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 On After-Trial Criticisms of Neyman-Pearson Theory of Statistics

 Deborah G. Mayo

 Virginia Polytechnic Institute

 and State University

 1. Introduction

 Whether it is due to the incompleteness of information, inaccuracies
 of measurement, or stochastic nature of phenomena, a great deal of
 scientific inference requires probabilistic considerations. In
 carrying out such inferences, the statistical methods predominantly
 used are from the Neyman-Pearson Theory of statistics (NPT).
 Nevertheless, NPT has been the target of such severe criticisms that
 nearly all philosophers of induction and statistics have rejected it
 as inadequate for statistical inference in science. If these criticisms
 do in fact demonstrate the inadequacy of NPT, then a good portion of
 statistical inference in science will lack justification. Because of
 the seriousness of such a conclusion, it is important to carefully
 consider whether critics of NPT have succeeded in demonstrating its
 inadequacy.

 In this paper I attempt to (1) clarify what I take to be the key
 issues around which the major criticisms against NPT revolve; and (2)
 argue that such criticisms fail to provide grounds for rejecting NPT
 as inadequate for science. I begin by drawing a fundamental distinction
 between the conception of the aims of statistical inference underlying
 the NPT, and the conceptions underlying rival views. Corresponding to
 the distinction between conceptions of statistical inference is a
 fundamental distinction between the criteria appropriate for judging
 the adequacy of statistical theories. Clearly, what is adequate for
 accomplishing the aims of NPT need not be adequate for accomplishing
 a fundamentally distinct set of aims. I maintain that criticisms of
 NPT involve judging NPT on the basis of criteria fundamentally distinct
 from those appropriate for NPT. By showing that NPT fails to satisfy
 these criteria, I claim, they succeed only in showing that accomplishing
 the aims underlying these criteria is incompatible with accomplishing
 the aims underlying NPT criteria. Unless there is reason to think
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 that this poses a problem for NPT, it does not warrant inferring that
 NPT is inadequate--whether the inadequacy is merely being too narrow
 in its applicability or, in the extreme case, being totally refuted.

 That is, what I call a weak claim (WC): NPT fails to satisfy
 criterion C, only warrants inferring a strong claim (SC): NPT is
 inadequate, if one accepts the additional premise (P): NPT is adequate
 only if it satisfies criterion C, for some specified criterion C.
 To justify accepting (P) it must be shown either that (I) NPT claims
 to satisfy criterion C, or (II) NPT should satisfy criterion C. I
 argue that criticisms against NPT can be taken as providing grounds
 for (I) only by misconstruing the aims of NPT, and as grounds for (II),
 only by presupposing the correctness of a conception of statistics
 fundamentally alien to NPT, which effectively begs the question against
 it. Failing to substantiate the needed premise (P), I conclude,
 prevents criticisms of NPT from going beyond a weak claim (WC): that
 NPT fails to satisfy a given criterion C. I am not thereby claiming
 that such criticisms serve no purpose; they serve an important function
 in delimiting the aims which one can rightly expect NPT to accomplish.
 Nor do I claim to have shown that NPT really is adequate for science;
 this requires a positive argument showing the appropriateness of NPT
 aims. What I do claim to have shown is that the widespread rejection
 of NPT as inadequate by philosophers is premature; the inadequacy of
 NPT has not been demonstrated.

 2. Error Probabilities vs. E-R Measures

 The view considered most plausible by most philosophers of
 induction and statistics, is that a theory of statistical inference,
 like a theory of deductive inference, should serve to assess the
 relationship between evidential claims and conclusions. Since, in
 the statistical case, the relationship between evidence (i.e., data) and
 a given conclusion may be weaker than deductive validity, a theory of
 statistics, on this view, should seek to provide a way of measuring
 degrees of the evidential relationship between them. To this end,
 measures of evidential-relationship (E-R measures) have been developed.
 Theories of statistics based on such E-R measures may be referred to
 as E-R theories. Carnap's confirmation measure, (subjective) Bayesian
 measures of degrees of belief, Fisher's fiducial probabilities,
 Hacking's measure of support, and Kyburg's epistemological probabilities,
 are only a few of the many E-R measures upon which E-R theories have
 been based. A theory of statistics will be adequate for the aim of
 E-R theories to the extent that it provides (absolute or relative) E-R
 measures that adequately express the degree of the evidential strength
 that specific data affords specific claims of interest.

