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In seeking general accounts of evidence, confirmation, or inference, philosophers have 
looked to logical relationships between evidence and hypotheses. Such logics of eviden- 
tial relationship, whether hypothetico-deductive, Bayesian, or instantiationist fail to 
capture or be relevant to scientific practice. They require information that scientists do 
not generally have (e.g., an exhaustive set of hypotheses), while lacking slots within 
which to include considerations to which scientists regularly appeal (e.g., error proba- 
bilities). Building on my co-symposiasts contributions, I suggest some directions in 
which a new and more adequate philosophy of evidence can move. 

1. Introduction. A question regularly posed by scientists and philosophers 
of science is: 

When do empirical data provide a good test of, or reliable evidence 
for, a scientific hypothesis? 

Despite this shared interest, the considerations scientists appeal to in 
answering it are markedly different from those invoked in philosophical 
accounts of evidence and confirmation. Philosophical accounts seek the 
answer in the logical relationship between evidence (or evidence state- 
ments) and hypotheses. We can call such accounts logics of evidential re- 
lationship. In scientific practice, in contrast, the answer calls for empirical 
information about how the data were generated and about the specific 
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experimental testing context. The more we have studied experimental ep- 
isodes (thanks to the early efforts of Ian Hacking and others), the more 
we have come to recognize that there are key features of scientific practice 
that are overlooked or misdescribed by all such logical accounts of evi- 
dence, whether hypothetico-deductive, Bayesian, or instantiationist. These 
logics of evidential-relationship require information that scientists do not 
generally have (e.g., an exhaustive set of hypotheses), while lacking slots 
within which to include considerations to which scientists regularly appeal 
(e.g., error probabilities). 

However, philosophers who reject these logical accounts of evidence 
and confirmation have tended to despair of constructing any general ac- 
count of scientific inference. In order to explicate evidence and inference, 
naturalistic epistemologists have counseled, philosophers should just look 
to science, (perhaps with some sociology or psychology thrown in). This 
strategy, "just ask the scientists" will not do (not to mention that scientists 
are likely to tell us "we're Popperians," which is to take us right back to 
philosophy). In the first place, scientists disagree-and not just about par- 
ticular inferences, but also about the general methods and measures for 
interpreting data. (There is a definite role for philosophers of science in 
these disputes, especially disputes in philosophy of statistics-but that is 
a different matter.) But the real problem with the strategy of "just ask the 
scientists" is that it will not fulfil our philosophical interest in understand- 
ing when and why scientists ought to rely on the evidential practices they 
do: it will not be normative. Nor could this strategy be relied on to identify 
the practices actually responsible for achieving reliable knowledge. 

Work continues on inductive inference and confirmation, generally 
along the lines of logics of evidence-especially along Bayesian lines-but 
much of it goes on largely divorced from the broader goals it was intended 
to fulfill. Where Peter Achinstein has argued that philosophical logics of 
evidence are irrelevant for scientists, I will go further and suggest they are 
(or at any rate, they have become) irrelevant for philosophers of science 
as well. But far from concluding that the project of developing a philos- 
ophy of evidence should be abandoned I shall urge that we develop a more 
adequate account of evidence and of inference. Accepting the status quo 
has allowed deep and fundamental challenges to science to go unanswered, 
and has led us to abandon what has been held as a key goal of the phi- 
losophy of knowledge enterprise. Scientific inference is too important to 
leave to the scientists. 

The time seems ripe to remedy this situation. Freed from the traditional 
paradigms for philosophy of confirmation, we can take advantage of what 
we have learned from turning our attention to experiment in the past 15 
years. As my co-symposiasts have shown (wittingly or not), the "data" 
from experimental practice may serve, not just as anomalies for traditional 
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logics of confirmation, but as evidence pointing to a substantially different 
kind of philosophy of evidence. 

