
CHAPTER ELEVEN 

Why Pearson Rejected the Neyman-Pearson 
(Behavioristic) Philosophy and a Note on 

Objectivity in Statistics 

The two main attitudes held to-day towards the theory of probabil­
ity both result from an attempt to define the probability number 
scale so that it may readily be put in gear with common processes 
of rational thought. For one school, the degree of confidence in a 
proposition, a quantity varying with the nature and extent of the 
evidence, provides the basic notion to which the numerical scale 
should be adjusted. The other school notes how in ordinary life a 
knowledge of the relative frequency of occurrence of a particular 
class of events in a series of repetitions has again and again an 
influence on conduct; it therefore suggests that it is through its 
link with relative frequency that a numerical probability measure 
has the most direct meaning for the human mind. 

-E. S. Pearson, "On Questions Raised by the Combination of 
Tests Based on Discontinuous Distributions," p. 228 

11.1 INTRODUCTION 

The two main attitudes Pearson is speaking of correspond to two views 
of the task of a theory of statistics: the evidential-relation or E-R view 
and the error probability view. We have traced the key ways in which 
disputes about methodological rules reflect this underlying distinction 
in aims. Philosophers of induction, we said, have typically embraced 
the first of these two views. My primary aim has not been to settle 
this question of aims, but rather to show how a number of disputes in 
philosophy of science reflect this difference in aims, and to build an 
account of experimental learning based on the error statistics ap­
proach. I am also concerned with showing that the error approach is at 
the heart of the widespread applications of statistical ideas in scientific 
inquiry, and that it offers a fruitful basis for a philosophy of exper­
iment. 
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362 CHAPTER ELEVEN 

Despite the widespread use of error statistical methods, the official 
school of inference in which they are formally couched-Neyman and 
Pearson (NP) statistics-has been the subject of enormous controversy 
and criticism. From the philosophy of statistics debates of the '70s and 
early '80s, NP theory emerged with several black eyes, spurring on the 
popular new Bayesian Way. Fetzer (1981); Hacking (1965); Kyburg 
(1971, 1974); Levi (1980a); Rosenkrantz (1977); Seidenfeld (1979a); 
and Spielman (1973); as well as several statisticians have raised doubts 
about the appropriateness of NP theory for statistical inference in sci­
ence. In a 1977 issue of Synthese devoted to the foundations of proba­
bility and statistics, Neyman expressed surprise at the ardor with which 
subjectivists (e.g., de Finetti 1972) attacked NP tests and confidence 
interval estimation methods: 

I feel a degree of amusement when reading an exchange between an 
authority in "subjectivistic statistics" and a practicing statistician, 
more or less to this effect: 

The Authority: "You must not use confidence intervals; they are 
discredited! " 
Practicing Statistician: "I use confidence intervals because they 
correspond exactly to certain needs of applied work." (Neyman 
1977,97) 

Neyman's remarks hold true today. The subjective Bayesian is still re­
garded, in many philosophy of science circles, as "the authority" in 
statistical inference, and yet scientists from increasingly diverse fields 
still regard NP methods (e.g., confidence intervals) as corresponding 
exactly to their needs. 

Howson and Urbach (1989) have attempted to renew the old ef­
forts to cleanse science of NP methods, declaring "that the support en­
joyed by classical methods of estimation among statisticians is unwar­
ranted" (p. 198). These, along with the other NP methods, they 
apparently feel, should be taken to the dump heap and replaced with 
their brand of subjective Bayesianism. Given the new emphasis philos­
ophers of science have placed on taking cues from actual scientific 
practice, this disregard if not outright condemnation of procedures that 
are widely and successfully used across a vast spectrum of science is 
curious and out of place. I think it is time to remedy the situation. 
Philosophers of statistics can no longer operate on the image of the 
philosopher issuing pronouncements on the appropriateness of the sci­
entist's tools-not if they want to contribute to an experimental meth­
odology that will be of relevance to science. 

Much of the reason philosophers have rejected NP methods may 
be traced to the difference in aims just mentioned: these philosophers 
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WHY PEARSON REJECTED NEYMAN-PEARSON PHILOSOPHY 363 

seek an E-R view and NP does not give them one. To a large extent, 
such criticisms stem from holding to a certain philosophical image of 
the "logic" of statistical inference-that it should mirror deductive logic 
only with degrees-and not at all from finding these methods unpro­
ductive in scientific applications. In this view, a theory of statistical 
inference must provide a quantitative measure of evidential relation­
ship-an E-R measure (whether a measure of support, confirmation, 
probability, or something else). From this perspective, NP methods will 
be judged inadequate for statistical inference unless NP error probabili­
ties can be interpreted as E-R measures. Unsurprisingly, as critics show, 
if error probabilities (e.g., significance levels) are interpreted as E-R 
measures, misleading and contradictory conclusions are easy to gener­
ate. Such criticisms are not really criticisms but flagrant misinterpreta­
tions of the quantities in error statistical methods-misinterpretations 
repeatedly warned against in good textbooks on statistics. I have dis­
cussed criticisms based on E-R misinterpretations of error probabilities 
at length elsewhere (e.g., Mayo 1980, 1981, 1982, 1983, and 1985a), 
and I will not give them much additional consideration. 

A second set of criticisms that can also be seen to follow from the 
E-R image of statistics is that based on assuming the likelihood prin­
ciple. Since this assumption, we saw, is tantamount to assuming the 
irrelevance of outcomes other than the one observed, and therefore to 
rejecting error probabilities, these criticisms beg the question against 
error statistical methods. To remind us, recall the criticism of error sta­
tistical methods based on the "argument from intentions" discussed in 
section 10.3. If one adheres to the likelihood principle (as Bayesians 
do), then it does not matter whether data arose from a try and try 
again method or from a nonsequential experiment-the stopping rule 
is irrelevant. To deem stopping rules relevant-as statistical signifi­
cance tests do-is, from the Bayesian point of view, tantamount to 
making the experimenter's intentions relevant. All the other error sta­
tistical properties are similarly found to be "incoherent" on the likeli­
hood principle. The tables are turned completely, we saw, for an error 
statistician. Given an observed outcome x, the error statistician finds it 
essential to consider the other outcomes that could have resulted from 
the procedure that issued x. Ignoring aspects of the experiment that 
alter error probabilities (e.g., the stopping rule) violates error statistical 
reasoning and permits systematically misleading results. 

However, we can separate out from the critical literature several 
legitimate questions of the epistemological basis of the NP methods: 
How should test results be interpreted in scientific contexts? What is 
so good about tests that are good or "best" on error-probability criteria? 
How can any of the seemingly arbitrary choices of tests and error prob-
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364 CHAPTER ELEVEN 

abilities be justified? I grant that without adequate answers to these 
questions, the NP prescriptions can appear to license counterintuitive 
and unsatisfactory results. 

The problem stems from the decision-theoretic framework in 
which NP methods are standardly couched. Although this framework 
has its uses, it does not adequately reflect most of the reasons that 
scientists find these methods correspond precisely to their needs. We 
need a framework that captures the nature and rationale of NP meth­
ods in scientific practice. 