 In contrast, NPT views the aim of a theory of statistics to be that
 of providing general procedures or rules for making statistical
 inferences; where these general procedures are guaranteed to have
 sufficientl y low probabilities for leading to various erroneous
 inferences. NPT inferences are not assertions about E-R measures,
 but about certain properties of a population of interest, called
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 parameters. Suchi inferences are based on the result of an
 experimental trial consisting of taking a sample of the population
 and observing some property of this sample, called a statistic. For
 example, one may obeerve the proportion of 'heads' (a statistic) in
 a sample of tosses of a coin to make inferences about the proportion
 of 'heads' in the (hypothetical) population of all tosses of the coin
 (a parameter). It will facilitate our discussion to outline two
 central types of NPT inferences about a parameter e on the basis of
 observing statistic S; hypotheses tests, and confidence interval (CI)
 estimates.

 General NPT Procedures: A hypotheses testing procedure consists of a
 rule which specifies which of the possible values of statistic S are
 to result in rejecting a specified hypothesis H (about e) in favor of
 some alternative hypothesis H. These values form the rejection region,
 RR. Hence, a testing rule takes the form: Reject H iff S is in RR. A
 general rule for confidence interval (CI) estimation, which I refer to
 as a CI estimator, indicates the specific CI estimate that should result
 from each possible value of S. A typical CI estimator has this form:

 Estimate that the true value of e is in the interval [S - c, S + d3,
 i.e., estimate that (S - c < e < S + d).

 Specific Inferences: Once the trial is carried out, and S is observed
 to have specific value s, these general rules yield specific inferences.
 For example, suppose s is in RR. Then the test concludes: Reject H
 in favor of H. The CI estimator concludes: (s - c < 8 < s + d).

 NPT Criteria: The specific inferences that result from a rule will
 vary with different values of S; some erroneous, others correct. A
 testing rule is adequate only if it is possible to guarantee, before
 the trial is made, that (regardless of the true value of 0) the
 probability it will lead to erroneously rejecting H is no more than
 some appropriately small number, called the size of the test. In
 addition, it should be able to guarantee that it will correctly accept
 H with suitably high probability, called the power of the test.
 Similarly, a CI estimator is adequate only if it has an appropriately
 large probability for leading to correct CI estimates, called the
 confidence level (CL) of the estimator. Size, power, and CL's are
 examples of error probabilities, and NPT inferences are judged adequate
 on the basis of the error probabilities of the rules from which they
 are generated.

 3. Before-Trial Criteria vs. After-Trial Criteria

 Unlike E-R measures, error probabilities hold only for general
 inference rules before-the-trial is made. Given the frequency view
 of probability underlying NPT, a rule's error probability is the rel-
 ative frequency with which it will lead to correct (or incorrect) infer-
 ences in a sequence of (similar or very different) applications of the
 rule. For example, if the CI estimator considered above has a CL equal
 to .95, we can assert before-the-trial that, for any value of 0,
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 correct to substitute S with the observed value s in this assertion.
 This is clearly seen in the case where the result of the substitution
 is P[(l < e ? 3)/e] = .95, and a = 5. For, the probability that the
 resulting CI (i.e., (1 < e < 3)) is correct is 0, not .95. NPT is
 intended for inferences where the parameters of interest are to be
 treated as constants. Hence, a specific NPT inference is either
 correct or not; i.e., it is true either 100% of the time or 0% of
 the time. So, the only probability that a specific inference may
 have is one of the trivial ones; 1 or 0.

