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Philosophy of Science

December, 1985

BEHAVIORISTIC, EVIDENTIALIST, AND LEARNING
MODELS OF STATISTICAL TESTING*

DEBORAH G. MAYOf

Department of Philosophy
Virginia Polytechnic Institute and State University

While orthodox (Neyman-Pearson) statistical tests enjoy widespread use in
science, the philosophical controversy over their appropriateness for obtaining
scientific knowledge remains unresolved. I shall suggest an explanation and a
resolution of this controversy. The source of the controversy, I argue, is that
orthodox tests are typically interpreted as rules for making optimal decisions as
to how to behave—where optimality is measured by the frequency of errors the
test would commit in a long series of trials. Most philosophers of statistics,
however, view the task of statistical methods as providing appropriate measures
of the evidential-strength that data affords hypotheses. Since tests appropriate
for the behavioral-decision task fail to provide measures of evidential-strength,
philosophers of statistics claim the use of orthodox tests in science is misleading
and unjustified. What critics of orthodox tests overlook, I argue, is that the
primary function of statistical tests in science is neither to decide how to behave
nor to assign measures of evidential strength to hypotheses. Rather, tests provide
a tool for using incomplete data to learn about the process that generated it.
This they do, I show, by providing a standard for distinguishing differences
(between observed and hypothesized results) due to accidental or trivial errors
from those due to systematic or substantively important discrepancies. I propose
a reinterpretation of a commonly used orthodox test to make this learning model
of tests explicit.

With the growing emphasis on the behavioral and social sciences . . .
and given the great dependence of these sciences upon statistical
methods one must take seriously the claim, from respectable quarters,

*Received August 1984; revised October 1984.

11 am grateful to Ronald Giere, Norman Gilinsky, I. J. Good, Oscar Kempthorne, Henry
Kyburg, and Larry Laudan for very helpful comments. I thank Jim Fetzer for first sug-
gesting I spell out my (learning) model by contrasting it to the existing (behavioristic and
evidentialist) models of statistical tests.
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494 DEBORAH G. MAYO

that the statistical methods currently employed are fundamentally
misconceived. R. N. Giere 1969, p. 372.

1. Introduction and Summary. In the sixteen years that have passed
since this passage from Giere appeared, there is no doubt that philoso-
phers of statistics have taken the earlier criticisms of orthodox (or Ney-
man-Pearson) statistical tests seriously. But far from offering defenses for
the widespread use of orthodox tests in science, most, like Rosenkrantz
(1977, p. 221), have further “stressed the failure of orthodox theory to
provide a satisfactory format for objective scientific reporting (or for con-
veying ‘what the data have to tell us’).” Fetzer (1981), Kyburg (1971)
and (1974), Levi (1980), Seidenfeld (1979), Spielman (1973), and others
have also offered arguments to strengthen already existing criticisms of
the appropriateness of orthodox tests—at least so far as they are able to
perform the task of statistical inference in science.

Such criticisms of orthodox tests arise from opposing views of the ap-
propriate role of statistical tests in science. The views of the major dis-
putants in the testing controversy fall roughly into two camps. I will refer
to these as the behavioral-decision (or behavioralist) view, and the evi-
dential-strength (or evidentialist) view.

The statistical philosophy of the first camp holds that when evidence
is inconclusive all talk of “inferences” and “reaching conclusions” should
be abandoned. Rather, the task of a theory of statistics is to provide rules
that help guide our behavior with respect to uncertain phenomena, so that
we will avoid making erroneous decisions too often in the long run of
experience. Accordingly, tests are interpreted as rules of inductive be-
havior yielding the behavioristic model of tests, typically associated with
Neyman and Pearson.

On the evidential-strength view, on the other hand, when evidence is
inconclusive what is needed is some way of quantitatively assessing the
extent of the evidence that particular observations afford hypotheses. On
this view, the task of a theory of statistical inference is to provide an
appropriate measure of evidential-relationship, which I abbreviate as an
E-R measure. Examples include measures of degrees of support, belief,
confirmation, corroboration, probability, and the like. Orthodox tests, whose
only quantities are long-run error rates of procedures, will not be judged
adequate for this task unless these error rates can be construed as pro-
viding appropriate E-R measures. Attempts at such “evidentialist™ inter-
pretations of orthodox tests give rise to what I call evidential-strength
models of tests.

The problem that arises is this: If orthodox tests are interpreted and
judged along the lines of the behavioristic model, then the tests appear
appropriate for routine decision-theoretic tasks, where the main concern
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BEHAVIORISTIC, EVIDENTIALIST, AND LEARNING MODELS 495

is with low long-run frequency of error. But then the tests appear inap-
propriate for the task of scientific inference. On the other hand, if the
error rates of orthodox tests (e.g., significance levels) are interpreted as
providing E-R measures (in an attempt to render tests relevant for sci-
entific inference) tests lead to misleading and even contradictory conclu-
sions. So, orthodox tests, if interpreted behavioristically, are inappro-
priate for scientific inference, and, if interpreted “evidentially,” are mis-
leading and contradictory—or so the critics allege. The general thrust
of these criticisms is well captured in a passage from Fetzer (1981, p.
244):

The “preference procedures” Neyman and Pearson have proposed,
in other words, may be perfectly suitable for decision-making be-
tween restricted alternatives without also fulfilling the appropriate
conditions for drawing inferences on the basis of empirical evidence.

Although I take these criticisms of orthodox tests seriously, I deny that
they vitiate the manner in which tests can (and very often do) serve their
most important function in scientific inquiry. For, what these criticisms
of tests overlook, I claim, is that the primary function of statistical tests
in science is neither to decide how to behave nor to assign measures of
evidential strength to hypotheses. Rather, their primary function seems
to come closer to the view expressed by Kempthorne (1971, p. 492) in
characterizing statistical inference “loosely as the collection of processes
by which we learn from data,” as well as the view of E. S. Pearson (1955,
p. 204).

While the aim of learning from incomplete data is implicit in much of
actual statistical practice, it will not be possible to defend these uses of
tests against the well-known criticisms until the manner in which tests
serve this distinct function is made explicit. My aim in this paper is to
propose a reinterpretation of a commonly used orthodox test in order to
make this learning function precise.

To this end, I shall do the following: First, I shall explain, keeping
mathematical details to a minimum, enough of the properties of orthodox
tests so that the criticisms and proposed resolutions may be understood.
Next, I shall show how these criticisms arise from both the behavioristic
and the evidential-strength models of tests. Thirdly, I propose a model
of tests, which, while retaining the key properties of orthodox tests, is
neither behavioristic nor evidentialist (in the sense being used here). To
distinguish it from these two other models of testing, I shall refer to this
new interpretation as the learning model of tests. On the criterion for a
“good test” that emerges, 1 argue, the orthodox tests are appropriate for
scientific learning.

The real importance of introducing something like the learning model
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496 DEBORAH G. MAYO

of tests into the philosophical discussions of statistical tests, however,
goes beyond the desire to give a new defense for orthodox statistics. With
a model of tests that accords with actual statistical practice, a new avenue
is opened, I believe, for exploring key methodological strategies based
on statistical principles of generating and analyzing data.

