
151,155,161-67,361, 370; stability 
of, 165-66 

Rescher, N., xiv, 412, 419, 421 
rigged hypotheses, 205 
risk increase, 142-44, 148, 197-98 
Robbins, H. E., 343n. 16 
robustness, 6, 13, l38, 439, 461 
Roelants, H., xv 
Rosenkrantz, R., 72n. 8, 295-97, 319, 

331, 353, 362 
Rosenthal, R., 3l3n. 8, 403n. 24 
rouge et noire, 79-80, 440 
roulette, 80, 150, 165-66 
Rubbia, C., 93 
rule of behavior (see also behavioral deci­

sion philosophy), 368, 370-74 
rule of novelty (RN), 252-55, 260, 292, 

294 

saccharin and bladder cancer, 124 
Salmon, w., ix, xiv, 8n. 1, 73-74, 112-25, 

162,174,188,216, 248n. 23, 249; 
and the comparative Bayesian ap­
proach (see also Bayesian), 116-18 

sample space, 156,224,359,366,388 
sampling distribution (see also experimen­

tal distribution), 143, 152, 359 
Savage, I. R., 75 
Savage, L. J., 71, 75, 76, 82, 86, 89, ll6n. 

5, 125n. 15, 161, 319, 339-42, 345-
47, 350, 352-58; 1959 forum, 342, 
344-45; Personalism, 72, 76, 82, 83 

Schaffer, S., 60n. 1 
Scheffler, I., 46 
Scheines, R., 272, 294, 297,306-14,317 
Schervish, M., 354n. 27 
Schilpp, P. A., 73n. 10 
Schuster, A., 290 
science and technology studies, xiii 
second law of thermodynamics, 51, 217, 

223,240,246-48 
Seidenfeld, T., xv, 72n. 8, 73n. 9, 166, 

327n. 5, 353n.24, 354n.27, 362 
Selvin, H., 302-4, 3ll-l3, 316 
semantic view of theories, 130; vs. re­

ceived view, l31 
sequential tests, 343, 346, 350 

series of models (see hierarchy of models) 
severe error probe, 7, 64, 445 
severe test (see also error statistics; sever­

ity), 177-78, 180-81, 445; afforded by 
piecemeal testing, 17, 41, 190-92; and 
arguments from error, 19, 157, 184-
86,197,237,365,404,443,445,462; 
and Duhem's problem, 108, 458; and 
higher level theories, 191; and indicat­
ing hypotheses, 122, 186,242; and 
novelty (see severity and novelty); and 
normal science, 31, 41, 45, 192; and 
Peircean induction (see Peirce); and 
stringent normal tests, 45,51,54; and 
the alternative hypothesis objection, 
174-75, 177, 192; as contrasted to Pop­
perian severe tests, 7-9, 11, 206-12; 
in Brownian motion experiments, 
215,227-28,230-31,234-35,237-
38, 240, 242, 244, 246, 248; in the 
case of the lady tasting tea, 192-94; in­
formally considered, 64n. 3, 185, 276; 
maximally, 183,203, 2ll, 272; mini­
mally, 182, 201-4, 326 

severity (see also severe tests; severity crite­
rion): and experimental knowledge, 
122, 4ll, 441, 459-60; and metameth­
odology, 452; and quantitative induc­
tion, 44, 425; and the analytical func­
tion of experimental models, l35, 
140, 185; and the bridge with Salmon, 
124n. 14; and the epistemological 
grounds for test specifications, 406-7, 
448; and the rationale of NP tests, 
376, 394, 398, 399n. 22, 400; as rela­
tive to the hypothesis passed, 184, 
448; as an error probability, 72, 186, 
227, 320, 389, 394-95, 4ll; calculat­
ing (in a Binomial experiment), 
192-96; curves, 409n. 29; must refer 
to a framework of inquiry, 11, 443; 
Popperian, 206-9; in the Kuhn­
Popper comparison, 24, 31; in the ser­
vice of correctly interpreting tests, 
175,196-98,398,401,403n.26,405; 
in the service of the alternative hy­
pothesis objection, 177, 187-89, 195-
96,198-206,212-13,292 

severity and novelty (see also use-novelty 
requirement): rules for constructing 
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492 INDEX 

severity and novelty (continued) 
severe but non-novel tests, 275-78, 
313; severity and the NP predesigna­
tionist stance, 298, 304, 315, 316n. 9; 
severity as the rationale for novelty, 
251-52,254,263,349; through Bayes­
ian glasses, 321-32; use-novelty is not 
necessary for severity, 271-73, 275, 
281,292,296 

severity criterion (sq, 178-81, 184-85, 
187,193,195,206-7,211n.22,275, 
329; for ·pass-fail" tests (SC*), 180-81; 
with hypothesis construction, 202, 
329n.6 

severity requirement, 29-30, 178-79, 185, 
187,196-98,207,210,284n.22,326 

Sewell, W., 301 
Shapere, D., 37n. 10,46 
Shimony, A., 106 
significance question (see also statistical 

significance tests), 93-95, 163, 193 
significance level (see statistical signifi­

cance level) 
simplicity, 113 
simulating errors (see also Monte Carlo 

simulations; "what it would be like" 
reasoning), 6 

single-universe context, 78-79, 120, 121 
Slovic, P., 90 
Smoluchowski, M., 218, 220, 246 
Snedecor, G., 167n. 16 
social constructivists, 61 
Spielman, S., 362 
Spirtes, P., 272, 294, 297,306-14,317 
spurious correlation, 13, 18 
standard deviation, 98, 222, 283; of X, 
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