 It follows that error probabilities do not serve to express the
 degrees of probability, support, confirmation or any other E-R
 measure, that may be assigned to specific inferences. It is not
 surprising, then, that inferences that are adequate according to
 NPT criteria about error probabilities may not be adequate according
 to criteria about E-R measures. But critics of NPT maintain that
 criteria about E-R measures are what matter in analyzing specific
 inferences, after-the-trial, i.e., after-trial analysis. As such,
 they conclude that NPT is inadequate for after-trial analysis. Such
 criticisms may be referred to as after-trial criticisms of NPT. The
 most serious criticisms of NPT tend to be cases of after-trial criticisms
 of the following form: First, (1) an E-R measure is selected as
 appropriately assessing the extent of the evidential strength that
 specific data affords specific claims. Second, (2) a criterion is
 set out, based on the E-R measure selected, for judging the adequacy
 of inferences after-the-trial; call it criterion C. Third, (3) an
 example is constructed in which an inference that is more satisfactory,
 according to NPT (before-trial) criteria about error probabilities,
 is less satisfactory according to (after-trial) criterion C.

 From this one may infer what I have terned a weak claim (WC):

 (WC): NPT fails to satisfy (after-trial) criterion C.

 If, in addition, one holds premise (P):

 (P): Satisfying (after-trial) criterion C is necessary for NPT to be
 adequate (for after-trial analysis),

 then one may infer the strong claim (SC):

 (SC): NPT is inadequate (for after-trial analysis).

 The problem with after-trial criticilsms arises only if they are taken
 as grounds for inferring (SC). I argue that no such inference is
 warranted since they fail to provide adequate grounds for accepting
 (P). It may be suggested that (P) is intuitively obvious, and hence,
 requires no justification, as in the following remarks of Cederic
 Smith: "Clearly what is wanted is a continuously variable measure of
 how probable the various hypotheses are, in the light of the data, and
 the NPT fails to provide this. One must conclude that it is not an
 appropriate theory of inference." (Smith 1977, p. 74). Here, (P)
 amounts to requiring that NPT provide an (after-trial) E-R measure
 of probability (i.e., a posterior probability), But NPT is based on
 the premise that an adequate theory of inference need not satisfy
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 such a requirement. And if a criticism of NPT is based on assuming
 that a basic NPT premise is false, then it is clearly begging the
 question against it. In what follows, I argue that after-trial
 criticisms of NPT are based on just this sort of assumption.

 4. After-Trial Criticisms of NPT Hypotheses Tests

 I base my argument upon those types of after-trial criticisms that
 are most serious, as well as most influential. As representatives of
 these, I take the criticisms raised by three philosophers: Hacking,
 Spielman, and Seidenfeld. Hacking's criticism served as a model for
 the other two, both of whom attempted to improve upon it. Hacking
 tried to show that NPT tests are "suitable for before-trial betting,
 but not for after-trial evaluation." (Hacking 1965, p. 99). After-
 trial evaluation, on his view ,involves measuring the extent to which
 specific data s supports hypotheses of interest. The E-R measure
 chosen for this purpose is the likelihood function (LF). The LF of
 hypothesis H given specific data s is the probability (or in the
 continuous case, the density) of s given that H is true, i.e. , P(s/H).
 Tests are judged on the basis of the following (after-trial) criterion
 of support. [CS]:

 [CS]: A test should reject hypothesis H on the basis of specific
 data s iff there is a rival hypothesis H much better supported
 by s, as measured by the LF, i.e., a test should reject H on the
 basis of s iff there is an H such that P(s/H) is much greater
 than P(s/H).

 Hacking provides an example where a test that is better according
 to NPT (before-trial) error-probabilities, is much worse according to
 his (after-trial) criterion [CS]. More specifically, while the test
 has a higher probability of correctly accepting H in a sequence of
 trials (i.e.,has a higher power'); a specific instance of this
 sequence is seen to result in accepting H although H is false, and
 hence has no support. That is, the specific instance gives rise to
 an s which leads to accepting H although P (S/H) = 0. Similarly,
 a test which fails miserably on NPT criteria is seen to satisfy [CS].
 From this Hacking concludes the strong claim (SC): NPT tests are
 inadequate for after-trial analysis. But his argument only provides
 grounds for the weak claim (WC): NPT tests fail to satisfy (after-
 trial)criterion [CS]. In one sense even (WC) may be questioned; for
 Hacking's examples involve tests which are not "best" on NPT criteria;
 and best NPT tests, in his examples, do satisfy [CS]. However, other
 examples can be constructed that show the incompatibility between NPT
 error criteria and Hacking's criterion of support [CS], thus
 establishing (WC). But unless there are grounds for supposing (P)
 (NPT tests must satisfy [CS]) there is no warrant for inferring (SC)
 (NPT tests are inadequate after-the-trial).