2. Orthodox Statistical Tests: Basic Properties. It should be noted at
the outset that the orthodox theory of statistical tests does not provide a
single method of testing, but rather a whole conglomeration of different
types of tests. A single scientific inquiry typically requires the use of
numerous different tests; each directed at answering a different question.
For the present purpose, however, it will suffice to consider a type of
scientific question that leads to a very commonly used statistical test.
Imagine an inquiry into a population of items, say a certain species of
fish. A question that may be posed is whether this population of fish
differs from some other population of fish, say in being longer (possibly
one is interested in the effects of some new fish food, or wants to identify
the species).! Suppose the question concerns the average length of fish
in the population being studied, which we symbolize as parameter 6. One
hypothesis, let us say, J(, is that 6 equals 12 inches; another, $, is that
0 exceeds 12 inches by some unspecified amount. We want to make some
observations to test these claims. Ignoring for now the problems of ex-
perimental design,” a sample of n fish are observed and their lengths ap-
propriately measured, say, at the longest point. A fish’s length in inches
may be represented by variable X, that is, to each fish a value of X (like
a little badge) is attached. There are two cases where our observations
would give conclusive answers to questions about the average length 6:
(1) The lengths of fish do not vary at all (for then observing a single X-
value tells us the population average); or (2) The entire population of fish
is observed and measured (for then the observed average is the population
average). More realistically, the values of X are not constant, but are
known to vary (among fish in the population), and typically the most we

'T deliberately divorce this illustration from any of the possible uses to which such an
inquiry may be put so as to concentrate on the general interpretation of tests I will propose.
A fuller discussion of an application of tests as well as more of the mathematical details
occurs in Mayo (1983). A good account of orthodox tests in general occurs in Kempthorne
and Folks (1971).

’I mean only that I will not explicitly discuss problems of experimental design here, not
that the present treatment is inapplicable to those problems. In fact such problems can
usually be dealt with by asking questions about whether certain test assumptions (e.g.,
independence, control of extraneous variables) are approximately met; and these questions
can also be dealt with by means of orthodox tests. Thus, if we can give an adequate account
of orthodox tests, we will also be giving an adequate account of a tool needed for dealing
with experimental design problems.
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BEHAVIORISTIC, EVIDENTIALIST, AND LEARNING MODELS 497

can observe is some proper subset of the population. In these cases sta-
tistical considerations are needed for testing claims about 6.

Suppose it is known that values of X vary according to a pattern closely
resembling that of a Normal distribution with an average (mean) value-6
(which is in question) and a known standard deviation o of 2. Having
observed the lengths of the n fish in our sample, the most useful statistic
to calculate is the average (mean) length, denoted by X in the sample;
for it varies least, on the average, from the population parameter 6 of
interest.” But even if ¥ is true and our sample does come from a pop-
ulation of fish whose average length 8 is 12, it does not follow that the
observed average in this sample will be exactly 12. What follows is only
that the most frequent observed outcome is expected to be 12 and that
small differences from 12 will be more frequent than differences far from
12. This prediction can be expressed as the statistical hypothesis H: X
follows the Normal distribution with mean value 6 equal to 12, and stan-
dard deviation oy (which equals o/n'/?). A population of larger fish, on
the other hand, is associated with a 6 that exceeds 12. The sort of sta-
tistical test frequently used in such an inquiry involves the following null
and alternative hypotheses:

(2.0) Null Hypothesis H: X is Normal (0, o) and 6 = 12
Alternative Hypothesis J: X is Normal (0, oz): and 6 > 12

where the standard deviation oz = 2/n'/2. The null hypothesis is simple,
in that it specifies a single value of 6, while the alternative is composite,
as it consists of the set of 6-values exceeding 12.

Since our test is devised so as to reject H just in case 6 exceeds 12,
i.e., our test is one sided (in the positive direction), it seems plausible to
reject H on the basis of sample averages (X values) that exceed 12 suf-
ficiently; and this is precisely what the orthodox test recommends. That
is, our test rule, which we may represent by T, rejects H just in case
X is “significantly far” (in the positive direction) from hypothesized av-
erage 12, where distance is measured in standard deviation units (i.e., in
O'X,S).

Denoting the observed average by X, the average hypothesized by
H by 0, we can abbreviate its observed distance (for 65) by D, where

3A standard measure of the average deviation of X from 0 is the standard deviation of
X, denoted by oy. If X follows the normal distribution with mean 6 and standard deviation
o, then X also follows the normal distribution with mean 0, only now its standard deviation
% equals o divided by the square root of sample size n; i.e., X is Normal (8, o/n'/?).

What makes statistic X so valuable is that its distribution is (approximately) Normal (8,
a/n'?) with 8, o equal to the mean and standard deviation of the underlying distribution
of X, respectively, no matter what this underlying distribution is (barring an infinite o).
This is the essence of the Central-Limit Theorem.
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498 DEBORAH G. MAYO

(2.1) Dy, = (Observed Average (X..,)) — (Hypothesized Average ()
[e.g., 12])

equals some number k of standard deviation units, (i.e., Dy = k 0%).
Corresponding to each such observed difference (naturally, D, varies as
Xops does) is its level of statistical significance.

(2.2) The Statistical Significance Level of an observed difference D, (in
testing H) equals the frequency with which so large a difference
arises assuming H is true.*

An orthodox test consists of a rule which specifies, before the observation
is made, how statistically significant an observed difference must be be-
fore it should be taken to reject H. The maximum significance level cho-
sen beyond which D is taken to reject H is called the size of the test,
and is denoted by a. In the case of T* we have

(2.3) Test Rule T" with size o: Reject H at level a iff Dy, is statistically
significant at level a (i.e., iff so large an observed difference occurs
no more than a(100 percent) of the time if H is true).

The smaller the value of o chosen as the size of the test, the less fre-
quently level a is reached (and so H is rejected) when in fact H is true.
More specifically, a test with size o rejects H when in fact H is true (i.e.,
it commits a Type I error) no more than a(100 percent) of the time. That
is,

(2.4) The size of a test equals the frequency with which the test erro-
neously rejects H (in a sequence of applications of the test rule).

For, a test with size a rejects H just in case D, reaches the a level of
significance. But by definition (see (2.3)) this occurs no more than a(100
percent) of the time when H is true. In testing our null hypothesis H:9
= 12 (against J:0 > 12), the following test rules have sizes .02 and .001,
respectively:

“By “so large a difference” I mean one as large as or larger than the observed differ-
ence. Suppose the average length in a sample of 25 fish is observed to be 12.1 inches,
(Xas = 12.1). The difference between the observed and hypothesized averages, taking 6y
to be 12, is 12.1 minus 12, giving an observed difference of .1 (D, = .1).

Since o (according to H) equals 2, and n equals 25, oy equals /5 or .4 inches. SO, D,
= .1 = 14 oy. That is, if H is true, and 8 equals 12, then the observed-sample average
differs from the population average by !/40%’s. We can ask: How frequently does an ob-
served-sample average exceed its population average by as much as or more than '/ stan-
dard deviation units? This is identical to asking: How statistically significant is a difference
of /4047 The answer turns out to be .4; that is, such a large observed difference occurs
40 percent of the time when observing a population correctly described by H. This would
not be considered good grounds for rejecting H. Note, in contrast that 12.1 is significant
at the .02-level in test T*-1600; it represents a difference of 20 (each ox now being %40
or .05).
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BEHAVIORISTIC, EVIDENTIALIST, AND LEARNING MODELS 499

(2.5) (a) T': Reject H:0 = 12 at level .02 iff D, = 205%.
(b) T": Reject H at level .001 iff D, = 3 oy%.