Happily, we already have it. In the error statistical account, formal 
statistical methods relate to experimental hypotheses, hypotheses 
framed in the experimental model of a given inquiry. Relating infer­
ences about experimental hypotheses to severe tests of primary scien­
tific claims is, except in special cases, a distinct step. Standard statistical 
ideas and tools enter into this picture of experimental inference in a 
number of ways, all of which are organized around the three chief 
models of inquiry. Their role is to (i) provide techniques of data genera­
tion and modeling along with tests for checking whether the assump­
tions of data models are met; (ii) provide tests and estimation methods 
that allow control of error probabilities; and (iii) provide canonical 
models of local experimental questions with associated tests and data 
modeling techniques. 

Knowing what we want from our statistical theory, and having the 
elements of our framework at our disposal, it will be easy to cut 
through the seemingly complex arguments from philosophy of statis­
tics. Getting NP tests to do what we want them to do, however, re­
quires diverging from some of the key tenets that are presumed to be 
integral to the NP theory. The focus in this chapter is tests. The key 
tenets of NP testing from which we may be required to diverge are 
at the same time at the heart of many of the criticisms of NP theory. 
Accordingly, my reformulation of NP statistics will simultaneously re­
spond to two challenges: how to answer the main criticisms of that 
approach, and how error statistical methods provide the needed tools 
for learning from error. 

While it seems correct to call my approach a reinterpretation of NP 
statistics, I want to argue that the appropriate use of NP methods is 
already to be found-albeit only by hints and examples-in one of the 
two founders of NP statistics: Egon Pearson (as well as in most of actual 
practice). Egon S. Pearson (not to be confused with his father, KarP), 
although one of the two founders of NP methods, rejected the statisti-

1. Karl Pearson's subjectivist philosophy contrasts with that of his son Egon. 
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tal philosophy that ultimately became associated with NP statistics-or 
so I shall argue. Many contemporary criticisms of NP methods mirror 
Pearson's own reasons for this rejection. Extricating the view E. S. 
Pearson did hold gives a much deeper and more accurate understand­
ing of NP principles than that which comes out in either statistics text­
books or in the presentations of critics of the NP approach. It is against 
these caricatures of NP methods that the criticisms of NP are largely 
directed. Understanding Pearsonian statistics shows how and why 
actual uses of NP methods generally circumvent the pitfalls without 
forfeiting what is central to error statistical methods: the fundamental 
importance of error probabilities. 

11.2 NEYMAN·PEARSON THEORY OF STATISTICAL TESTS (NP TESTS) 

I want to begin by putting aside for a moment the concepts of our new 
framework and broaching NP tests in their more formal rubric. I want 
to get us to consider the tests in their naked mathematical form, the 
better to see the latitude for their use and interpretation. The highlights 
of chapter 5-the examples of NP tests, the discussion of probabilistic 
models, and the hierarchy of models in experimental inquiry-prepare 
us for each of the ideas we now need. As we proceed, the connection 
with severity and arguments from error will emerge. 

To really get down to the bare bones, the NP testing theory can 
be seen to define mathematical functions on random variables. The 
variables may take on different values corresponding to different out­
comes of an experiment. Tests are functions that map possible values 
of these variables (Le., possible experimental outcomes) to various 
hypotheses about the population from which outcomes may have orig­
inated. Commonly, the hypotheses are assertions about some property 
of this population, a parameter, which governs the statistical distribu­
tion of the experimental variable X. As before, I confine myself to cases· 
with only a single unknown parameter, say fl.. A test is like a postal 
system wherein different values of X (different addresses) get sent to 
different values of fl. (different destinations). 

An example already considered several times is the Binomial ex­
periment, the common exemplar being coin-tossing. Here the statisti­
cal variable might be the proportion of heads in n tosses, written as X, 
and the hypotheses, assertions about the (Binomial) parameter p, the 
probability of heads on each toss. The test is a rule that "sends" the 
different observed proportions of heads to various values of the param­
eter p. 

The standard NP test splits the possible parameter values into 
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FIGURE 11.1. NP tests as mapping rules. 
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two-there are, so to speak, two destinations. One represents the test 
hypothesis H, the other the set of alternative hypotheses J. For example, H 
might assert that p = .5, while J, that p > .5. Hypothesis H here is 
simple because it consists of just one value of p, while J is composite. 
The test maps each of the possible outcomes-the experimental sample 
space-into either H or J; those mapped into H (i.e., into "accepting" 
H) form the acceptance region, those mapped into alternative J form the 
rejection (of H) region. This partition of the sample space is typically per­
formed by specifying a cutoff point or critical boundary X*. Any outcome 
falling outside bound X* falls into the rejection region. 

An example would be to reject H whenever the observed propor­
tion of heads, X, is at least .8. The critical boundary X* is .8. There are 
two ways to specify the critical boundary. The critical boundary may 
be given by specifying a distance measure D between X and H, and indi­
cating "how far" X can be from H before slipping into the rejection (of 
H) region. Equivalently, the cutoff point may be given by specifying 
the significance level a, such that once that level is reached, H is re­
jected. (Recall that the larger the difference D, the smaller the signifi­
cance level.) Leaving these acceptances and rejections uninterpreted 
for now, the formalism of the NP model simply describes the parti­
tioning that results from the mapping rules as illustrated above (fig. 
11.1). 

NP tests focus on the probabilistic properties of these mapping 
rules, that is, on the probabilities with which the rule leads to one or 
another hypothesis, under varying assumptions about the true hy­
pothesis. Two types of errors are considered: first, the test leads to reject 
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H (accept J) even though H is true (the type I error); second, the test 
leads to accept H although H is false (the type II error). The test is 
specified so that the probability of a type I error, represented by IX, is 
fixed at some small number, such as .05 or .01. In other words, the test 
is specified to ensure that it is very improbable for an outcome to fall 
in the "rejection (of H) region" when in fact the hypothesis H is correct. 
Having fixed IX, called the size or significance level of the test, NP prin­
ciples seek out the test that at the same time has a small probability, ~, 
of committing a type II error: accepting H when J is actually the correct 
hypothesis. I - ~ is the corresponding power of the test. That is: 

P(test T rejects HI H is true) ::s IX = probability of type I error. 
P(test T accepts HI J is true) ::s 13 = probability of type II error. 

When, as is quite common, alternative J contains more than a sin­
gle value of the parameter, that is, when it is composite, the value of ~ 
varies according to which alternative in J is true. IX and ~ are the test's 
formal error probabilities. To reemphasize, error probabilities are not 
probabilities of hypotheses, but the probabilities that certain experi­
mental results occur, were one or another hypothesis true about the 
experimental system. Consider, for example, the probability of a type 
I error in testing H with test T This is the probability of getting an 
experimental result that test T maps to "reject H," when in fact His 
true. 

This leads to the cornerstone of NP tests: their ability to ensure that 
a test's error probabilities will not exceed some suitably small values, 
fixed ahead of time by the user of the test, regardless of which hypoth­
esis is correct. These key points about the bare bones of NP tests can 
be summarized as follows: 

An NP test (of hypothesis H against alternative J) is a rule that maps 
each of the possible values observed into either Reject H (Accept J) 
or Accept H in such a way that it is possible to guarantee, before the 
trial is made, that (regardless of the true hypothesis) the rule will 
erroneously reject H and erroneously accept H no more than ex (100 
percent) and !3 (l00 percent) of the time, respectively. 