My goal in this paper, indeed what I regard as the goal of this sym- 
posium, is to point to the directions to which a new and more adequate 
philosophy of evidence can move. In developing our ideas for this sym- 
posium, Professors Achinstein, Woodward, and I agreed that in order to 
be adequate, an account of evidence should: 

1. identify the experimental practices actually responsible for reliable 
scientific inferences; 

2. recognize that scrutinizing data involves questions about whether 
the overall experimental arrangement is sufficiently reliable for 
testing the claim in question, and say exactly how this affects the 
evidential import of data; 

3. explain the fact that questions of evidence and of well-testedness 
are frequently controversial, and motivate the kinds of tests and 
checks to which scientists appeal in such controversies; 

4. take account of questions about how to generate, model, use, or 
discard data, and provide criteria for scrutinizing data; 

5. regard the question of whether a given experiment provides good 
evidence for some hypothesis as an objective (though empirical) 
one, not a subjective one. 

2. A Framework for Linking Data to Scientific Claims and Questions. 
Clues for how to achieve these goals may be found in several of my co- 
symposiasts' remarks. In the first place, both Achinstein and Woodward 
call our attention to the fact that the role of data as evidence has little to 
do with our ability to deduce the detailed data from hypotheses and the- 
ories. So rather than assume such a deduction occurs, an adequate account 
should make explicit the nature and complexity of the steps actually re- 
quired to link data and hypotheses. To this end, I propose we view data 
and hypotheses as related, not directly, but by a series of piecemeal (bi- 
directional) links-from the experimental design to the data analysis and 
only then to one or more primary hypotheses or questions. For each ex- 
perimental inquiry we can delineate three types of models: models of pri- 
mary scientific hypotheses, models of data, and models of experiment that 
link the others by means of test (or estimation) procedures. 

In the second place, obtaining valuable scientific information, as Wood- 
ward emphasizes, requires using raw data to discriminate among different 
claims (or parameters) about the phenomenon of interest. However, get- 
ting the raw data to perform such a discrimination generally requires sepa- 
rate work in generating and analyzing the raw data to obtain models of 
the data. Thus, I would supplement Woodward's account with explicit 
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Model 

Figure 1. Models of experimental inquiry. 

strategies for how to take messy and inaccurate raw data and arrive at 
more accurate data (e.g., by averaging, by least squares estimation). For 
example, Woodward (this issue) refers to the photographs of stellar po- 
sitions as Eddington's data (in the eclipse tests of General Relativity in 
1919); but these photographs could not be used to discriminate between 
claims about the existence or the magnitude of the deflection effect. Sci- 
entists had to infer an estimated deflection using a standard statistical 
technique: least squares estimation of parameters in a model. Yes, that 
means data are based on intermediary inferences-but far from posing a 
threat to reliability, as is typically thought, this becomes the source of 
avoiding these very threats. In effect, the modeled data reports on what 
would have been observed had we been able to measure the values of interest 
more accurately and more cleanly. In this sense, the modeled data should 
also be classified as a type of phenomenon, as Woodward understands 
that term-a reliable, repeatable effect. It is modeled data that enter into 
the counterfactuals Woodward speaks of, not raw data. 

3. Error Statistical Reasoning. Having arrived at adequate data (or a model 
of the data) we can ask if they provide strong evidence for a scientific hy- 
pothesis. Probabilistic and statistical considerations arise to answer this, 
but not to supply degrees of credibility, probability, or support to scientific 
hypotheses (as they do in probabilistic logics of evidence). Probability en- 
ters instead as a way of characterizing the experimental or testing process 
itself; to express how reliably or severely it discriminates between alternative 
hypotheses, and how capable the test is at detecting various discrepancies 
and errors. That is, probability enters to characterize the test's error prob- 
abilities. Logical empiricists were right to suggest we turn to formal statis- 
tical ideas in building an account of inference, but we should turn, not to 
simple Bayesian logics but rather to contemporary error statistical methods 
that are widely used in the sciences. In referring to contemporary error sta- 
tistics (a label that I hope will replace "classical statistics") I include the 
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familiar techniques of statistical analysis we read about every day in polls 
and studies such as statistical significance tests and confidence interval es- 
timates. When employing these tools to erect a general philosophy of evi- 
dence, however, I need to adapt them in ways that go beyond what is strictly 
found in statistics texts (e.g., Mayo 1996). But the key principle of this ap- 
proach is retained: to determine what inferences are warranted by data re- 
quires considering the error probabilities of the overall testing procedure- 
hence, I call it the error statistical approach. 