Clearly then, an observation X, may lead to rejecting H with rule (a)
and not with rule (b); (for (b) requires the observed difference to be larger
than (a) does before it rejects H).> As such, whether or not a test leads
to rejecting H is a function of how the size a is specified. But how is
the size of a test to be chosen?

Since the smaller the « the less frequent the Type I error, it may be
thought that o should be made as small as possible. But by making o
smaller (and so making a rejection of H more difficult), the test suffers
an increase in the frequency with which it fails to reject H (i.e., accepts
H) even when in fact H is false (and so should be rejected). An erroneous
acceptance of H is called the Type II error, and the frequency of a Type
II error is denoted by B. « and B are the error frequencies (or error prob-
abilities) of tests:

(2.6) f(T" Rejects H|H is true) =
f(T" Accepts H|J is true) =

a = frequency of Type I error
B = frequency of Type II error.

(In an extreme case where a is set at O, the test never erroneously
rejects H, since it never rejects H altogether. But, if H is false, such a
test will always accept H erroneously, i.e., 3 = 1.) It should be noted
that with a composite alternative, as in example T, the value of 8 varies
with ditferent alternative values for 0, i.e., it varies according to “how
false” 6y is. The more discrepant 6 is from 6y, the less frequent an er-
roneous acceptance of H occurs, i.e., the smaller is the value of 3. Al-
though introducing the second type of error helps to constrain the spec-
ifications of a test’s error rates, there are still numerous ways of balancing
a with B.

The task of specifying the error rates of tests is considered to lie outside
the domain of the formalism of orthodox tests, and this has resulted in
the tests being criticized as lacking in objectivity.® But there is an im-
portant sense in which orthodox tests are objective; namely, they guar-
antee that the frequency of errors will not exceed the error rates one spec-

*Rules (2.5) (a) and (b) can equivalently be written:

(a) Reject H at level .02 iff X, = 6; + 2 o and
(b) Reject H at level .001 iff X, = 6, + 3 ox.

Let X.,. = 12.8, n = 25, 8, = 12. Since oy is then .4, our observed difference equals 2
oy exactly. So rule (a) maps this difference to “Reject H” while (b) does not. X, would
have to be at least 13.2 before (b) led to rejecting H.

°In Mayo (1983) I argue that these criticisms are based on an overly narrow conception
of objectivity and of what is required for objective learning in science. I defend an altered
conception of objective learning and argue that orthodox tests may be reformulated so as
to serve as a means for objective learning in science.
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500 DEBORAH G. MAYO

ifies the test to have. For, an orthodox test, considered in its naked
mathematical form alone, is essentially this:

(2.7) An orthodox test is a rule that maps each of the possible values
observed into either Reject H (Accept J) or Accept H in such a
way that it is possible to guarantee before the trial is made, that
(regardless of the true value of ) the rule will erroneously reject
H and erroneously accept H no more than a(100 percent) and 3(100
percent) of the time, respectively.

Yet, “from the point of view of mathematical theory all that we can
do is show how the risk of the errors may be controlled and minimized”
(Neyman and Pearson 1933, p. 146). Whether or not such a piece of
mathematics is appropriate for the task of statistical tests in science de-
pends both on one’s view of this task and on the interpretation with which
one clothes the formal components of tests.

3. The Behavioristic Model of Tests. In order to provide some objec-
tive basis for specifying and interpreting the tests that were already being
used in science in the 1920s (particularly those of R. A. Fisher), Neyman
and Pearson consider a paradigm type of context in which such an ob-
jective basis would be forthcoming. Here it is imagined that one can spec-
ify how often one “can afford” to make the Type I and Type II errors
by appealing to the “seriousness” of the consequences of doing so.

But when are considerations of how often one “can afford” to be wrong,
and of the “seriousness” of certain errors, forthcoming? Noting that such
considerations arise in certain decision-theoretic contexts, Neyman and
Pearson are led to suggest the behavioristic model of tests. Although the
behavioristic construal of tests was largely advocated by Neyman, and
was not wholly embraced by Pearson (see Pearson 1955), the Neyman
and Pearson theory of tests (and often orthodox tests as a whole) is gen-
erally viewed as providing a model of inductive behavior.

Here, tests are formulated as mechanical rules, or “recipes” for reach-
ing one of two possible decisions: “accept hypothesis H” or “reject H,”
where these are interpreted as deciding to “act as if H were true” and
“act as if H were false,” respectively.

Here, for example, would be such a ‘rule of behavior’: to decide
whether a hypothesis H, of a given type, be rejected or not, calculate
a specified character, x, of the observed facts; if x > x, reject H; if
X = Xx,, accept H. Such a rule tells us nothing as to whether in a
particular case H is true when x < x, or false when x > x,. But it
may often be proved that if we behave according to such a rule . . .
we shall reject H when it is true not more, say, than once in a hundred
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BEHAVIORISTIC, EVIDENTIALIST, AND LEARNING MODELS 501

times, and in addition we may have evidence that we shall reject H
sufficiently often when it is false.(Neyman and Pearson 1933, p. 142)

The view that emerges is this: since one cannot infer the truth of a
hypothesis on the basis of incomplete data, statistics should provide, not
rules of inductive inference, but rules for making optimal decisions as to
how to behave with respect to hypotheses. And a theory of statistics can
perform this function by providing rules that assure that one would not
be wrong too often. The criterion for a “good test” on the behavioristic
model (abbreviated as [BM]) may be stated thus:

(3.0) [BM]: A good test is one that has an appropriately small frequency
of rejecting H erroneously, and at the same time erroneously ac-
cepts H sufficiently infrequently (in a given sequence of applica-
tions of the rule).

Can the formal apparatus of orthodox tests satisfy the criterion of [BM]?

The statement arrived at in (2.7) makes it plain that the answer is yes.
For the formal apparatus of an orthodox test guarantees that the test’s
error rates will not exceed the values of o and  that one selects; one
needs only to fix them at appropriately small values. Neyman and Pearson
propose that one first fix a at some suitably small value, and then seek
the test which at the same time has a suitably small B. The “best” test
of a given size a (if it exists) is the one that at the same time minimizes
the value of B (i.e., the rate of Type II errors) for all possible values of
0 under the alternative J. And the tests given in 2.5 are the “best” Ney-
man and Pearson tests 7' with sizes .02 and .001, respectively.

However, are tests that are “good” according to behavioristic criteria
(of low error-rates in the long run) also good as tools for obtaining sci-
entific knowledge? Is test T, for example, a good tool for finding out
what is the case, as opposed to how to best behave, with respect to the
lengths of a certain species or population of fish? Most philosophers of
statistics say no. As Kyburg (1971, p. 82) puts it:

When it comes to general scientific hypotheses (e.g., that f(x) rep-

resents the distribution of weights in a certain species of fish . . .)
then the purely pragmatic, decision theoretic approach has nothing
to offer us.