The "best" test of a given size IX (if it exists) is the one that at the same 
time minimizes the value of ~ (equivalently, maximizes the power) for 
all possible alternatives J. 

Note that the size of a test is the same as the Significance level of 
the cutoff point beyond which H is rejected. That is why tests with size 
IX are often described as tests with significance level IX. The relationship 
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368 CHAPTER ELEVEN 

between severity and size and power will be discussed explicitly in sec­
tion 11.6. 

11.3. THE BEHAVIORAL DECISION PHILOSOPHY: NP TESTS AS 

ACCEPT-REJECT ROUTINES 

The proof by Neyman and Pearson of the existence of "best" tests en­
couraged the view that tests (particularly "best" tests) provide the sci­
entist with a kind of automatic rule for testing hypotheses. Here tests 
are formulated as mechanical rules or "recipes" for reaching one of two 
possible decisions: "accept hypothesis H" or "reject H" (accept alterna­
tive J). The justification for using such a rule is its guarantee of specifi­
ably low error rates in some long run. 

This interpretation of the function and the rationale of tests was 
well suited to Neyman's statistical philosophy. For Neyman, "The prob­
lem of testing a statistical hypothesis occurs when circumstances force 
us to make a choice between two courses of action: either take step A 
or take step B" (Neyman 1950, 258). These are not decisions to accept 
or believe that what is hypothesized is (or is not) true, Neyman 
stresses. Rather, "to accept a hypothesis H means only to decide to take 
action A rather than action B" (ibid., 259; emphasis added). On Neyman's 
view, when evidence is inconclusive, all talk of "inferences" and 
"reaching conclusions" should be abandoned. Instead, Neyman sees 
the task of a theory of statistics as providing rules to guide our behavior 
so that we will avoid making erroneous decisions too often in the long 
run of experience. A clear statement of such a rule is the following: 

Here, for example, would be such a "rule of behaviour": to decide 
whether a hypothesis, H, of a given type be rejected or not, calculate 
a specified character, x, of the observed facts; if x > Xo reject H; if x :s 
Xo accept H. Such a rule tells us nothing as to whether in a particular 
case H is true when x :s Xo or false when x > xo' But it may often be 
proved that if we behave according to such a rule ... we shall reject 
H when it is true not more, say, than once in a hundred times, and 
in addition we may have evidence that we shall reject H sufficiently 
often when it is false. (Neyman and Pearson 1967b, 142) 

Tests when interpreted as rules of inductive behavior make up a key 
portion of the behavioristic (or behavioral) model of tests. Because this 
model is typically associated with Neyman and Pearson theory, defects 
of that model are taken as defects of the theory. My position is that 
there are other, more satisfactory models to direct the use and interpre­
tation of the NP methods, and that they are provided by the present 
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approach to experimental learning. But before getting to that it is im­
portant to do battle with a certain, not uncommon, misunderstanding. 

What the Behavioral Model Does Not Say 

The misunderstanding concerns the construal of "accept" and "re­
ject" on the behavioristic model. Actually, Neyman is quite clear on 
what he intends. Accept H, Neyman says, means to take action A rather 
than B. Accept H does not mean believe H is true. Accept H does not 
mean act as if you knew H was true, in the sense of behaving in any 
and all of the ways you would if you knew that H was true. Supposing 
that the NP model intends this last interpretation of Accept H, Howson 
and Urbach dismiss NP theory as inappropriate for science as well as 
for practical action. If a scientist were to interpret accepting a statistical 
hypothesis in the way Howson and Urbach think NP theory intends, 

he would never bother to repeat the experiment. Moreover, he would 
be happy to stake his entire stock of worldly goods ... on a wager 
offered at odds of, say, 10 to 1 against that hypothesis being true. Or 
suppose a food additive conjectured to be toxic were subjected to a 
trial involving 10 persons and the conjecture were rejected, then the 
manufacturer would be prepared to go directly into large-scale pro­
duction and distribution. This interpretation of acceptance and rejec­
tion has merely to be stated to reveal its absurdity .... Nevertheless, 
despite its immense implausibility, this seems to be the way statisti­
cians standardly interpret the notions. (Howson and Urbach, 1989, 
162-63) 

Their hilarious portrayal of the way they suppose "statisticians 
standardly interpret" the acceptance of a statistical hypothesis has no 
relation to any real statistician. This is not just because in reality statis­
ticians do not strictly follow Neyman's behavioristic model, but be­
cause no such interpretation is licensed by that model. Howson and 
Urbach confidently assert, but on what basis I cannot imagine, that 

it is evident that the behaviour Neyman and Pearson had in mind 
was the acceptance and rejection of hypotheses as being true or false, 
that is, the adoption of the same attitude towards them as one would 
take if one had an unqualified belief in their truth or falsehood. 
(Ibid., 163) 

But this is not at all evident, and Neyman and Pearson could not have 
been clearer in their rejection of anything like the construal that How­
son and Urbach pin on the NP approach. (Nor do any of Howson and 
Urbach's citations offer any evidence otherwise.) 

Neyman's behavioristic model literally identifies the acceptance of 
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H with the adoption of a decision to take some specific action A (rather 
than B) where A is set out at the start. One cannot choose or even 
articulate a test of any hypothesis until one identifies the acceptance 
of H with some one action A. Only then is it possible to determine the 
test's error probabilities, the basis upon which the choice of the test 
depends. The test's error probabilities may be acceptably low as regards 
one action while unacceptably high as regards some other. (For in­
stance, they might be acceptably low regarding deciding to do further 
research on a topic, while unacceptably high regarding taking the act 
of publishing the results.) In the behavioral model of tests, "accept H" 
gets its interpretation from the specific action (pre)designated by the 
test in question. So the Howson-Urbach reading conflicts with the idea 
of fixed, predesignated error probabilities, aside from being a perver­
sion of both Neyman's and Pearson's views. 

Admittedly, from the fact that "accept H" gets its interpretation 
from the specific action designated by a given test, it follows that its 
meaning varies in different tests of H. In the behavioral model of tests, 
its meaning will vary according to the action identified with the result 
"accept H." This is just what Neyman intends. 

Isaac Levi (1980a, 1984) offers perhaps the clearest depiction of 
the behavioristic model of NP among contemporary philosophers of 
statistics. He suggests "that a good approximation to [Neyman and 
Pearson's] intent is obtained by construing them as recommending the 
use of programs for using observation reports as inputs into programs 
designed to select acts" (Levi 1980a, 406). The idea is to have a rule, 
laid out ahead of time, for which action to take upon the occurrence 
of each possible experimental result. Such a "routine" procedure con­
trasts with what Levi calls a "deliberational" procedure. Where Levi 
and I may disagree, if we do, is on whether NP theory also admits of a 
nonbehavioristic (and deliberational) interpretation. Neyman himself 
is quite clear about his philosophy of inductive behavior, and I want to 
look a little at what he says. 

Neyman and His Inductive Behavior 

Neyman's idea of a rule of behavior is innocuous enough. Humans 
notice <;ertain fairly stable patterns, Neyman begins-for example, that 
rain or snow storms follow the appearance of heavy clouds-and form 
various habits in regard to them-for example, taking cover at the 
sight of dark clouds. A similar kind of regularity is recognized, Neyman 
says, in the relative frequency with which a result occurs in repeated 
trials of some game of chance (real random experiments). Mathemati­
cal statistics developed as a way of providing systematic rules for how 
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to act with regard to this latter type of regularity. They are like rules 
for good habits. 