This principle of error-probability statistics offers a mathematically rig- 
orous way of expressing a key point raised by both Professors Woodward 
and Achinstein; namely, that two pieces of data that would equally well 
support a given hypothesis, according to logical measures of evidence, may 
in practice differ greatly in their evidential value because of differences in 
how reliably each was produced. In practice, scientists wish to know 
whether the experiment (from which the data arose) was a reliable probe 
of the ways we could be mistaken in regarding data as evidence for (or 
against) a hypothesis. Scientists seem willing to forgo grand and unified 
schemes for relating their beliefs in exchange for a hodgepodge of methods 
that offer some protection against being misled by their beliefs, and (even 
more so) by yours. 

This does not mean we have to give up saying anything systematic and 
general, as many philosophers fear. The hodgepodge of methods give way 
to rather neat statistical strategies, and a handful of similar models may 
be used to probe a cluster of mistakes across a wide variety of domains. 
Granted, unlike evidential logics, our account must recognize that there 
may be uncertainty as to whether we have any kind of evidence for a 
hypothesis H. Nevertheless, we may know a good deal about how the type 
of data can be mistaken as evidence for H. 

I will focus on one kind of mistaken interpretation of data that both 
Achinstein and Woodward illustrate in their papers (this issue): the data 
accord with or fit a given hypothesis H or hypothesized effect, and yet it 
may be an error to construe this as good evidence for H. I agree with 
Achinstein that existing accounts make it too easy to count a good fit as 
good evidence. In addition to a good fit we need to be able to say that the 
test was really probative-that so good a fit between data e and hypothesis 
H is extremely improbable if in fact it is a mistake to regard e as evidence 
for H. To put this in other words, we need to be able to say that if it were 
a mistake to regard the data as good evidence for H, then the test proce- 
dure almost surely would have signaled this, by producing a result that is 
discordant from H (or more discordant than the one we observed). 

So we can say: 
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Data e produced by procedure T provides good evidence for hypoth- 
esis H to the extent that test T severely passes H with e.1 

Hypothesis H passes a severe test with e if .(i) e fits H* and (ii) the test 
procedure T has a very low probability of producing a result that fits 
H as well as (or better than) e does, if H were false or incorrect. 

*for a suitable notion of fit or "distance." 

One need not start from considering a hypothesis and then seeing if 
data provide evidence, one can also start with data and work ones "way 
up" as it were. This is what goes on in an estimation problem, where 
parameters are estimated from data: 

Data e (generated by procedure T) is good evidence for the set of 
hypotheses (i.e., set of parameter values) that T severely passes with e. 

When hypothesis H has passed a highly severe test, something that gen- 
erally requires several individual tests taken together, we can infer that the 
data are a good indication of the correctness of H there are good grounds 
that we have ruled out the ways it can be a mistake to regard e as evidence 
for H. 

These mistakes arise because while the data may accord with a hypoth- 
esis, we cannot be sure this is not actually the result of "background," of 
"noise," of artifacts that we have not controlled, or of faulty experimental 
and theoretical assumptions. Rather than be stymied by our limited con- 
trol, we may instead learn enough about background factors to "subtract 
them out," or estimate the likely extent of their influence. Let us consider 
one of Achinstein's examples. 

4. Achinstein's Example. According to Thomson, Achinstein tell us, Hertz 
did not learn enough about background factors that could mask the effect 
in his cathode ray experiments. To give a bare thumbnail sketch, the pri- 
mary question is: are cathode rays electrically charged? Hertz regarded his 
"negative result"-the fact that the needle of the electrometer remained 
at rest when cathode rays were produced-as good evidence that cathode 
rays are not electrically charged. Fourteen years later, Achinstein explains, 
"Thomson . . . challenged the claim that these results were evidence that 
cathode rays are electrically neutral" (this volume). 