The basis for their negative answers is this: It is admitted that if one
is in the sort of decision-theoretic context envisioned by the behavioristic
approach, then the orthodox test may be sensible. The paradigm example
of such a context is acceptance sampling in industrial quality control. But
in scientific contexts the behavioral interpretation of accept H and reject
H seems out of place. A scientist does not seem to be in a position to
specify how often he “can afford” to be wrong in some long run; nor
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502 DEBORAH G. MAYO

does the low error-rate in the long-run rationale seem relevant for a sci-
entist who is concerned with what particular inference from this exper-
iment is warranted. Nevertheless, orthodox tests enjoy widespread use in
science.

So it appears that scientists either routinely apply tests that are entirely
ill suited to their needs, or else they use orthodox tests in a way that fails
to be captured within the behavioristic model found in statistics texts. In
reality no statistical consultant worth his or her salt simply sets up an a-
level test, for a conventionally small a(.01 or .05), and then rejects or
accepts H according to whether or not the observation is significant at
level a. From the start, Pearson (1947, p. 192) declared that “no re-
sponsible statistician, faced with an investigation of this [non-routine]
character, would follow an automatic probability rule.” But, the still un-
answered question is: How are statistical tests to be used in scientific

inquiry?

4. Evidential-Strength Models of Statistical Tests. Existing attempts
to answer this question have endorsed what I refer to as evidential-strength
interpretations or models of tests.” Such attempts arise out of an as-
sumption that has been unquestionably accepted in discussions of phi-
losophy of statistics; namely, that the task of a theory of statistics (in
science) is to provide some means of using data to assign hypotheses a
measure of evidential strength (support, probability, reliability, degree of
belief, etc.). Carnap, Hacking, Kyburg, Levi, Salmon, Seidenfeld, and
others have endorsed one or another such measures of evidential rela-
tionship between data and hypotheses. I will abbreviate all such measures
as E-R measures. Our purpose here is not to evaluate their separate sys-
tems (but see Mayo 1981b) but to consider the evidential-strength model
of orthodox tests that arises from this tradition, and to explain in a very
general way why orthodox tests fail to satisfy the testing criterion of the
evidential-strength model.®

"Myself and Giere (e.g., Giere [1976]) are exceptions but see n. 16 for some differences.
Kempthorne and Folks (1971) also suggest a reinterpretation of orthodox tests in terms of
a notion [consonance] that is something other than an evidential-strength measure. It should
be noted that evidential-strength models of tests typically arise within attempts to criticize,
rather than defend tests.

Two notable exceptions involve attempts to erect plausible E-R concepts that are based
on orthodox testing ideas (i.e., error probabilities), but which avoid certain “evidentialist”
criticisms. The first is the work of Birnbaum (1977), who, unfortunately, died before fully
explicating his notion of a confidence concept. The second is the standardized tail-area
notion developed by Good (1982) as a way of using significance levels evidentially, while
avoiding criticisms based on (4.1). (See n. 9.)

¥Mayo (1982) provides a specific explanation of why Neyman-Pearson tests fail to satisfy
the evidential-strength criteria by which, I claim, tests are judged by Hacking, Seidenfeld,
and Spielman. However, the failure of Neyman-Pearson tests to satisfy these criteria, I
argue, can only be taken as grounds for criticizing these tests by misinterpreting the tests,
or, by begging the question against them.
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BEHAVIORISTIC, EVIDENTIALIST, AND LEARNING MODELS 503

On the evidential-strength view the orthodox tests would appear ade-
quate only if “accept H and reject H (with test T)” could be construed
as something like “strong evidence in favor of H” and “strong evidence
against H,” respectively, where evidential strength is measured by a cho-
sen E-R measure. That is, the criterion for a “good test” on the evidential-
strength model (abbreviated [EM]) is this:

(4.0) []EM]: A good test rejects H (accepts J) iff observed data (e.g.,
X.bs) provides appropriately strong evidence against H and in favor
of alternative J (i.e., weak evidence in favor of H as against J).

Is an orthodox test that is “good” according to the criterion of the be-
havioristic model (i.e., [BM]) also “good” according to the criterion of
the evidential-strength model [EM]? One apparent way of getting a yes
answer to this question is by interpreting “small frequency of erroneously
rejecting H” (or, “low significance level o”) as something like “small
evidential support for H (as opposed to J)”; in short, by interpreting or-
thodox error-probabilities as measures of evidential strength (i.e., as E-
R measures). Then the (pragmatic) decisions of the behavioral model be-
come construed as (cognitive) decisions to assign H one or another E-R
measure. So it appears at first glance that our problem is solved by an
evidential-strength interpretation of orthodox test results.

On such an interpretation, rejecting H at significance level .02, for
example, might be interpreted as: assign hypothesis H 2 percent proba-
bility, support, or other E-R measure; and assign alternative J 98 percent
evidential support. But such interpretations of error frequencies, while
common, are unwarranted and conflict with basic principles of orthodox
tests (e.g., the frequency view of probability). The only thing a .02-re-
jection says about a specific rejection of H is that it was the result of a
general testing procedure which erroneously rejects H only 2 percent of
the time in the long run of (similar or very different) applications of the
test. Since, in an orthodox testing context, parameter 6 is viewed as a
fixed (yet unknown) quantity, hypotheses about it are viewed as either
true or false. Thus, it makes no sense (within the orthodox context) to
assign them any probabilities other than O or 1; that is, a hypothesis is
true 100 percent of the time or O percent of the time, according to whether
it is true or false. But so long as its truth is unknown, the only thing the
orthodox test gives us are error frequencies of test rules. And, as the
critics of orthodox tests show, an evidential-strength interpretation of er-
ror frequencies is unworkable. (But see Birnbaum 1977 for the most
promising such attempt.) As Kyburg (1974, p. 58) notes:

But although many statisticians, and essentially all psychologists, so-
ciologists, political scientists, economists, biologists, ecologists, bac-
teriologists, pathologists, physicians, toxicologists, astronomers, an-
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thropologists, etc. cite significance levels (the smaller the more proudly)

. . as though they reflected a level of evidential support applicable
to the instance at hand, we know that in general this cannot be the
case. [emphasis added]

Probably the most flagrant and often-cited objection to using significance
levels this way is that for a fixed significance level a, no matter how
small, a large enough sample size can make it overwhelmingly likely that
H will be rejected at that level—even on the basis of data which hardly
seem to provide evidence against H.

One can easily see how this problem arises by referring to our example
of test T*. An observed outcome (X.,) reaches a significance level of,
say, .02, just in case D, exceeds 2 ox’s (see 2.5(a)). And as the sample
size n increases, the size of a single standard deviation oy decreases (being
inversely proportional to n). Thus, any difference D, as small as one
likes, is significantly different (from H) at level «, for as small an « as
one likes, provided n is made sufficiently large. This paves the way for
the following sort of “evidentialist” criticism of orthodox tests:

(4.1) (i) Consider a sample mean X that is significantly different from
H: 0 = 0, (according to orthodox test T*) at level «, for a as small
as one wants. (e.g., For a fixed at .02, X = 0, + 203 would be
a-significant.)