Neyman offers the following, very general definition of a rule of 
inductive behavior: 

Let El' E2, ••• , En' ... be all possible different outcomes of an experi­
ment or of observations relating to some phenomena. Let ai' a2, ••• , 

am' •.. be all the different actions contemplated in connection with 
these phenomena. 
If a rule R unambiguously prescribes the selection of action for each possible 
outcome E;, then it is a rule of inductive behavior. (Neyman 1950, 10) 

The statistical test, then, is a special case of a rule of behavior, one 
where the outcomes occur with some probability, that is, the experi­
mental variable E follows some probability distribution. The acts, on 
Neyman's model, are condensed into two, a1 and a2 , The hypotheses 
are assertions about the probabilities of the possible outcomes Ei-they 
are statistical hypotheses-and the desirability of performing the two 
actions depends upon which statistical hypothesis is true (Neyman 
1950, 258). Correspondingly, the set of (admissible) hypotheses is split 
up into two, Hand J, where J is regarded as not-H. The idea is that if 
hypothesis H (or any of the hypotheses making up region H) is true, 
then action A would be preferable to B, while if any of the hypotheses 
in J are true, action B would be preferable to A. A rule of inductive' 
behavior determining the choice of A or B according to the experimen­
tal outcome E is a test of a statistical hypothesis, 

Why does Neyman call them rules of "inductive behavior" as op­
posed to, say, test rules? He is led to this term because of his scruples 
about the term "inductive inference." Neyman begins First Course in 
Probability and Statistics as follows: 

Claims are occasionally made that mathematical statistics and the the­
ory of probability form the basis of some mental process described as 
"inductive reasoning." However, in spite of substantial literature on 
this subject, the term "inductive reasoning" remains obscure and it is 
uncertain whether or not the term can be conveniently used to de­
note any clearly defined concept. On the other hand, as was first re­
marked inl-937, there seems to be room for the term "inductive be­
havior." This may be used to denote the adjustment of our behavior 
to limited amounts of observation. (P. 1)2 

In addition to wanting to highlight the contrast with "inductive infer­
ence," Neyman was doubtless influenced by the common parlance 

2. Neyman's reference is to Neyman 1967a, 250-90. 
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during the time NP tests were being developed. As Alan Birnbaum 
notes, "the 1920's and 1930's were a period of much critical concern 
with the meanings and possible meaningless[ness] of terms .... These 
concerns were usually pursued in terms of such doctrines as behavior­
ism, operationalism, or verificationism" (Birnbaum 1977, 33). 

The idea of tests as rules of behavior is not all there is to the behav­
ioristic model of tests. The other key features come in when consider­
ing how to select which of the many possible test rules to employ. In 
selecting such a rule one is led to consider that there are four possible 
situations that can result. To paraphrase Neyman 1950, p. 261: 

I. Hypothesis H is true and action A is taken. 
II. Hypothesis J is true (H is false) and action A is taken. 

III. Hypothesis H is true and action B is taken. 
IV. Hypothesis J is true and action B is taken. 

These can be represented using the familiar 2 by 2 square: 

Action A Action B 

H I III 

J II IV 

It is assumed that A is preferable to B when H is true and that B is 
preferable to A if J is. As such, when a test results in situations II and 
III, the test errs by instructing one to take the less preferred action. The 
test rule is to be selected in such a way as to control the probabilities 
of these two types of errors. There aJ;:e, however, several ways of do­
ing this. 

Neyman is led by the consideration that "with rare exceptions, the 
importance of the two errors is different, and this difference must be 
taken into consideration when selecting the appropriate test" (Neyman 
1950, 261). Typically, he finds, one of the two errors is "more serious," 
more desirable to avoid. The behavioral model instructs one to let H­
the test hypothesis-be the one whose erroneous rejection is consid­
ered the more serious. (Situation III is worse than situation IL) This 
error-the one that comes first in importance-is to be made the type 
I error of the test. The test is selected to fix the probability of the type 
I error at some low value and then choose the test that does best (or 
at least reasonably well) as regards the probability of a type II error. 

The paradigm example that seems to fit the behavioristic model is 
acceptance sampling in industrial quality control. Here a sample from 
some batch of products is observed in order to decide whether or not 
to reject the batch as containing too many defectives, say, for shipping. 
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This is a paradigmatic case in which the importance of errors reflects 
economic values, and the differential weighing of the errors reflects 
the losses judged affordable_ The values can also be ethical, as in one 
of Neyman's main illustrative examples. 

Testing the Toxicity of Drugs: Neyman 
In manufacturing drugs, impurities occasionally enter that are suf­

ficiently toxic that minute quantities that escape ordinary chemical 
analysis can be dangerous. Prior to putting a newly manufactured lot 
on the market, it is tested. Small doses are injected into experimental 
animals and the effect recorded. Let X, the variable recorded, be the 
number of deaths among the n animals injected with a specified dose 
of the drug. The experiment is modeled as observing this random vari­
able X. The probability of the different possible number X of deaths 
depends on how toxic the drug is: all or most animals die if the drug is 
toxic. The different values of X, Neyman supposes, may lead to one of 
two possible courses of action: (at) put the lot of drug on the market, 
and (a2 ) return the lot to the manufacturer: 

The two kinds of error connected with actions at and a2 are vt;ry dif­
ferent .... First consider the case where action at is taken when the 
appropriate action is ar This means that the drug is dangerously toxic 
but declared harmless through the unavoidable inaccuracies of the 
experiment .... Error of this kind may cause death to the patients 
treated with the drug. Actual cases of this kind are on record. (Ney­
man 1950, 263) 

Neyman contrasts this with the error of taking action a2-returning 
the lot-when in fact at is appropriate. Although the consequences 
of this error are unpleasant, and may result in financial losses to the 
manufacturer and an increased price of the drug, "the occasional rejec­
tion of a perfectly safe drug is clearly much less undesirable than even 
an infrequent death of a patient" (ibid.). So this type of error is less 
important than the first, and would be identified as the type II error. 

Neyman's test, then, is a rule of inductive behavior with two 
hypotheses, two corresponding actions, and two associated errors, one 
(typically) more important than the other; and the basis for selecting 
among tests is the goal of controlling the probabilities that they would 
lead to these errors. In Neyman's view, "in many cases the relative 
importance of the errors is a subjective matter" and "lies outside of the 
theory of statistics" (Neyman 1950, 263). Such remarks have led to 
misunderstandings (see section 11.6). To understand Neyman's atti­
tude, I suggest we think back to his view regarding the use of statistical 
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models generally (discussed in chapter 5). His attitude seems to be this: 
here is a formal statistical technique that seems to reflect certain fea­
tures of a standard testing context. It is up to you to assign acts to the 
two hypotheses, to ascertain which of the two errors is more important 
to avoid in your testing context (making that one the type I error) and 
to determine how often such an error seems acceptable (which will 
direct you to fix the a level of your test). That is "subjective". The NP 
theory can then use its machinery to find the test that at the same time 
minimizes the probability of a type II error (~). Once the rule is selected 
(and assuming the assumptions are approximately met), hypothesis 
testing is on automatic pilot-on the behavioral model. Applying the 
test just means following the rule. The experimental outcome is ob­
served, and the test tells you whether to take one of two actions, A or 
B, according to whether or not the outcome falls in the rejection region 
of hypothesis H. There is no hemming and hawing, no agonizing over 
the particular case. Your long-run low error rate needs are guaranteed, 
and they are guaranteed objectively. 