 Upon examining the examples showing the incompatibility of NPT
 criteria and [CS], I think it is clear that, rather than justifying
 the needed premise (P),they provide positive grounds for denying (P),
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 and rejecting [CS] as an inadequate after-trial criterion. For,
 [CS] permits one to reject a hypothIesis in favor of the most ad hoc
 hypothesis, formulated (after-the-trial) to perfectly fit specific
 experimental result, s. The reason is that, even if the ad hoc
 hypothesis is clearly false, [CS] directs one to accept it simply
 because it has the maximum value of the LF;and hence, is best
 " supported". For example, observing a coin to land 'heads' gives
 maximum support to the hypothesis that both faces of the coin are
 heads-even when this is known to be false. In this way [CS] frequently
 leads to erroneous inferences. Indeed, it can be shown (see Mayo
 1981b) to Yielda sequence of inferences, 100% of which are wrong,
 even in the simplest one parameter case! Birnbaum (1969) demonstrates
 this for the two parameter case. In fact, the reason Neyman and
 Pearson (e.g., Neyman 1952) explicitly reject an after-trial analysis
 based on LF's alone, is that they saw it would prevent the (before-
 trial) guarantees of low probabilities of errors which they sought.

 Clearly, then, Hacking's criterion [CS] conflicts radically with
 the aims of NPT. So, merely assuming (P) (NPT must satisfy [CS])
 is tantamount to assuming that NPT should abandon its own aims. And
 just such an assumption is necessary if Hacking's argument is to be
 taken as grounds for inferring (SC) (NPT tests are inadequate for
 after-trial analysis). Although Hacking does provide positive
 arguments in favor of his own theory of statistics based on [CS], this
 does not prevent his after-trial criticism of NPT from this question-
 begging assumption. For his criticism is based on assuming the
 superiority of his own theory--a theory to which NPT is radically
 opposed. Moreover, while Hacking has since abandoned his likelihood
 theory, his after-trial criticism of NPT has still been seen by many
 as providing the groundwork for a non-question begging demonstration
 of NPT's after-trial inadequacy.

 Spielman (1973) claims that by reconstructing Hacking's criticism,
 he can "show that NPT is inadequate on its own terms" (p. 202)
 and so provide a genuine "refutation" of NPT tests. However, his
 after-trial criticism, I argue, is flawed in much the same way as
 Hacking's--despite his attempt to avoid such flaws. Like Hacking,
 Spielman wants to show that the error probabilities of NPT tests (i.e.,
 size and power) are irrelevant "once an experiment is performed, and
 a decision that really counts has to be made" (p. 211), (i.e., for
 after-trial analysis). According to Spielman, an after-trial analysis
 of a specific inference,based on specific data s, requires a measure
 of its reliabilit ; and the E-R measure he selects for this purpose
 is the (posterior) probability that the specific inference is correct.
 The criterion used in judging tests is the following (after-trial)
 criterion of reliability [CR]:

 [CR]: A test should lead to a specific testing inference (i.e., accept
 or reject) on the basis of specific data s, only if the
 inference is sufficiently reliable, as measured by the
 probability that it is correct.
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 Spielman considers an example of a NPT test which has
 appropriately high probabilities of yielding correct inferences in
 a sequence of applications of the testing rule (and hence satisfies
 NPT error probability criteria); but which cannot guarantee that
 specific instances of this sequence will yield inferences with
 high probabilities of being correct (and hence fails to satisfy
 his (after-trial) criterion [CR] ). In other words, Spielman shows
 that a testing rule ,based on observing statistic S,may have a high
 probability (before-the-trial) of leading to correct inferences;
 while the probability (after-the-trial) of a specific observed value,
 s, yielding a correct inference may not be high. This entails the
 weak claim (WC): NPT fails to satisfy (after-trial) criterion [CR].
 But when Spielman goes on to infer the strong claim (SC) (NPT tests
 are inadequate) it becomes clear that his criticism of NPT is not
 'on its own terms" - contrary to what he had intended. Again, the
 problem involves substantiating premise (P) (NPT must satisfy [CR] in
 order to be adequate). For, as we saw in Section 3, NPT never intended
 to provide an (after-trial) E-R measure of reliability; and it is
 explicitly denied that error probabilities apply once a specific s
 is substituted for S. Nevertheless, Spielman maintains (I) that NPT
 does intend to satisfy his (after-trial) criterion [CR]; or, (II) if
 not, it should.