The hypothesis that cathode rays are electrically neutral may be seen 
as an example of a hypothesis asserting "no-effect," often called a "null" 
hypothesis. We can abbreviate it as Ho. Herz's negative result accords with 

1. I prefer to state this in terms of data e being a "good indication" of H. I allude 
to "good evidence" here to accord better with the manner of speaking of my co- 
symposiasts. 
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or "fits" the expectation under null hypothesis H. A classic error that one 
must be on the lookout for with negative results, however, is that the test 
did not have the capacity, or had too poor a capacity, to produce data in 
disagreement with H0, even if it is false, i.e., even if the alternative hy- 
pothesis, which we may abbreviate as J, is true. This is the upshot of 
Thomson's critique. 

The two hypotheses are: 

Ho: cathode rays ares electrically neutral (i.e., the experimental data 
are due to Ho) 

J: cathode rays are charged. 

Thomson's critique boils down to showing that the negative result would 
be expected even if alternative J were true, due to inadequate evacuation 
of gas in the cathode tube. It is the gas in the tube that is responsible for 
the negative result. So the data do not warrant the "no effect" hypothesis 
H0, or so Thomson is arguing. Thomson's critique can be captured by 
reference to the severity requirement: 

Critique of Hertz's inference: Condition (i) holds, e fits Ho, but con- 
dition (ii) does not: so good a fit is to be expected even if Ho were 
false, i.e., even if it were a mistake to regard e as evidence for Ho (and 
against J). 

By means of this kind of argument, Thomson is able to critique Hertz, 
and Achinstein is able to endorse this critique. 

Granted, proponents of logics of evidence could reconstruct this cri- 
tique. For example, finding this new information about the gas in the tube 
could be used to alter Hertz's Bayesian probability assignments. But this 
is different from being able to argue that Hertz's data really did not con- 
stitute evidence for Ho -even at the time (which I take it is Achinstein's 
point2). 

Now in a case like this one, no statistical model was needed to describe 
what it would be like if in fact Hertz's negative result were actually due 
to a background factor. Thomson could actually display what it is like: 
by removing a sufficient amount of gas from the tube he produces the 
electrical deflection that Hertz missed. But, in other cases, such literal 
manipulation is impossible, and statistical models and simulations must 
be appealed to in order to represent what it would be like, statistically, if 
it were a mistake to regard data as evidence for a hypothesis. By teaching 
us about the hard cases, the formal statistical strategies offer powerful 
insights for experimental reasoning in general. 

2. He contrasts his position with that of Buchwald 1994. 
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5. Woodward's Example. While in discussing the Hertz example, Achin- 
stein is concerned with an erroneous inference from a "negative" result, 
Woodward discusses an example of an erroneous "positive" inference: an 
inference to the existence of a phenomenon, in particular, gravity waves. 
Keeping again to a mere thumbnail sketch: Joe Weber, who had built an 
impressive gravity wave detector, announced he had evidence of the ex- 
istence of gravity waves in the late 1960s. His data analysis, however, was 
criticized: His procedure, critics alleged, was too likely to classify results 
as positive, i.e., as indicative of gravity waves, even if they were absent. 
(This is aside from other errors he and his team were found to have com- 
mitted.) Once again we can appeal to a standard null hypothesis Ho and 
a corresponding alternative hypothesis J: 

Ho: the phenomenon (gravity waves) is absent, i.e., any observed de- 
partures from Ho are "due to chance" 

J: gravity waves are present (discrepancies from Ho "are real"). 

Critique of Webber. Condition (i) holds, e fits J (much better than Ho) 
but condition (ii) does not: there is a high probability that his test Tyields 
data favoring J, even if Ho is true. (Satisfying condition (ii) requires that 
the probability is high that T yields data in favor of Ho when Ho is true.) 