All this is fine and dandy, say critics, if your actual needs corre­
spond to the kind of decision-making context envisioned in the behav­
ioristic model; but scientific inquiry does not seem to be such a context. 
The issue is not just whether science involves decision making or 
whether inference can be seen as a kind of decision. Many who are 
happy to regard all of science as decision making-the typical Bayesian 
decision maker-reject the NP theory, not because of its development 
along decision-theoretic lines, but because it does not go far enough in 
its decision-theoretic leanings. (A full decision theory would involve 
not only the losses captured in error probabilities but explicit loss func­
tions, prior probabilities, and all the rest of the "full dress" Bayesian 
approach.) The issue now, raised by both Bayesian and non-Bayesian 
critics of the behavioristic approach, concerns the appropriateness of 
the particular kinds of decision strategies depicted in the behavioristic 
model. Letting a decision to accept or reject a hypothesis turn on 
whether data reaches a cutoff point just seems too, well, too automatic. 
Many statisticians allege that no one, not even Neyman, ever tests a 
scientific claim along the strict behavioristic line. 

I agree with them. My position all along is that the NP account 
admits of a nonbehavioral construal that is more satisfactory and more 
accurately reflects how NP methods are used in experimental learning. 
By and large, however, NP tests are still formulated along the lines of 
the behavioristic model, with the probability of a type I error generally 
set at the conventional levels of .01 or .05. Why are NP methods so 
productively used in science despite their "rule of behavior" formula­
tion? How, paraphrasing Neyman, do they manage to correspond pre-
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cisely to the needs of applied research? There seem to be two main 
reasons: First, many scientific tasks fit the lIassembly line" behavioral­
decision model. At many junctures in the links between experimental 
and data models there is a need for standardized approaches to data 
analysis that allow us to get going with few assumptions, enable results 
to be communicated uniformly, and help ensure that we will not too 
often err in declaring IInormal puzzles" solved or not. Second, the be­
havioral decision approach provides canonical models for nonbehav­
ioral and non-decision-theoretic uses. The behavioral concepts simply 
serve to characterize the key features of NP tools, and these features are 
what enable them to perform the nonbehavioral tasks to which tests 
are generally put in science. 

Although I take the second reason to be weightier, as well as being 
the more interesting for our purposes, the first reason should not be 
disregarded altogether. There are uses for statistics in science for which 
the behavioristic construal is apt and for which NP as a theory for rou­
tine decision making has made for real progress. One type of example 
is discussed by the statistician Irwin Bross. 

Controlling the Noise in Communications Networks 

The context Bross (1971) discusses concerns decisions to report a 
given message, say, that a drug is effective or, more generally, that an 
effect "is real," not spurious. Bross's particular focus is on analgesics. 
The act of reporting that a drug is effective is not tantamount to taking 
any and all acts that would be licensed were it known to be effective, 
a point we have already made. (The act of reporting is distinct from 
subsequent possible actions, say, for physicians to use the drug or to 
buy stock in the drug company.) But a decision to report it as effective 
may have repercussions for subsequent decisions, and tools for routine 
error control may be called for. 

An NP test may be used as a routine for declaring an analgesic 
effective in the following manner. It may stipulate: report a drug effec­
tive only if an observed difference in effect rates is statistically signifi­
cant at, say, the 1 percent level. Following Bross, the various sources 
of error that can creep into scientific reports may be seen as sources 
of noise in a scientific communications network. Noise from random 
sources-which is inevitable in experimental research-is often called 
sampling variation. 3 The adoption of a fixed critical level or size, say 1 
percent, is useful in "controlling the noise in communication net­
works." According to Bross, prior to the advent of controlled clinical 

3. Noises from nonrandom sources are sometimes called biases or extraneous 
variables. 
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trials the noise level in analgesic testing was high enough to impede 
progress seriously (Bross 1971, 503-4). 

To illustrate, Bross describes an uncontrolled drug testing network 
where researchers report favorably on all new drugs tested, noting that 
"some years ago this would not have been an entirely unrealistic 
model for certain networks" (p. 504). If four out of five of these drugs 
are actually ineffective, being no more effective than a standard agent, 
80 percent of the favorable reports would be false. With such a high 
level of noise, no reliance could be placed on the reports. If, on the 
other hand, each member of the network reports favorably only on 
those drugs that pass a test with critical level or size of, say, 5 percent, 
then the proportion of false positive reports is kept low, at 5 percent. 

Thus the use of statistical significance tests as accept-reject routines 
for a thumbs up or down approach on analgesics helped to control the 
noise in the scientific communication network. True, it would not do 
to apply such a behavioristic construal of tests to deciding to accept 
or reject substantive scientific hypotheses directly. Nevertheless, the 
hierarchy of models in an experimental inquiry may also be seen as a 
"communication network," and it is plainly desirable to have tools for 
controlling errors at numerous points in this network of models. Con­
trolling the errors at various segments of the inquiry is what enables 
the overall reliability and severity to be achieved. One could well imag­
ine, for example, how Jean Perrin might have used a routine test to 
give a "yes or no" pronouncement to whether a given grain, after un­
dergoing his technique of fractional centrifuging, was sufficiently uni­
form to be included in the next stage of the Brownian motion analysis 
(chapter 7). One act would be including the grain into the analysis, a 
second would be to subject the grain to further centrifuging. Assurance 
that he would rarely include insufficiently uniform grains as well as 
rarely carry out unnecessary centrifuging was precisely what Perrin 
sought. 

These points go toward illustrating what I gave as the first reason 
that the behavioral model of tests has a serviceable role in research, 
namely, that there are scientific tasks that fit the behavioristic model. 
Even these uses, however, depend upon designing, interpreting, and 
combining several tests in a manner that is decidedly not automatic. 
The second and more important reason that NP tests supply needed 
tools for research is that their methods provide standard or canonical 
models for nonbehavioral and non-decision-theoretic uses. Undoubt­
edly, many of the behavioral concepts with which Neyman chose to 
characterize the key features of NP tests would not have been chosen 
by Pearson. But these concepts succeed in characterizing the features 
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of the tests well enough, and these features are what enable tests to 
perform the nonbehavioral tasks to which they are generally put in 
science. In these nonbehavioristic contexts, tests license not acts, but 
arguments or inferences as to what is learned from particular experi­
mental results. The arguments are arguments from error. 

This, I propose, is why behavioral models of tests provide service­
able canonical models for nonbehavioral tasks. The tests can and 
should be seen as tools whose distinctive properties enable them to be 
used to ask a variety of standard questions about errors-quite gener­
ally construed. The result of a single statistical test does not license a 
substantive scientific inference. Instead, each such test, or set of tests, 
teaches the answer to a specific question, and error control at local 
points is the key to arriving at substantive severity arguments. 