 Spielman offers the following argument in support of (I). He
 claims (i) that it is "implicit in the conceptual framework of NPT"
 (p. 207) that error probabilities of NPT general procedures are
 intended to justify their specific applications. And since according
 to Spielman (ii) for specific inferences to be justified they must be
 sufficiently reliable (in the sense of having sufficiently high
 probabilities of being correct), he concludes (iii) that NPT error
 probabilities are intended to guarantee that specific NPT inferences
 are sufficiently reliable (in his sense). From this it follows (I)
 that NPT intends to satisfy his (after-trial) criterion [CR] (and so,
 (P) is true). But it has been shown that (WC): NPT fails to satisfy
 [CR]. So, since it fails to satisfy the criterion which it intends to
 satisfy, NPT is refuted as promised. However, his proposed refutation
 does not succeed; for his argument for (iii) is flawed.

 The flaw is in assuming premise (ii). For NPT is based on denying
 that (ii) is the case. Rather, it holds that specific inferences get
 their justification from having arisen from general procedures with
 appropriate error probabilities (in a given long run sequence). Hence,
 in assuming (ii) Spielman is assuming the correctness of a criterion
 that radically conflicts with the aim of NPT. And in calculating
 degrees of probability of specific inferences to be other than 0 or 1,
 he makes use of probabilities that are invalid on the frequency view
 underlying NPT. Hence,(iii), and so (I) is false; and there is no
 longer any basis for regarding error probabilities as "dangerously
 misleading." (p. 202). Only by misinterpreting them as (after-trial)
 E-R measures of reliability do they appear misleading.
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 Spielman admits that if NPT is only interested in guaranteeing low
 error probabilities in long run sequences, then (I) is false and he has
 not succeeded in refuting NPT. Nevertheless, he maintains that having
 shown that (WC): NPT tests fail to satisfy his (after-trial) criterion
 of reliability [CR], "I have shown that [NPT] is too narrow to bother
 refuting." (p.214). But, he has not told us why failing to satisfy
 [CR] is a deficiency for NPT. That is, he has not shown (II) that NPT
 should satisfy [CR]. Yet in claiming that unless it does, then NPT is
 "too narrow to bother refuting," Spielman is presupposing (II); and is
 thereby begging the question against NPT. Graves (1978) provides a
 good discussion of these and other points concerning Spielman's after-
 trial criticism.

 5. After-Trial Criticisms of NPT of Confidence Intervals (CI's)

 Seidenfeld (1979) and (1981), like Spielman, sets out an after-trial
 criticism of NPT by reconstructing the argument given by Hacking.
 Seidenfeld's criticism shares the same thrust as those of Hacking and
 Spielman; namely, that (before-trial) error probabilities of NPT may
 fail to indicate the degree of support (Hacking), reliability (Spielman)
 or confidence (Seidenfeld) that should be assigned to specific infer-
 ences--as measured by an appropriate (after-trial) E-R measure. But,
 rather than direct his criticism at error probabilities of NPT tests,
 Seidenfeld directs it at error probabilities of NPT of confidence
 intervals (CI's); in particular, confidence levels (CL's). He claims
 he will show that "it seems reasonable to say, before knowing the data,"
 that a CI estimator with a CL equal to p will lead to a correct CI
 estimate with probability p; "however, having seen the value x, it may
 be unreasonable to maintain the probability statement or use it to
 express a degree of confidence in the interval generated by the [CI
 estimator]." (Seidenfeld 1979, pp. 56-57).