An important, and fairly common, methodological issue arose in the 
critique of Weber. The problem stems from examining the data to decide 
which patterns will count as noteworthy or unusual after the fact.3 

A suspicion deeply held by many of Weber's critics was that he en- 
gaged in data selection and a posteriori statistical reasoning . . . . If 
one searches long enough in our finite sample of data, one must find 
some complicated property which distinguishes [the observed result 
from the 0 effect]. (Saulson 1994, 268) 

This "tuning" of the signature "to maximize the strangeness of the result" 
(ibid., 272) invalidates the usual statistical significance level assessment- 
the assessment of how improbable the observed departure from the null 
hypothesis is, due to chance alone (i.e., even if Ho is true). It is this statis- 
tical fact that gives weight to the charge of Weber's critics that "it is a 
slippery thing to calculate how unlikely an event is, if the signature of 
the event is not decided until after the data is examined for unusual fea- 
tures" (ibid). If Weber's result were due to a real effect, and not to 

3. There has been much confusion surrounding the issue of when and why such "snoop- 
ing" should be disallowed. I discuss this in Mayo 1996 (esp. Ch. 9). See also Spanos 
(2000). 
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erroneous tuning, it should show up in the data analyses conducted by 
other researches; however, they found, it did not. 

6. Some General Remarks. In the examples presented by Achinstein and 
Woodward, the concern was to scrutinize cases where data were regarded 
as providing good evidence either for or against a hypothesis. The cri- 
tiques, based on my idea of severity, may be capsulized as follows: 

The Basic Severity Scrutiny. 
In scrutinizing the severity of experimental data e regarded as pro- 

viding evidence in favor of [against] a hypothesis H, the concern is 
that the test that gave rise to e had too little ability (or too low a 
probability) to provide evidence against [in favor of] H, even if H is 
incorrect [correct]. There is a correspondingly low severity accorded 
to passing H [not-H] by means of data e.4 

Two Points to Emphasize: 
I want to emphasize that scrutinizing evidence by such a severity or 

reliability assessment is not limited to challenging claims to have evidence 
for a hypothesis. It is equally important when it is agreed there is good 
evidence for a hypothesis, and the task is to learn more about what specific 
errors have been well ruled out. Indeed, in evaluating a large-scale theory, 
this is the main goal to which a severity assessment (of lower-level exper- 
imental hypotheses) is directed. For example, individual hypotheses of 
General Relativity (GR) were regarded as passing reasonably severe tests 
at a given time, e.g., by 1960, but a good deal more work was needed to 
understand what had and had not been learned from its having passed 
those tests. This goal directs researchers to ask: How might there be dis- 
crepancies from severely passed hypotheses (e.g., parameter values) dis- 
crepancies that have yet to show up in existing experiments? This led to 
developing and probing alternatives to GR, which in turn led to a much 
deeper understandingof GR's predictions (which continued to pass se- 
verely all solar system tests).5 

4. It must be remembered that, thanks to the piecemeal design of these tests, that "not- 
H" is not the so-called "catchall hypothesis" (the disjunction of all hypotheses other 
than H). However, the severity assessment can still be applied when not-H is a dis- 
junction, even consisting of infinitely many "simple " or "point" hypotheses. In an 
appropriately designed test, high (or low) severity to passing one of the point hypotheses 
entails high (or low) severity to passing all of the others. One reports, as the severity 
assessment, either the maximal (or minimal) severity values that hold for each simple 
hypotheses. See, for an example, Mayo 1996, Ch. 6. 
5. A discussion of these and several related points concerning the relationships between 
experimental knowledge and testing high level theories may be found in Mayo 2000. 
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A second point to emphasize is that in practice often informal and 
qualitative arguments may be all that is needed to approximate the severity 
argument. Indeed perhaps the strongest severity arguments are of a qual- 
itative variety. A favorite example is Hacking's (1983) "argument from 
coincidence" for taking dense bodies as a real effect, not an artifact. "If 
you can see the same fundamental features of structure using several dif- 
ferent physical systems, you have excellent reasons for saying, 'that's real' 
rather than, 'that's an artifact' " (Hacking 1983, 204). We can argue that, 
if it were an artifact, it is highly improbable that numerous instruments 
and techniques would have conspired to make all of the evidence appear 
as if the effect were real. In short, we run a severity argument, and we do 
so without any introduction of a formal probability model. 