11.4 PEARSON REJECTS THE NEYMAN-PEARSON 

(BEHAVIORISTIC) PHILOSOPHY 

Alan Birnbaum (1969, 1977) argued that NP admits of two types of 
interpretations: in one, Neyman's behavioral decision view, we saw 
that the test result is literally a decision to act in a certain way; in the 
other, which Birnbaum called an "evidential" view, the test result is 
interpreted as providing strong or weak evidential support for one or 
another hypothesis.4 While I do not embrace the particular evidential 
interpretation Birnbaum favored, I think he was quite right that in 
situations of scientific research the behavioral interpretation of tests is 

4. Birnbaum called the concept underlying this evidential interpretation of NP 
the confidence concept, which he formulated (1977, 24) as follows: 

(Conf): A concept of statistical evidence is not plausible unless it finds 
·strong evidence for J as against H" with small probability (a) when His 
true, and with much larger probability (1 - 13) when J is true. 

Birnbaum argued that scientific applications of NP tests made intuitive use of some­
thing like the confidence concept. Birnbaum's approach, incomplete at the time of 
his death, sought to make explicit the correspondence between an NP result and a 
statement about the strength of evidence (e.g., conclusive, very strong, weak, or 
worthless). For example, he interprets reject H against J with error probabilities IX, 

13 equal to .01 and .2, respectively, as very strong statistical evidence for H as against 
J. A main shortcoming, as I see it, is that it interprets a test output-say, reject H­
from two tests with the same a, 13 as finding equally strong evidence for J. De­
pending upon the particular outcome and the test's sample size, the two rejections 
may constitute very unequal tests of J-something I take up in later sections. Birn­
baum's rules do not seem to reflect such differences. Further criticism along these 
lines occurs in Pratt 1977. I discuss more generally attempts at "evidential" inter­
pretations of NP methods in Mayo 1985a. 
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intended to apply "in a way which is heuristic or hypothetical, serving 
to explain the inevitably abstract theoretical meanings associated with 
the error probabilities [and] formal 'decisions' such as 'reject H'" 
(Birnbaum 1977, 32-33). The behavioristic formulation of tests, Birn­
baum proposed, should simply be seen as a way of articulating the new 
statistical ideas of the NP approach. That the behavioral construal of 
tests is still with us, I suggest, testifies that they still serve the kind of 
heuristic function that Birnbaum had in mind. 

Birnbaum found clues of these nonbehavioral intuitions in the 
writings of Pearson. One particularly interesting document that Birn­
baum (1977, 33) supplies includes an unpublished remark by Pearson 
in 1974: 

I think you will pick up here and there in my own papers signs of 
evidentiality, and you can say now that we or I should have stated 
clearly the difference between the behavioral and evidential interpreta­
tions. Certainly we have suffered since in the way the people have 
concentrated (to an absurd extent often) on behavioral interpretations. 
(Emphasis added) 

Pearson never articulates just what evidential interpretation he sup­
ports, and I do not think that Birnbaum's evidential model, so far as 
he worked it out (in which NP results are reinterpreted in terms of 
strong or weak evidence for hypotheses), is indicated in Pearson's 
"signs of evidentiality." Nevertheless, I endorse Birnbaum's proposal 
that the behavioral model of NP tests be regarded as a device to com­
municate what the tests could be used for, while requiring reinterpre­
tation in scientific contexts. This, I believe, was also Pearson's view, 
and that is why I say Pearson rejects what have come to be identified as 
the key tenets of the NP behavioral philosophy. What Pearson rejects is 
the philosophy associated with Neyman's inductive-behavior model. 

The Rationale o/Tests according to the NP Behavioristic Philosophy 

Because NP theory developed mathematically in a decision­
theoretic framework (along with the work of Abraham Wald), the sta­
tistical philosophy generally associated with these tools is Neyman's 
behavioral decision one. Often it is referred to as the Neyman-Pearson­
Wald (NPW) approach.s We can identify two closely connected aspects 

5. Even that arch opponent of Neyman, Bruno de Finetti, held that-the expres­
sion "inductive behavior ... that was for Neyman simply a slogan underlining and 
explaining the difference between his own, the Bayesian and the Fisherian formu­
lations" became, with Wald's work, "something much more substantial" (de Finetti 
1972, 176). He called this "the involuntarily destructive aspect of Wald's work" 
(ibid.). 
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of this decision philosophy: first, the justification of tests in terms of 
low (long-run) error rates, and second, the function of tests as routine 
decision rules. While these features, taken strictly, give a caricature 
of tests, even as Neyman intended them, they are at the heart of the 
philosophical criticisms of NP to which we need to respond. 

Long-run (low error-probability) justification. Since the criteria for good­
ness of a test are its low error probabilities in the frequentist sense, the 
justification for using tests is (apparently) solely their ability to guaran­
tee low long-run errors in some sequence of applications. This is not 
a final measure of the degree of support or probability acquired by 
hypotheses-it is not an E-R measure. For example, to reject H with a 
test having a low probability of erroneous rejections does not say that 
the specific rejection has a low probability of being in error, but only that 
it arises from a testing procedure that has a low probability of leading 
to erroneous rejections. Likewise with confidence levels attached to 
particular interval estimates. Critics of NP theory deny that low error 
rates in the long run are relevant to justifying any particular inference. 

Tests as decision "routines" with prespecified error properties. This feature is 
associated with two main criticisms. First, there is the fact that the NP 
decision model does not give an interpretation customized to the spe­
cific result. A test result either is or is not in the prespecified rejection 
region. But intuitively, if a given test rejects H with an outcome several 
standard deviations beyond the critical boundary (between rejection 
and acceptance of H), there is an indication of a greater discrepancy 
from H than if the same test rejects H with an outcome just at the 
critical boundary. Both, however, are identically reported as "reject H" 
(and accept some alternative J), and the probability of a type I error 
(the test's prespecified size) is identical for any such rejection.6 Second, 
there is the problem of how to interpret test results. Deciding to accept 
or reject hypotheses, construed as deciding how to act, does not seem 
to offer the kind of evidential appraisal needed for scientific inference. 

A Dialogue between Pearson and Fisher 

These features are not only the source of contemporary criticisms 
of NP theory. They lie at the heart of R. A. Fisher's original attack on 

6. The point here is that to do no more than report the error probabilities, 
while condoned by the strict NP decision model. is not sufficient to discriminate 
between these two results-one of the sources of the criticisms of NP tests. Other 
uses of error probabilities, however, can make this discrimination along the lines I 
discuss in sections 11. 6 and 11. 7. 
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Neyman and Pearson's reworking of (what Fisher regarded as "his") 
significance tests. In his forceful style, Fisher declared that followers of 
the behavioristic approach are like 

Russians (who) are made familiar with the ideal that research in pure 
science can and should be geared to technological performance, in 
the comprehensive organized effort of a five-year plan for the nation. 
(Fisher 1955, 70) 

Fisher makes a similar comparison with the United States: 

In the U.S. also the great importance of organized technology has I 
think made it easy to confuse the process appropriate for drawing correct 
conclusions, with those aimed rather at, let us say, speeding production, or 
saving money. (Ibid.) 

The allegation is essentially the one cited earlier: NP methods seem 
suitable for industrial acceptance sampling, but not for drawing infer­
ences in science. 