 But, as was noted in Section 3, (and as Neyman and Pearson4 have
 repeatedly warned) applyinq a CL to a specific interval estimate leads
 to absurdities. For, parameter e is viewed, by NPT, as a constant, and
 probabilities are viewed as frequencies in some sequence. Clearly, it
 makes no sense to say that the frequency with which e is contained in
 a specific interval [a,b] is, say, .95. A specific CI: (a <e< b) is
 either always true or always false; thus, the only probabilities it may
 be assigned are 0 and 1. So, to show that CL's fail to provide (after-
 trial) measures of probability, is just to show that they fail to
 provide a type of (after-trial) evaluation that is illegitimate from
 the point of view of NPT. This is precisely what the after-trial
 criticisms of NPT tests were seen to amount to.

 In order to avoid just this flaw, Seidenfeld develops a clever
 strategy: He will mount his after-trial criticism without using any E-R
 measure that is illegitimate from the point of view of NPT. The only
 probabilities, compatible with the frequency view of probability, that
 can be assigned to specific estimates are 1 and 0--according to whether
 it is known to be correct or not. Interval estimates that are known to
 be correct (i.e., known to contain the true value of o)are referred
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 to by Seidenfeld as trivial intervals. Seidenfeld notes that "even
 on Neyman's conception of probability there is an acceptable probability
 for the trivial i'ntervals. They carry a known probability 1."
 (Seidenfeld 1981, p. 283). Hence, by basing his criticism on trivial
 intervals, he hopes to carry out his strategy.

 Seidenfeld judges NPT of CI's on the basis of the following (after-
 trial) criterion of triviality [CT]:

 [CT]: A CI estimator should notyield specific CI estimates with CL's
 that conflict with their known probabilities. In particular,
 a EI extimator with CL less than 1 should not yield trivial CI
 estimates (i.e., estimates known to have probability 1.)

 Seidenfeld considers an example where the CI estimator that is "best",
 according to NPT (before-trial) criteria, is inferior to one deemed less
 than best by NPT, according to his (after-trial) criterion [CT]. Its
 inferiority lies in the fact that it yields trivial intervals more
 often, while sharing the same CL of .95; that is, it yields estimates
 whose CL (i.e., .95) more often conflicts with the known probability
 that the estimate is correct (i.e., 1). From this Seidernfeld infers
 the weak claim (WC): NPT of CI's fails to satisfy (after-trial) criterion
 [CT].

 Even this inference may be questioned, it seems; for it is arguable
 that, in the example Seidenfeld considers, NPT would actually recommend,
 not the estimator Seidenfeld criticizes, but an alternative estimator
 which does not yield any trivial intervals; and hence, satisfies [CT].
 I argue this in detail in Mayo(1981a).6 Admittedly, the basis for
 recommending the alternative interval involves informal criteria about
 informativeness. So, Seidenfeld's example can still be taken to show
 that satisfying the formal NPT criteria need not result in satisfying
 criterion [CT]; and I assume this is all the weak claim (WC) is meant
 to assert. The real problem arises when Seidenfeld's argument is taken
 as grounds for going beyond (WC), and inferring the strong claim (SC):
 NPT of CI's is inadequate for after-trial analysis.

 At some points, Seidenfeld suggests that he only intends to show
 (WC); for his only concern is to show "that the N-P theory cannot serve
 as an adequate replacement for an inductive logic" (Seidenfeld 1979,
 p. 37), where an "inductive logic" is taken to require some (after-
 trial) E-R measure. And having shown (WC), that NPT of CI's fails to
 satisfy [CT], he has shown that CL's fail to provide valid E-R measures
 of probability or confidence. For, (WT) entails that an estimate in
 which one has 100% confidence may have a CL less than 100%. Nevertheless,
 Seidenfeld's concern with using only an E-R measure that is valid for
 NPT clearly suggests that he intends his argument to show some genuine
 flaw within NPT itself. He claims that "it is my goal in part, to
 strengthen Hacking's evaluation by showing that N-P best tests lead to
 clearly inferior confidence intervals, based on [the NPT criteria of
 "bestness" I alone." (p. 49). And this clearly implies that his goal
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 is to show (SC): NPT of CI's is inadequate. However, these CI's
 are judged "clearly inferior" only in that they fail to satisfy
 Seidenfeld's criterion [CT]. To accomplish the goal of showing NPT
 of CI's leads to CI's that are "clearly inferior" on the basis of NPT
 criteria, he would have to justify premise (P): Failure to satisfy
 (after-trial) criterion [CT] renders NPT of CI's inadequate. I will
 argue that Seidenfeld's argument entails (P) only if NPT criteria are
 either misconstrued or rejected.