(ii) For a sufficiently large sample size n, such an a-significant
sample mean will differ so little from hypothesized value H that
(on a plausible E-R measure) it is taken as strong support in favor
of H, or at least as little evidence against H (i.e., little evidence in
favor of alternatives J).

(iii) [From (i) and (ii)]: The “best” test T " may sanction a rejection
of H on the basis of an observation that provides good evidence in
favor of H on any plausible E-R measure. Thus, a “good” test
according to the [BM] criterion (low error-rates) may fail to be
“good” on evidentialist criterion [EM].

(iv) [From (i)—(iii)]: If we interpret “X.,, is statistically significant”
or “T" rejects H at small significance level a (e.g., .02)” as “Xp,
provides a small amount of evidential support for H,” then (where
n is sufficiently large) test T may lead to assigning low support
for H on the basis of data that highly supports H.

Statement (iv) may be called the “Jeffreys-Good-Lindley Paradox” after
three of the first statisticians to demonstrate it for the case where Bayesian
posterior probabilities serve as the E-R measures. The thrust of their ar-
guments, as Lindley (1972, p. 15) summarizes it, is:

. . . that a result which is conventionally significant at, say, 5%, can
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have posterior probability near to 1, so that a hypothesis can be ‘re-
jected’ when it is highly likely to be true. . . . for large enough n the
posterior odds on 6, can be as large as one likes for a fixed level of
significance.’

Numerous criticisms of orthodox tests are variations on the same theme;
namely, that tests violate evidentialist criterion [EM] (for one or another
choice of E-R measure). Perhaps the most persuasive variety; criticisms
of ultra-sensitive tests, start by considering a value of 6 deemed negligibly
discrepant (in the positive direction) from the hypothesized 6. Although
test 7" includes all positively discrepant 6 values in its alternative J (mainly
for ease of mathematics), in reality, one is rarely interested in any and
all positive discrepancies from 6. Nor is it supposed that a simple (point)
null hypothesis H: 6 = 0 is ever a statement of the precise value of a
continuous quantity to any number of decimal places. This leads to an
alternative version of argument (4.1):

4.1)* (i)* Consider a value of 6 (e.g., 12.2), which, while positively
discrepant from 6y is considered negligibly discrepant from H.
Typically, one would not want to reject H for a given problem or
context if 6 exceeds 6y by such a trivial amount (e.g., by only .2
inch).

(ii)* By selecting an orthodox test to have an appropriately large
sample size n (e.g., 1600) it can be assured that the test almost
always (e.g., 98 percent of the time) leads to rejecting H at any
desired significance level o (e.g., .02) as long as the actual value
of 0 exceeds 0y by any amount at all (e.g., even if 0 is no greater
than 12.2)."

(iii)* [From (i)* and (ii)*]: Two rejections of H, at the same level
a(e.g., .02) with a given test-rule (e.g., T") may, if the two tests

°[I have added underlining for empbhasis, and replaced Lindley’s 6, with 6, for consis-
tency with my notation.]

The explanation (for contexts such as 7%) is that for sufficiently large sample size n,
the Bayes factor (an E-R measure) against H (and in favor of alternative J) is approxi-
mately proportional to 1/n/ (so long as the prior probability [density] of parameter 8 is
bounded as 6 takes on alternative values approaching 6;). By choosing a large enough n,
even an a-significant result (were it to occur) would, for a Bayesian, provide little prob-
abilistic support for alternatives to H, and so high support in favor of H. For detailed
discussions also see Good (1980, 1981, and 1982); and Edwards, Lindman, and Savage
(1963).

“From n. 5, (a), we have that a sample mean rejects H: § = 0, at the .02-level just in
case it exceeds 0y by 20% (i.e., 20 /n'/?). Thus, to ensure H: § = 12 is rejected 98 percent
of the time at the .02-level when 0 is as small as, say 12.2, we must ensure a sample
mean of 12 + 2oy will arise 98 percent of the time when 6 = 12.2. To do this we set
12.2 equal to (12 + 20%) + 203 = 12 + 4ay. Equivalently, set discrepancy .2 equal to
4a/n*?. Solving for n yields n = (200)?. Since o = 2, we get n = 1600.
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have different sample sizes, correspond to different degrees of the
“falsity” of H (i.e., to different discrepancies between the actual
and hypothesized values of 6).

(iv)* [From (i)*—(iii)*]: If we interpret “T " rejects H at small sig-
nificance level o” as “assign (or decide to assign) low support (or
degree of belief, etc.) to H,” then the “best” test (judged by [BM])
T" may almost always instruct us to assign H low support (or
other E-R measure) even though 8y is negligibly discrepant from
the true value of 6. Moreover, criterion [BM] would not distin-
guish this test from one in which this would rarely occur (e.g.,
when n is only 25).

Now a strict follower of the behavioristic model can deny the force of
the evidentialist criticisms of tests. For, he could maintain, he is not in-
terested in evaluating data on any of the evidential-strength measures
proffered by the critics. Error frequencies are simply long-run error-rates
of procedures, and it is not his fault if someone tries to use them as
measures of the “goodness” (in the sense of evidential strength) of par-
ticular applications of test procedures. Moreover, as Birnbaum (1977) has
shown, existing E-R approaches fail to provide the guarantees of error
rates in the long run that orthodox tests can. In short, our strict behaviorist
retorts, these evidentialist “criticisms” simply emphasize the incompat-
ability between a concern with error rates and a concern with evidential-
strength measures.

But the evidentialists want to go further and claim that in order to use
results of a statistical test to obtain scientific knowledge, one is forced
to adopt a (possibly invalid) evidential-strength interpretation of error fre-
quencies. Lindley (1965, p.68), for example, states:

... the 5% or 1% [significance level] is a measure of how much
belief is attached to the null hypotheses [H: 6 = 8]. It is used as if
5% significance meant [in terms of Bayesian inference] the posterior
probability that 6 is near § is .05. This is not so: the distortion of the
meaning is quite wrong in general. [emphasis added]

Regardless of the choice of E-R measure chosen as appropriate, an
essential premise underlying evidentalist criticisms of tests is

(v) A statistical test is appropriate for scientific knowledge only
if it satisfies [EM] (for a suitable choice of evidential-strength
measure).

Together with (4.1) and (4.1)*, it is concluded that

(vi) Orthodox tests are inappropriate for the task of obtaining
scientific knowledge.
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But why accept premise (v)? So deeply entrenched is the evidential-
strength philosophy that (v) (or something like it) has not been thought
to require justification. Claims like the following are typical:

Clearly what is wanted is a continuously variable measure of how
probable the various hypotheses are, in the light of the data, and the
NPT [Neyman-Pearson test] fails to provide this. One must conclude
that it is not an appropriate theory of inference. (Smith 1977, p. 74)

When the strict behaviorist simply denies (v), by asserting that only low
error-rates matter, the gulf between orthodox testing principles and such
well-entrenched epistemological ones only seems to widen. What is needed
is a positive argument showing how the formalism of orthodox tests (see
(2.7)) may be clothed so as to use test results for “conveying what the
data have to tell us.” To this end, I propose a third way of interpreting
orthodox tests: one that retains the desirable property of orthodox tests
(e.g., objective control of error rates), and yet involves a non-behavior-
alist, non-evidential-strength interpretation of test results.