Pearson, however, responds to Fisher's attacks-something critics 
seem to have overlooked. Perhaps this is because it occurs in an ob­
scure, very short (but fascinating) paper, "Statistical Concepts in Their 
Relation to Reality" (Pearson 1955), that is not included in The Selected 
Papers of E. S. Pearson. 

Pearson Responds to Fisher 

What one discovers in Pearson's (1955) response to Fisher (and 
elsewhere in his work) is that for scientific contexts Pearson rejects 
both the low long-run error probability rationale and the nondelibera­
tiona!, routine use of tests. These two features are regarded as so inte­
gral to the NP model that I think it is fair to say that Pearson rejected 
the NP philosophy (but not NP methods).7 Pearson did not publish 
much on his own statistical philosophy per se, but evidence scattered 
throughout his statistical papers offers a fairly clear picture of the ratio­
nale underlying his rejection of these decision features of NP tests. 
These are the "signs of evidentiality" to which Pearson alluded. 

Pearson's Original Heresy 

Let us begin with Pearson's (1955) response to Fisher's main criti­
cism-that the NP model turns tests into a pragmatic, five-year-plan 
type of a process. Pearson insists that 

7. Perhaps it is clearest to say that what Pearson rejected was the Neyman­
Pearson-Wald (NPW) model of NP methods. See also Note 5. 
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there was no sudden descent upon British soil of Russian ideas re­
garding the function of science in relation to technology and to five 
year plans. It was really much simpler-or worse. The original heresy, 
as we shall see, was a Pearson one! (Pearson 1955, 204; emphasis added) 

Interestingly, Fisher directs his attacks at Neyman's behavioral ap­
proach, leaving Pearson out of it.B Nevertheless, Pearson protests here 
that the "original heresy" was really his! 

Pearson does not mean it was he who endorsed the behavioral­
decision model that Fisher attacks. The "original heresy" refers to the 
break Pearson made (from Fisher) in insisting that tests explicitly take 
into account alternative hypotheses, in contrast with Fisherian signifi­
cance tests, which did not. With just the single hypothesis (the null 
hypothesis) of Fisherian tests, the result is either reject or fail to reject 
according to the significance level of the result. However, just the one 
hypothesis and its attended significance level left too much latitude in 
specifying the test, rendering the result too arbitrary. With the inclu­
sion of a set of admissible alternatives to H, it was possible to consider 
type II as well as type I errors, and thereby to constrain the appro­
priate tests. 

In responding to Fisher, Pearson is not merely arguing that NP 
methods can be interpreted in a manner other than a pragmatic 
behavioral-decision one, he is claiming that their original formulation 
(admittedly "heretical" in the above sense) was not even intended to 
capture decision-theoretic aims. Those aims came later, and were not 
his: 

Indeed, to dispel the picture of the Russian technological bogey, I 
might recall how certain early ideas came into my head as I sat on a 
gate overlooking an experimental blackcurrant plot. (Ibid., 204) 

Having sketched for Fisher this marvelous image of his sitting on 
a gate (my own sketch being the frontispiece), Pearson goes on to ex­
plain that his thoughts had not at all to do with speeding up production 
or saving money. Rather, Pearson continues, 

To the best of my ability I was searching for a way of expressing in mathemati­
cal terms what appeared to me to be the requirements of the scientist in 
applying statistical tests to his data. 

8. George Barnard, in a private communication, revealed the part he played 
in Fisher's reception of NP theory. It was Barnard who alerted Fisher to the conse­
quences of proceeding within the behavioristic model of tests favored by Neyman. 
At the same time, Barnard told Fisher that Neyman's model was to be distinguished 
from Pearson's philosophy. Barnard 1985 provides an excellent discussion of histor­
ical developments in statistics, as well as comments from a number of statisticians. 
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After contact was made with Neyman in 1926, the development of a 
joint mathematical theory proceeded much more surely; it was not 
till after the main lines of this theory had taken shape with its necessary 
formalization in terms of critical regions, the class of admissible 
hypotheses, the two sources of error, the power function, etc., that the 
fact that there was a remarkable parallelism of ideas in the field of acceptance 
sampling became apparent. Abraham Wald's contributions to decision theory 
often to fifteen years later were perhaps strongly influenced by acceptance sam­
pling problems, but that is another story. (Pearson 1955, 204-5; empha­
sis added) 

So it was only after the main NP theory had taken shape that a "re­
markable parallelism" with acceptance sampling problems was discov­
ered. And while the NP methods clearly benefited from the mathemat­
ical rigor of the newly developed work in decision theory, the original 
application, as Pearson saw it, was to learning from data in science. 

Pearson proceeds to "Fisher's next objection": to the terms "accep­
tance" and '"rejection" of hypotheses, and to the type I and type II 
errors. His admission is again revealing of his philosophy: 

It may be readily agreed that in the first Neyman and Pearson paper 
of 1928, more space might have been given to discussing how the 
scientific worker's attitude of mind could be related to the formal 
structure of the mathematical probability theory .... Nevertheless it 
should be clear from the first paragraph of this paper that we were not speak­
ing of the final acceptance or rejection of a scientific hypothesis on the basis of 
statistical analysis . ... Indeed, from the start we shared Professor Fish­
er's view that in scientific enquiry, a statistical test is "a means of learn­
ing. " (Ibid., 206; emphasis added) 

Thus, says Pearson, the NP framework, with its consideration of 
alternative hypotheses, grew out of an attempt to provide tests then in 
use with an epistemological rationale-one based on their function as 
learning tools. In this role, the test's output was not supposed to be 
identified with the final acceptance or rejection of a scientific hypothe­
sis. Instead, the test teaches about a specific aspect of the process that 
produced the data. A suitable reformulation of NP tests, I believe, 
grows directly out of the distinct roles that statistical tests play in filling 
out and linking models in an experimental inquiry. Although Pearson 
did not himself propose such a reformulation, Pearson clearly distances 
the original learning function of NP methods from the later behavioral­
decision construal to which Fisher is objecting. He declares in the last 
line of this paper that 

Professor Fisher's final criticism concerns the use of the term "induc­
tive behaviour"; this is Professor Neyman's field rather than mine. 
(Ibid., 207) 
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Pearson Rejects the Long-Run Rationale 
It seems clear that for Pearson the value of NP tests (in scientific or 

learning contexts) does not depend on the long-run error-rate rationale 
found in the decision model. Pearson raises the question as follows, 
the mention of "inference" already in contrast with Neyman: 

How far then, can one go in giving precision to a philosophy of statis­
tical inference? (Pearson 1966a, 172) 

He considers the rationale that might be given to NP tests in two types 
of cases, A and B: 

(A) At one extreme we have the case where repeated decisions must 
be made on results obtained from some routine procedure .... (B) At 
the other is the situation where statistical tools are applied to an iso­
lated investigation of considerable importance. (Ibid., 170) 

In cases of type A, long-run results are clearly of interest, while in cases 
of type B, repetition is impossible or irrelevant. For Pearson's treatment 
of the latter case (type B) the following passage is telling: 

In other and, no doubt, more numerous cases there is no repetition 
of the same type of trial or experiment, but all the same we can and 
many of us do use the same test rules to guide our decision, following 
the analysis of an isolated set of numerical data. Why do we do this? 
What are the springs of decision? Is it because the formulation of the 
case in terms of hypothetical repetition helps to that clarity of view needed for 
soundjudgment? Or is it because we are content that the application of 
a rule, now in this investigation, now in that, should result in a long­
run frequency of errors in judgement which we control at a low fig­
ure? (Ibid., 173; emphasis added) 