 To justify (P), it must be shown either that (I): NPT claims to
 satisfy [CT]; or, (II) if not, it should. In support of (I),
 Seidenfeld appears to reason as follows: Since Neyman suggests that
 assigning an (after-trial) probability to a specific estimate is the
 "theoretically perfect solution" (Neyman 1937, p. 258), it would seem
 that when an (after-trial) probability is known--as in the case of
 trivial intervals, Neyman would want the NPT of CI's to provide it.
 Hence, Neyman would want to assign probability 1, and not a probability
 less than 1, to trivial intervals, i.e., he would want to satisfy
 criterion [CT]. It follows that (I).

 Firstly, what Neyman personally would want is not the same as what
 NPT is logically capable of. NPT is intended to provide an adequate
 theory of statistics without (after-trial) E-R measures. While
 assigning (after-trial) probability 1 to trivial intervals is compatiblE
 with the frequency theory of probability; such assignments are not
 strictly a part of NPT of CI's. Neyman specifically notes that
 within the theory of CI's, "we have decided not to consider [them]"
 (Neyman 1937, p. 263); for it is simpler to just assert the trivial
 interval itself. According to Seidenfeld, the problem with CI
 estimators failing to satisfy his criterion [CT], is "the tension
 between the confidence level (less than 100%) and a known probability
 (of exactly 100%)." (Seidenfeld 1981, p. 282). But, there is no such
 "tension" from the point of view of NPT. For, CL's always refer to the
 (before-trial) probabilities that CI estimators will lead to errors in
 a sequence of applications. And there is nothing contradictory, or
 even problematic, about having a specific estimate, which is known to
 be true (i.e., a trivial estimate), arise from a general estimating
 procedure which is known to lead to correct inferences less than 100%
 of the time (i.e., its CL is less than 1). It appears problematic
 only by misinterpreting CL's as providing (after-trial) E-R measures
 of confidence or probability. Seidenfeld's claim that failure to
 satisfy [CT] leads to trivial intervals being asserted "at strictly
 less than 100% confidence" (p. 281) involves such a misinterpretation.
 For the result of applying a CI estimator is just an assertion that o
 is in the specific interval formed. Nothing is said about the degree
 of confidence which is to be attached to this assertion. Admittedly,
 the word 'confidence' encourages this sort of misinterpretation--but
 this is not a problem for NPT when it is correctly interpreted. Since
 CL's are not intended to provide (after-trial) measures of probability,
 even if such a probability is known; it follows that (I) is false.
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 Nor can Seidenfeld's argument be taken as grounds for inferring that
 (II): NPT should satisfy criterion [CT]. For, his own example shows
 that if the aim is to satisfy his criterion [CT], the result will be
 to recommend CI's that fail miserably on NPT criteria. And a CI will
 fail to be adequate, for the type of after-trial analysis that NPT is
 interested in, unless it satisfies these criteria. Hence, although
 the E-R measure Seidenfeld uses is legitimate on the frequency view,
 the after-trial criterion [CT] upon which he judges NPT of CI's involves
 after-trial considerations that are incompatible with the view of
 after-trial analysis underlying NPT. Failing to provide independent
 grounds for the correctness of his criterion [CT] prevents Seidenfeld's
 argument from legitimately showing (II). To merely assume (II) is
 tantamount to assuming that the aims of NPT should be rejected in favor
 of the aim underlying E-R theories; namely, to provide an after-trial
 measure of the evidential strength that specific data affords specific
 conclusions. Without grounds for either (I) or (II), premise (P) is un-
 substantiated. Hence, Seidenfeld's argument can not be taken as grounds
 for inferring (SC): NPT of CI's is inadequate (for after-trial analysis).
 Moreover, Seidenfeld's criticism may be seen to follow the pattern of
 argument found in criticisms raised by Fisher (1956), Jaynes (1968), and
 Lindley (1971); and each, I claim, involves the same kind of problem.7