5. A Learning Model of Statistical Tests. On the interpretation I pro-
pose, tests are viewed (in scientific inquiries), to use a phrase of E. S.
Pearson (1955, p. 204), as providing a “means of learning” from ex-
perimental data. Although Pearson did not precisely spell out how he
thought tests served this learning function, it seems clear that he held that
the value of orthodox tests (in such learning contexts) need nor lie in the
long-run error-rate rationale found in the behavioral model [BM]:

In other and, no doubt, more numerous cases there is no repetition
of the same type of trial or experiment, but all the same we can and
many of us do use the same test rules to guide our decision, following
the analysis of an isolated set of numerical data. Why do we do this?
What are the springs of decision? Is it because the formulation of the
case in terms of hypothetical repetition helps to that clarity of view
needed for sound judgement? Or is it because we are content that the
application of a rule, now in this investigation, now in that, should
result in a long-run frequency of errors in judgement which we con-
trol at a low figure? (Pearson 1947, p. 173; emphasis added)

Regretfully, Pearson leaves this tantalizing question unanswered, claim-
ing “On this I should not care to dogmatize.”

Without being dogmatic, I suggest that in scientific contexts error fre-
quencies are important, not because one is concerned simply with low
error-rates in the long run; but because they provide “that clarity of view
needed for sound judgment” regarding what has or has not been learned
in a given statistical inquiry. I shall refer to this as a learning model of
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testing.'' Tests accomplish this learning function by providing tools for
detecting certain discrepancies between the (approximately) correct pa-
rameter values (within a statistically modeled problem) and the hypoth-
esized ones. In our example of 7*, one is interested in learning the extent
to which the actual value of 0 is positively discrepant from the hypoth-
esized value, namely 12 (see 4.1*). Suppose our statistical result is an
a-level rejection of H with test 7. How can error probabilities be used
to determine the discrepancies about which we have and have not learned?
An analogy may be helpful.

A test of type T may be construed as an instrument for categorizing
observed-sample averages according to the size of the mesh of a netting
on which they are “caught.” In our example we are interested in “catch-
ing” fish larger than those arising from a population of fish correctly
described by 6 = 12. A test categorizes a sample average as “significant
at level a” just in case it is caught on a size o net; where a size a net is
one that would catch a(100 percent) of the possible samples from a fish
population where § = 12. We imagine that if a sample average (Xqps) is
“caught” on a size a net, then it would fall through any larger sized mesh;
i.e., it is not statistically significant at any smaller size o. The smaller
the value of o chosen for the a-significant net, the larger the width of
the netting on which the observed average must be caught—so the smaller
the percentage of the fish that are caught on it.

Then specifying a test to have a small size a is analogous to rejecting
H: 6 = 0y (e.g., 12) just in case a given sample of fish has an average
length (X,,,) that is “caught” on a net on which only a small percentage
of samples from fish population H would be caught. The rationale for a
reasonably small a is this:

(5.0) If it would be very rare for so large a catch to arise in a population
of fish with average length no greater than ', then such a catch is
a good indication that one is fishing from a population where 0
exceeds this value 6'.

Although this justifies taking an a-rejection of H (for small o) as in-
dicating that some positive discrepancy between 6 and 0y has been de-
tected; it is still not clear how the problem raised in (4.1)* is to be avoided.
For that argument shows that a rejection of H with test 7" even at a small

"If an evidential interpretation is simply seen as one in which data are used to reach
true claims (about what the data convey about a statistically modeled problem) and avoid
false ones (i.e., avoid misinterpreting the data), then the interpretation I propose does
constitute an “evidential” interpretation. However, that term has been so closely tied to
the view that a theory of statistics must provide an assessment of the evidential strength
that data afford hypotheses, that it seems clearer to designate the present interpretation by
means of a different term altogether.
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o level, such as .02, may reflect far less of an underlying discrepancy
when it arises from a test with large sample size, say n = 1600, as it
does from a test with a much smaller sample size, say n = 25. Let us
abbreviate these two T " tests by T "-1600 and T *-25, respectively. But,
as noted in (4.1)*(iii)*, the test criterion [BM] distinguishes tests only
by their long-run error-rates (i.e., their “operating characteristics”). So
the report: “Reject H at level .02 with the best test of type T',” when
it arose from 7 "-1600 would not be distinguished from its having arisen
from T"-25. Cleariy then, if one wants to distinguish the discrepancies
indicated by the two .02-rejections of H, one must go beyond the criterion
of the behavioral model of tests. To illustrate how the learning model
does this, consider again the fishnet analogy of tests:

Imagine that two fisherman, Mr. Powers and Mr. Coarse, seek lakes
with fish that are longer on the average than those in the lake in which
they usually fish, call the latter Null Lake. Mr. Powers tries fishing in
Lake A, Mr. Coarse, in Lake B, where for convenience they use nets
rather than rods. At the end of the day each fisherman claims to have
netted fish significantly larger (as measured by their average length X)
than what they would typically have netted in Null Lake, whose fish av-
erage only 12 inches.

Mr. Powers: If 1 had been netting in Null Lake, I'd have gotten a
catch as large as today’s catch only two times out of 100.

Myr. Coarse: Ditto.

Suppose it turns out that the size of the netting Mr. Powers used is far
smaller than the size of Mr. Coarse’s netting. Then, we would rightfully
conclude that Mr. Powers had detected less of a discrepancy between the
size of fish in Lake A and those of Null Lake, than Mr. Coarse found in
Lake B. More specifically, suppose we find out the following. Using Mr.
Coarse’s net, not only is today’s catch a very rare (frequency .02) oc-
currence when fishing in Lake Null (where 6 = 12 inches), it is also quite
a rare occurrence (frequency .06) for a lake with fish averaging 12.2
inches. Then, following the principle in (5.0), Mr. Coarse’s catch would
indicate he was fishing in a lake where 6 exceeded 12.2.

Suppose, on the other hand, that Mr. Powers’s net is far more sensitive
than Mr. Coarse’s. Although it is true that Mr. Powers’s catch (or one
even larger) would arise very rarely (only 2 percent of the time) if he had
been netting in Lake Null (and so by (5.0) some discrepancy from Lake
Null is indicated); say it is also true that “such a catch” (i.e., one as large
or larger) occurs very frequently, (in fact 98 percent of the time) from a
population of fish with average length 6 only 12.2. In other words, Mr.
Powers could be expected to be as or even more excited than he is about
today’s catch (using his net) 98 percent of the time, even if he were
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fishing in a lake whose fish averaged only 12.2 inches! If he maintained
that his catch indicated an average fish size 6 in excess of 12.2, we would
consider him to be misconstruing his results (i.e., making great whales
out of little flounders.) The principle that emerges is this:

(5.1) If a given catch would arise fairly frequently from a population with
average fish length 8 no greater than 6’ then such a catch does not
indicate that one is fishing from a population where 6 exceeds 6’.