Woodward, too, emphasizes the importance of this pattern of statistical 
counterfactual reasoning in appraising evidence. However, in order to 
serve as the basis for a philosophical account of evidence, we have to be 
very clear about how to articulate and how to assess such counterfactuals, 
and our grasp of such counterfactuals may be anything but clear. Formal 
error statistical models and methods, as I see them, can come to the rescue; 
and that is why I think they offer a far more fruitful basis for an account 
of evidence than do appeals to a "logic" of counterfactuals. 

For instance, a number of controversies about evidence revolve around 
questions as to whether certain aspects of experiments alter the evidential 
import of the data: Does novelty matter? Does varied evidence count 
more? An example we just saw was: What is the impact of determining 
after the trial what to count as "a signal"? (in Weber's experiments). Con- 
cepts from statistical testing, by showing how an experiment can be mod- 
eled as observing the value of a random variable, demonstrate how error 
probabilities and, correspondingly, severity, can be altered-sometimes 
dramatically by such an after-trial determination. The issue, very 
broadly considered, alternatively arises under different names: tuning the 
signal to the data, data mining, and hunting (with a shotgun) for statistical 
significance. However, the evidential issue is the same, and error statistical 
methods provide a standard or canonical way of expressing the problem, 
and checking if it invalidates given data analyses. By contrast, accounts 
which ignore error probabilities do not afford a principled basis for this 
kind of critique because such aspects of data generation need not alter 
evidential-relation measures in particular, they do not alter the likelihood 
function. That is because a likelihood is a function only of the actual out- 
come, not of outcomes other than the one observed.6 

6. The likelihood function is defined in terms of a statistical distribution (e.g., the Bi- 
nomial distribution) assumed to represent an experimental situation (e.g., observing the 
outcomes of coin-tossing trials): when the outcome e is observed and so fixed, the 
likelihood function of hypothesis H is defined as P(eIH), where H is a hypothesized 



EXPERIMENTAL PRACTICE AND EVIDENCE S203 

Now a few Bayesians, have claimed (in informal communication) to 
share these intuitions about error probabilities, which is quite surprising 
given that these error statistical intuitions expressly conflict with Bayesian 
principles. The onus is thus on such Bayesians to demonstrate how they 
can incorporate such error statistical intuitions into the Bayesian algo- 
rithm without violating the Likelihood Principle (LP).7 But even if a way 
were to be found to force an error probabilistic effect into an effect on 
likelihoods, my question for these Bayesians remains: why would you ad- 
here to an account that requires you to jump through hoops to get your 
evidential intuitions to show up? I want my account of evidence to guide 
me in determining if a method of analysis is altering a procedure's error 
probabilities, and I want it to guide me in how I might compensate for a 
reduced reliability. 

The conglomeration of methods from error statistics offers such guid- 
ance. It seems to embody just the right blend of generality and structure 
on the one hand, and empirical-experimental methodology on the other. 

7. The Roles of Error Statistics in this Account of Evidence. Let me try to 
briefly identify key ways in which statistical ideas and tools might enter 
in building this account of evidence-a task that, admittedly, requires us 
to go far beyond what statistical texts offer. Three main roles (correspond- 
ing to the three models of inquiry) are to provide: 

A. canonical models of low-level questions with associated tests and 
data modeling techniques, 

B. tests and estimation methods which allow control of error proba- 
bilities, and 

C. techniques of data generation and modeling along with tests for 
checking assumptions of data models. 

I will say a word about each: 
A. The first insight from statistics is the idea that experimental inquiries 

value for the parameter(s) of the distribution (e.g., the probability of 'heads" on each 
trial, p, equals .5). Two likelihood functions that differ only by a constant factor are 
said to be the same likelihood functions, for example, either would give rise to the 
identical posterior distributions in applying Bayes's Theorem. 
7. Let Let e and e' be outcomes from two experiments with the identical set of hypoth- 
eses H1 up to Hn. The Likelihood Principle (LP) asserts that if P(elHi) = kP(e'lHi) 
for each i (for a positive constant k), then e and e' give identical evidence regarding the 
hypotheses (see Edwards, Lindman, and Savage 1993, 237; Savage 1962). More suc- 
cinctly, e and e' are evidentially equivalent when they are associated with the same (i.e., 
proportional) likelihood functions (as defined in fn. 6). Error statistical methods violate 
the LP. That is because they reach different appraisals of hypotheses, even where the 
data is evidentially equivalent, according to the LP. For further discussion, see Mayo 
1996, Ch. 10, and Mayo and Kruse forthcoming. 
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need to be broken down into piecemeal questions if they are to be 
probed reliably. One does not try to test everything at once, but rather 
to discriminate the possible answers to one question at a time. The 
questions, I propose, may be seen to refer to standard types of errors: 