 6. Conclusion

 Each of the after-trial criticisms of NPT has been seen to involve
 judging statistical inferences on the basis of an (after-trial) criterion
 which reflects a very different view of the aim of statistical inference
 than the one embodied in NPT. For, underlying each criterion is the view
 that a theory of statistics should provide an expression of the extent
 of the evidential strength that specific data affords specific conclusions,
 after the trial is made. While such criteria are appropriate for
 judging E-R theories, they are inappropriate for judging NPT. Moreover,
 it has been shown that,unless NPT criteria are either misunderstood or
 rejected, the criticisms cannot be taken as grounds for thinking that
 it is necessary for NPT to satisfy these (after-trial) E-R criteria.
 In effect, the criticisms merely show the difference between NPT criteria
 and the (after-trial) criteria based on E-R measures. Therefore, it
 can be concluded that the after-trial criticisms of NPT fail to
 demonstrate the inadequacy of NPT.

 Notes

 1I would like to thank Ronald Giere and Isaac Levi for very helpful
 comments on an earlier draft of this paper. I am also grateful to
 Henry Kyburg and Teddy Seidenfeld for sharing their responses to a form-
 er paper (Mayo 1981a) with me; they were extremely useful in clarifying
 the key points of contention underlying the present paper.
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 2The distinction I draw between the NPT conception of statistics and
 the conception underlying E-R theories is parallel to the distinction
 drawn by Giere (1977) between testing and information models.

 3A "best" NPT test of a given size is one which also has the
 maximum power of any other test with the same size (for the given
 hypotheses under test).

 4See especially Neyman (1937, pp. 261-273; 1952, pp. 210-214; and
 1977, pp. 118-119).

 5A CI estimator, CI*, with a CL of p, is "best" according to the NPT
 formal criteria if there is no other estimator (for the given estimation
 problem) that also has a CL of p, but which has a smaller probability
 of yielding estimates containing incorrect parameter values than CI*.

 6My argument, briefly, is this: Seidenfeld is able to present a NPT
 "best" CI estimator, with a CL of .95, that generates trivial estimates
 only by considering a case where parameter e is known to have a specific
 upper bound. This is called the truncated case. Since the formal NPT
 criteria are not affected by this truncation, Seidenfeld concludes that
 NPT still recommends the same interval in the truncated case. I argue
 that by making use of the additional available information in this case,
 an alternative interval recommends itself; and this alternative CI does
 not give rise to trivial intervals.

 My basis for claiming that, in the truncated case, this alternative
 CI is superior on the basis of NPT principles is not that it satisfies
 criterion [CT]--for, NPT does not seek to do so. Rather, I argue, that
 NPT recommends the best CI estimator, relative to the type of inform-
 ation in which one is interested; and the alternative CI yields more
 appropriate information in the truncated case.

 7Their arguments are, roughly, the following. Before the trial, a CI
 estimator with CL equal to p has a probability of yielding correct CI
 estimates equal to p, in a sequence of applications of the estimator.
 However, after the trial yields specific data s, s may be seen as a
 member of a subset, T, of the original sequence of applications; and the
 probability that the CI estimator will yield a correct estimate in this
 subset of applications may be known to be q, where p < q. It is argued
 that, in such cases, the correct CL to assign a specific estimate based
 on s is not p, but q. (In Seidenfeld's example q equals 1). It is con-
 cluded that NPT of CI's are inadequate.

 But, unless it is assumed that CL's must provide (after-trial) E-R
 measures, there are no grounds for this conclusion. For, it is perfect-
 ly valid to assign a CL of p to estimates based on s. It would only be
 appropriate to assign it a CL of q if it had been decided before the
 trial to limit the sequence of applications to those in T. It is up to
 the experimenter to decide, before the trial, which sequence of applic-
 ations is appropriate for evaluating a given inference; it need not in-
 clude all possible applications. However, once it is specified, the CL
 is fixed; it cannot be altered by the specific experimental result.
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