This reasoning makes it clear why one would deem the result of Mr.
Coarse’s netting more impressive (indicative of larger fish) than Mr. Pow-
ers’s; Mr. Coarse’s catch clearly does indicate > 12.2 while Mr. Pow-
ers’s catch clearly does not. These two fairly extreme cases of what is
or is not indicated forms the basis for discriminating more generally which
0 values have been indicated more or less well by “catches” with dif-
ferently sized nets.

If one grants the plausibility of the principles that arise from looking
at tests this way, then, according to the learning view I propose, one has
the needed justification for distinguishing (where [BM] could not) an a-
significant rejection of H with T*-1600 from an a-significant rejection
of H with T"-25 (for any given «). For, the magnitude of the discrepancy
which the former (more powerful) tool indicates is smaller than the one
the latter (coarser) test does.'” The general principle for understanding
what has been learned (i.e., the positively discrepant 6’ value indicated)
by a given (positive) observed difference D, (between X, and a hy-
pothesized value 04) from a test T is this:

(5.2) (1) Dy is a good indicator that 6 exceeds 6’ only if (and only to
the extent that) 0' infrequently gives rise to so large a difference.
(i1) Dy is a poor indicator that 6 exceeds 6’ to the extent that 6’
frequently gives rise to such a large difference."

Construing tests in terms of the magnitudes of the discrepancies detected shows the
error in the common tendency to construe a statistically significant difference with a large
sample size as better evidence against the null hypothesis than with a small sample size.
That researchers have very often fallen prey to such a misinterpretation is, by now, well
documented (e.g., Rosenthal and Gaito [1963] have demonstrated this in a group of psy-
chological researchers). The misinterpretation stems from construing significance levels as
E-R measures (of the plausibility of the null hypothesis). The smaller the significance level,
the less plausible is H, and so the more plausible is its rejection; at least on such an E-R
construal of significance levels. Coupling such a construal with the greater reliability ac-
corded to experiments as the number of observations increases, explains the tendency to
deem an a-significant result with a large sample size as more impressive than one with a
smaller sample size.

It is by means of principle (5.2) that, on the learning view of testing I recommend,
the results of orthodox tests should be interpreted. To get a more concrete look at what a
specific interpretation might look like, fix the value of “infrequently” in (i) at .15. Suppose
test 7" is applied to the fish-length example and D, is significant at level .02; i.e., H is
rejected with 77 at level .02. We have the following:
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6. The Appropriateness of Orthodox Tests for Scientific Learn-
ing. Even if it is agreed that orthodox-test conclusions can be reinter-
preted in terms of the values of 6’ discrepant from 6 (for 7, these are
values in excess of 04) that are or are not indicated, we still seem to
obtain a negative answer to the question: Are tests which are “good”
according to the criteria of low long-run error-rates also “good” from the
point of view of the learning model? It would seem that a test is “good”
for the purpose of learning about discrepancies (between actual and hy-
pothesized values of 0) if it classified an observed difference D, statis-
tically significant (and so grounds for rejecting H) just in case the dif-
ference was a “good indicator” (in the sense of (5.2(i))) of a scientifically
(or substantively) important discrepancy. But, as the critics of orthodox
tests have shown, it is possible to so bias a test against null hypothesis
H (i.e., make it so sensitive to discrepancies from 6;) that a rejection of
H from a test with error rates as low as one chooses still may be a poor
indicator of a given scientifically important discrepancy. Rejecting H: 6
= 12, for example, with a .02-significant difference (with “best” test T ")
is a poor indicator of a discrepancy .2 inches from 12. And if .2 was
deemed a negligibly small discrepancy, the test would fail miserably for
the task of learning about non-negligible ones.'*

(i) The values of 6’ that give rise to a .02-significant difference (no more than) 15
percent of the time are those that exceed the hypothesized value, namely, 12 by (no
more than) 1 oy. That is, a .02-rejection of H (with 77) is a good indication that 6
exceeds 12 + 1 oy (equivalently, that § exceeds X, — 1 0%.)

Focus now on .02-significant results from 7-25 and from 7*-1600. Both test results are
equally good indicators (using rule (i)) of a discrepancy in excess of 1 gy (equivalently,
of 0 in excess of 12 + 1 oy.) Then, the result from T *-25 is as good an indication that
0 exceeds 12.4 inches, as is the result from 7 *-1600 that 6 exceeds 12.05 inches. Similarly,
both results are equally poor indicators of positive discrepancies (6 — 12) in excess of
those that have an equally high frequency of giving rise to such significant differences.
Letting .85 be used for “frequently” in (5.2) (ii), we have:

(i) A .02-rejection of H is a poor indicator that § exceeds X, + log. It follows that
a .02-rejection of H: = 12 with T7-25 is as poor an indication that 8 exceeds
13.2 as is a .02-rejection from 7 *-1600 that 6 exceeds 12.15.

Mathematically, (i) and (ii) are equivalent to: X is a good indicator that 8 exceeds the value
of the lower bound of an 85 percent confidence interval; and is a poor indicator that
exceeds the value of the upper bound of an 85 percent confidence interval. The major
difference is that under the learning model not all 6 values in the corresponding upper and
lower confidence intervals are on par. For example, far from construing 6 values in excess
of X, but less than the upper bound of a confidence interval, as acceptable estimates of
0, such values are poorly indicated; the more poorly the further they exceed X,,. An
analogous construal of “accept H” occurs in Mayo 1983.

“This is easy to see by referring to the cut-off points of (i) and (ii) in n. 13. That is,
since we saw that a .02-significant result with 7*-1600 is a poor indicator of 6 in excess
of 12.15, it is an even poorer indicator that 6 exceeds 12.2. Moreover, since a .02-sig-
nificant result from 7*-25 is a good indication that 6 exceeds 12.4, it is an even better
indication that 6 exceeds 12.2.
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The reason that this negative conclusion appears inescapable is the ten-
dency to equate the statistical conclusion with a substantive scientific one,
and admittedly, orthodox tests are often formulated in a manner that en-
courages such an identification. What follows from such an equation is
that a good statistical inference is equated with a good scientific one. But
if a “good” scientific test is one that indicates all and only discrepancies
of interest; then a test that is “good” from the point of view of low error-
rates may fail to satisfy the criterion of scientific learning. This we have
already seen. But by clearly distinguishing the statistical from the sci-
entific conclusion, it is possible to critically interpret the former’s bearing
on the latter. In this way the criticism of overly sensitive tests points to
a possible misinterpretation of the substantive or scientific import of a
statistically significant result.

In other words, a “good test on the learning model” can be understood
in two ways. To avoid ambiguity, two criteria must be distinguished:

(6.0) [LM]: (i) A statistical testing procedure is good iff one is able to

objectively evaluate what has and has not been learned from a sta-
tistical conclusion (reject or accept H)."
[LM]: (ii) A statistical test conclusion (e.g., T rejects H) is [poor]
good for learning about a given discrepancy between 6 and 6’ to
the extent that it is a [poor] good indicator that 6 exceeds 0', (in
the sense 49(5.2)).