* mistaking chance effects or spurious correlations for genuine cor- 
relations or regularities 

* mistakes about a quantity or value of a parameter 
* mistakes about a causal factor 
* mistakes about the assumptions of experimental data. 

Using the statistical strategies for probing the formal variants of these 
errors, I maintain, lets us understand and derive strategies for probing 
real, substantive errors. 

B. The second task centers on what is typically regarded as statistical 
inference proper. However, it is important to emphasize that the error 
statistical program brings with it reinterpretations of the standard 
methods as well as extensions of their logic into informal arguments 
from error. The criteria for selecting tests in this "evidential" or "learn- 
ing" model of tests depart from those found in classic (Neyman- 
Pearson) "behavioristic" models of testing. One seeks, not the "best" 
test according to the low error probability criteria alone, but rather 
sufficiently informative tests. (The key features of this reinterpretation 
are discussed in Mayo 1996.) 

C. What I mainly want to stress under this third heading is the way ex- 
perimental design and data generation offer standard ways or "exem- 
plars" for bringing about the statistical connections needed to sustain 
the counterfactual relationships, both (1) between data and hypotheses 
framed in the experimental model, and (2) between the latter and pri- 
mary questions or problems. In other words, instead of retrospectively 
trying to figure out what the error probabilities are, strategies of ex- 
perimental design show us how to introduce statistical considerations 
so as to generate data that satisfy the various experimental assumptions 
adequately. 
To illustrate, suppose one were interested in estimating the proportion 

in the U.S. population who have some property, in October 1999, e.g., 
who think President Clinton should not be impeached. If I take a random 
sample of 1,000 or so (in the manner done every day in polling), I have 
created a connection between the proportion who say "do not impeach" 
in my sample and the proportion with this property in the U.S. population 
at that point in time. Although, I have created (perhaps a better term is 
"triggered") the connection in the inquiry at hand, the general connection 
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between a randomly selected sample proportion and the population pro- 
portion is a real empirical relationship. For instance, the sample propor- 
tion will differ from the population proportion by more than 2 standard 
deviations less than 5% of the time. Hence, the sample proportion, abbre- 
viate it as x, provides a reliable method for estimating an interval of values 
of the population parameter, p. A typical polling inference takes the form 
of an (error statistical) estimate: p = x ? 2 standard deviations.8 

The overarching goal, whether it is achieved through data generation 
or modeling, is to find a characteristic of the data a statistic such that 
this statistic, whose value we can observe or measure, will teach us about 
the hypothesis or parameter which we cannot. The experimental strategy, 
I propose, may be put this way: Starting with a handful of standard or 
canonical models, such as those offered by statistical distributions, find a 
way to massage and rearrange the data until arriving at a statistic, which 
is a function of the data and the hypotheses of interest, and which has one 
of the known distributions. This distribution, called the sampling or (as I 
prefer) the experimental distribution gives the needed statistical condi- 
tional to link the data and experimental models. The primary task of a 
given inquiry thus becomes a matter of using this experimental knowledge 
to discriminate (reliably) between answers to (suitably partitioned) pri- 
mary questions. The same strategy, I maintain, holds not just when the 
primary questions concern low-level hypotheses, but also when they per- 
tain to probing high-level theories. 

8. Binary Pulsar Evidence in Testing General Relativity. Particularly in- 
sightful cases to elucidate the strategies for linking data, experimental, and 
primary models are those where uncertainties and lack of (literal) control 
are most serious: biology, ecology, but also astrophysics where one's "lab" 
might be things like quasars and pulsars. Since Woodward has mentioned 
the case of gravitational radiation or gravity waves, consider a thumbnail 
sketch of the data obtained that is regarded to have provided excellent 
evidence both that gravity waves exist and that they agree with specific 
predictions from Einstein's General Theory of Relativity (GR). 