The question “Is the orthodox theory of testing appropriate for objec-
tive scientific learning?” can now be expressed as: “Is the orthodox the-
ory of testing a good procedure in the sense of [LM] (i)?” We can now
reason to a positive answer to this question by connecting the separate
results of this paper:

(6.1) (1) One can objectively evaluate what has and has not been learned
from a statistical conclusion iff one can objectively ascertain what
it does and does not indicate in the sense of (5.2).
(2) One can objectively evaluate what a test result does and does
not indicate (in the sense of (5.2)) iff one can objectively determine
the frequencies with which test results arise from various values of
0’ (i.e., from various discrepancies between actual and hypothe-
sized 0 values.)

*An obvious additional requirement, of course, is that the procedure be capable of being
used as a learning tool to begin with. A procedure that often informed one that little had
been learned would otherwise count as “good” on [LM] (i). Orthodox tests, do, however,
satisfy this additional requirement, since by suitably specifying tests they can be made to
detect discrepancies of interest as frequently as one wants. More importantly, the learning
construal of test results also indicates how to specify a subsequent test to learn more.
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(Equivalently, a test result can be evaluated objectively iff one
can objectively determine the error frequencies of a test result for
any of the possible values of 6 being considered.)

(3) An orthodox test (as defined in (2.7)) permits the objective
evaluation of error frequencies of a test result over possible values
of 0.

(4) From (1)—(3) it follows that an orthodox test procedure (as-
suming its assumptions are approximately satisfied) is good for the
task of objective scientific learning (as defined in (6.1) [LM] (i));
for it allows one to determine if particular results are good in the
sense of [LM] (ii). And this is what I have sought to show.

7. Conclusion and Suggestions for Further Work. The view of testing
that emerges in the learning model I propose is this: A test functions as
a standard tool for detecting discrepancies between a hypothesized pa-
rameter or model, and the parameters or models indicated by the ex-
perimental observation (by means of such rules as (5.2)). Deliberate choices
of error frequencies (or “operating characteristics”) before the test serve
to specify the type of discrepancies that the test is frequently able to de-
tect.'® In this respect the test functions much like an instrument for mag-
nifying discrepancies typically indiscernible from a single sample.'” Once
the data are in hand, considerations of error properties (i.e., the test’s
power to detect various discrepancies) are far from being irrelevant (as
critics often allege). The ability to guarantee or control error frequencies
is what enables an orthodox test to function as a nonsubjective tool for
understanding what observed test results indicate about their source.

“Giere (1976) suggests specifying tests so that they have appropriately high probabilities
of detecting all and only discrepancies about which it would be of interest to learn in a
given inquiry. By replacing the appeal to behavioristic considerations (of the “seriousness”
of certain errors) with an appeal to scientific considerations of the magnitudes of discrep-
ancies deemed important, Giere provides the groundwork for the reinterpretation of tests
I suggest. According to Giere, considerations of scientifically important discrepancies can
be based on the uses to which the test result is to be put; and as such, most investigators
can agree on what counts as a scientifically important discrepancy.

On the present view, in contrast, whether or not specifications of scientifically important
discrepancies are available, a “good” test procedure should enable one to understand what
sort of discrepancies have in fact been detected by a given statistical result (i.e., it should
satisfy [LM] (i)). Whether or not the resulting information (from the statistical test) is
relevant for a given use is, on the present view, a separate question.

"Isaac Levi (1980), in construing Neyman-Pearson tests as “routinizable programs” and
as using observations as “inputs” as opposed to as evidence for deliberation and inference,
also views orthodox tests as instruments of a sort. My view of tests as learning tools may
well fall under Levi’s view of a “routine,” if that notion is suitably broadened. (Admit-
tedly, [LM] does not use data as evidence for deliberation if, as Levi maintains, this re-
quires assigning posterior probabilities [or other E-R measures] to hypotheses.) In that
case, I would see “routines” as the major (if not the only) methods needed for using data
in the “enterprise of knowledge”—a view with which, I take it, Levi agrees.
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In test T*, for example, an observed difference is understood to in-
dicate 0 is positively discrepant from 6’ by determining that almost none
of the possible samples would give rise to such a large difference were
0 no greater than 0'. This understanding of a test result is neither a de-
cision to behave as if 6 exceeded 6', nor an assignment of evidential
strength to the hypothesis that 6 exceeds 8'. Rather it is a statement of
what has been learned about how differences (like the one observed) could
be generated systematically (i.e., more often than accidental effects). The
statement “By fishing in Lake B using 7 *-25 (Mr. Coarse’s net) a ‘catch’
(of 25 fish) with mean length as large as 12.8 inches would be generated
systematically” asserts “The mean value of such catches in Lake B ex-
ceeds 12.2 inches.”

This is a statement about the distribution of observations (i.e., X val-
ues) that would arise if the mean of all of the (25-fish) catches from Lake
B exceeds 12.2 (i.e., iff the mean of X exceeds 12.2). For it is about
this (sampling) distribution that the statistical hypotheses in (2.0) refers.
Admittedly, the sequence of observations to which the test result refers
is likely to be hypothetical. But this does not vitiate its use as a standard
way of understanding the process generating the actual observation. By
learning about the mean of the distribution X, for example, one is at the
same time learning about the initial scientific hypotheses (# and $) as
to whether 0, the mean length of fish in a given population exceeds 12
inches by various amounts. The reason is that the mean of X is equal to
the population mean 6 (see note 3).

How does the learning model relate to more global statements of sci-
entific knowledge? A full answer is beyond the scope of this paper, but
my interpretation of test 7" provides the beginning for the answer I would
suggest. For the function served by statistical tests when the quantity 6
represents mean fish lengths is much the same as when 0 represents the
length of a table, the mean concentration of a hormone, the mean in-
creased fitnesses of a given species, the mean deflection of light near the
sun, and so on. For whether it is due to the incompleteness and inac-
curacies of observation and measurement or the variability of the effect
or system of interest, experimental data is rarely expected to agree pre-
cisely with testable predictions; even when they are derived from scien-
tific hypotheses that adequately describe the phenomenon of interest. As
such, the testable prediction may be expressed as a statement about a
distribution of observations that would be expected; that is, as a statistical
hypothesis about an experiment. Statistical tests then serve to detect and
distinguish observed differences that are due to accidental or trivial dis-
crepancies, from those due to systematic or substantively important ones.

To arrive at most interesting statements of scientific knowledge several
individual statistical tests have to be imbedded within a larger, more com-
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plex model of a scientific learning-strategy. To this end, a system of
“metastatistical” principles, along the lines of those developed in (5.2)
for T*, may be developed for a variety of statistical tests. Then, by means
of principles spanning several different theories (e.g., theories of exper-
iment, of observation, of the primary scientific phenomenon) individual
tests may be specified, interpreted, crosschecked and corrected, by ref-
erence to other statistical tests within the larger model of the given learn-
ing-effort.

To the extent that the learning-model interpretation of tests that I sug-
gest succeeds in capturing the appropriate function of statistical methods
in science, orthodox tests avoid being dethroned by their critics. If I am
correct (in thinking the extent is considerable), then the challenge would
be for proponents of non-orthodox methods (e.g., Bayesians, fiducialists,
etc.) to show the ability of their methods to accomplish the actual tasks
of experimental learning described here. In any case, my challenge might
at least encourage philosophers of statistics to weigh the merits and de-
merits of statistical methodologies by applying them to actual inquiries.
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