The data came from the binary pulsar named PSR1913 + 16. The two 
scientists involved, Hulse and Taylor, were given the 1992 Nobel prize for 
having discovered the first binary pulsar in 1974 and for using it to provide 
evidence for gravity waves. It is generally agreed that "[Binary pulsar] 
measurements have conclusively established the existence, quadrupolar 
nature, and propagation speed of gravitational waves; the results are pres- 
ently in accord with general relativity at the 0.4% level" (Taylor 1992, 

8. The standard deviation here is generally estimated from the sample, in which case it 
would properly be called the standard estimate of the error or the standard error. 
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287). This interpretation of the data hinged on finding that the period of 
this pulsar, that is the time it takes to orbit its companion, is decreasing 
each year by an amount that fits the decrease predicted by GR due to the 
emission of gravity waves, about 75 millionths of a second a year. How- 
ever, scientists do not directly observe the decreased orbital period, or 
"orbital decay," but by amassing data over many years it was possible to 
estimate the "observed" orbital decay, DObS, and then compare it to the 
decay predicted by GR, DGR. 

The "raw" data might be seen as the recorded times of arrival, or 
TOA's, of radio bursts from the pulsar, as detected by radio telescopes; 
however even these result from an averaging technique performed by com- 
puter. Over 5,000 such TOA's are available, having observed it since 1974 
(about 200 were available when it was first regarded as fairly strong evi- 
dence in 1978). The data model is supplied by a timing model, which lets 
us use this finite sequence of TOA's, to estimate the "observed" period 
decay. Now the observed decay is also a result of other factors aside from 
the actual decreased period, and these become parameters in the timing 
model. Although they cannot literally control these other factors, re- 
searchers can estimate their likely effect by the standard statistical method 
of least squares estimation, and then arrive at a statistical estimate of the 
period decay.9 This gives the "observed" orbital decay, Dobs, which then 
can be compared to the decrease predicted by GR by means of a standard 
(confidence) interval estimate. In the 1992 report, they arrived at Dobs IDGR 

- 1.003 ?.0035. 
Not only do they thereby provide reliable evidence for (at least one key 

aspect of) gravity waves, to an accuracy of about .4%, they can also "es- 

Gravity Waves? D ~~~~~~~least squares 
DGR estimation 

GR TOA's 

Primary Model(s) Experimental Model Data Model(s) 

Figure 2. Binary pulsar: 1913 + 16. D = orbital decay. 

9. Very roughly, the timing model represents the expected TOA's as a function of the 
orbital parameters we want to estimate. The observed minus the expected TOA is the 
residual. We take as the estimated time of arrival the values that, for given raw data, 
would minimize the sum of the square of the residuals. 
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tablish constraints on possible departures of the 'correct theory' of gravity 
from General Relativity" (Taylor 1992, 287-288) in the various aspects 
severely probed. There is no attempt to update degrees of belief in GR 
with evidence, but there is a systematic setting of constraints on discrep- 
ancies from GR with respect to various different parameters. By a series 
of error statistical interval estimates on different parameters, they are able 
to constrain or "squeeze" theory space. That is the basis for progress in 
learning about theories in the error statistical account. In Figure 2, I sketch 
some of the main entries in the different models, hinting at how multiple 
primary and data models can be layered into the analysis. 

9. Conclusion. Adherence to various logics of evidence has resulted in phi- 
losophers having little to say of relevance for dealing with problems about 
evidence in scientific practice; and the tendency of many philosophers to 
turn away from the task of building an adequate account of evidence has 
led to many serious challenges to science, and to the methodological en- 
terprise, going unanswered. It is to be hoped that philosophers of science 
will turn back to this task, albeit by developing a more adequate account 
of evidence, reflecting the goals of reliability and error detection. Building 
on the contributions of my co-symposiasts, I have sketched some key fea- 
tures of such an "error statistical" account. 
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