Although Pearson leaves this tantalizing question unanswered, 
claiming, "On this I should not care to dogmatize," it is evident from 
his treatment of type B cases that, for Pearson, "the formulation of the 
case in terms of hypothetical repetition helps to that clarity of view 
needed for sound judgment." In addressing this issue, Pearson intends 
to preempt what he calls the "commonsense" objection to long-run 
justifications-precisely the objection lodged by contemporary critics 
of NP theory: 

Whereas when tackling problem A it is easy to convince the practical 
man of the value of a probability construct related to frequency of 
occurrence, in problem B the argument that Nif we were to repeatedly· 
do so and so, such and such result would follow in the long run" is at 
once met by the commonsense answer that we never should carry out a pre­
cisely similar trial again. 
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Nevertheless, it is clear that the scientist with a knowledge of statisti­
cal method behind him can make his contribution to a round-table 
discussion. (Ibid., 171) 

Seeing how the scientist makes his contribution leads to substantiating 
my second claim, that Pearson rejects the routine use and interpreta­
tion of NP tests associated with the behavioral model. For the scientist's 
"contribution to a round-table discussion" turns on the thoughtful use 
of error probabilities to unearth causal knowledge-something not re­
ducible to routine. 

Nonroutine Uses of Tests: An Example of Type B 

Weaving together strands found throughout Pearson's work, one 
can craft a picture of statistical tests much like the one I would pro­
mote, namely, as tools for learning about causal processes by enabling 
a piecemeal series of standard questions (about errors) to be posed and 
reliably answered. In the opening of a 1933 paper (jointly written with 
S. S. Wilks) Pearson writes: 

Statistical theory which is not purely descriptive is largely concerned 
with the development of tools which will assist in the determination 
from observed events of the probable nature of the underlying cause system 
that controls them . ... We may trace the development through a chain 
of questionings: Is it likely, (a) that this sample has been drawn from 
a specified population, P; (b) that these two samples have come from 
a common but unspecified population; (c) that these k samples have 
come from a common but unspecified population? (Pearson and 
Wilks 1966, 81; emphasis added) 

An example that Pearson often employs as a case of type B, where no 
repetition is intended, is the following: 9 

Example of type B. Two types of heavy armour-piercing naval shell of 
the same calibre are under consideration; they may be of different 
design or made by different firms .... Twelve shells of one kind and 
eight of the other have been fired; two of the former and five of the 
latter failed to perforate the plate. (Pearson 1966a, 171) 

Pearson's interest in this naval shell example stems from his own work 
on the statistical assessment of army weapons in World War II and 
after. The experimental variable observed (Le., the statistic) is the dif­
ference, D, between the proportions that perforate the plate from the 

11. 10 3 
two types of shell. Its observed value, Dobs ' equals - (I.e., - - -i. So 

24 12 8 

9. Pearson follows this naval shell example through a number of papers. 
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we have a standard case of a difference in proportions similar to our 
birth-control pill example in chapters 5 and 6. (In both cases, the null 
hypothesis predicts a zero difference.) Statistical tests aid the scientist's 
contribution here by answering a question under (b) about the causal 
origin of the two samples of naval shells: 

Starting from the basis that individual shells will never be identical in 
armour-piercing qualities, however good the control of production, 
he has to consider how much of the difference between (i) two fail­
ures out of twelve and (ii) five failures out of eight is likely to be due 
to this inevitable variability. (Ibid., 171) 

Notably, Pearson does not simply report whether this observed differ­
ence falls in the rejection region (Le., whether a test maps it to "reject 
H"), but calculates the probability "of getting as great or a greater posi­
tive difference" (p. 192) if hypothesis H were true and there was no 
difference in piercing qualities. This is, we know, the significance level of 
the observed difference-a measure that reflects the actual result ob­
served. 

Although testing the "no difference" hypothesis is standard, there 
is not just one plausible way to test it. More than one way has been 
proposed to describe the data and define a distance between data and 
hypotheses. This matter is the basis of a historical debate between Pear­
son and others, which I leave to one side. Although Pearson takes a 
position in this debate (arguing in favor of the test that he regards as 
more nearly describing the experimental situation), he does not feel 
that a single best test needs to be found. Pearson is not perturbed by 
the existence of this latitude in choosing tests, he does not see it as 
presenting a problem. It would only present a problem, he thinks, to 
one who regards tests as giving automatic routines; but, in striking con­
trast with the routine decision model, Pearson held that little turns on 
which of the various plausible tests one employs. Treating the (differ­
ence between two proportions) case in one way, Pearson obtains an 
observed significance level of .052; treating it differently (along Bar­
nard's lines), he gets .025 as the (upper) significance level. 10 In an auto-

10. The first treatment falls under what Pearson calls Problem I (Barnard's 
N2x2 independence trial"). Here the question is restricted to just the 20 shells ob­
served, the total number of failures being fixed at the observed one, 7. The test asks 
whether the observed difference is due to a random partition of the 20 individual 
shells, of whom 7 would fail to perforate in whichever group they are randomly 
included. The second way of treating this case views samples from the two pro­
cesses as random samples from two populations, so the failure rates can vary from 
o to 12 and 0 to 8, respectively. The test asks whether the probability of failure is 
the same in both. This falls under what Pearson calls Problem II (Barnard's N2x2 
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matic routine use of tests this can make a substantial difference. Pear­
son rejects this use of tests. 

The result of either approach would raise considerable doubts as to 
whether the performance of the [second] type of shell was as good as 
that of the [first]. (Ibid., 192)11 

In either case, the data indicate J: the first type of shell is better than 
the second, because in either case J passes a severe test (although one 
is more severe than the other). (Severity for passing J here is 1 minus 
the significance level.) 

Pearson holds that in important cases the difference in error proba­
bilities, depending upon which of these tests is chosen, makes no real 
difference to substantive judgments in interpreting the results: 

Were the action taken to be decided automatically by the side of the 
5% level on which the observation point fell, it is clear that the 
method of analysis used would here be of vital importance. But no 
responsible statistician, faced with an investigation of this character, would 
follow an automatic probability rule. (Ibid., 192; emphasis added) 

So, faced with this type of investigation, no responsible statistician 
would be a strict follower of the behavioristic model of NP tests. 

Surprisingly, the same type of admonishment against an "auto­
matic" use of tests, along with other remarks redolent of Pearson's "in­
ferential" philosophy, occurs not only in Pearson's own papers, but also 
in one or two of the joint papers by Neyman and Pearson. In 1928, for 
example, "they" wrote: 

If then a statistician thoughtlessly decides, whatever be the test, to 
reject an hypothesis when P ::S .01, say, and accept it when P > .01, 
it will make a considerable difference to his conclusions whether he 
uses [one test statistic or another]. But as the ultimate value of statis­
tical judgment depends upon a clear understanding of the meaning 
of the statistical tests applied, the difference between the values of the 
two P's should present no difficulty. (Neyman and Pearson 1967c, 18) 

comparative trial"). For the naval shell example, Pearson regards the former treat­
ment, though preferred by Barnard, as more artificial than the latter. Which of 
several ways to treat the 2x2 case had been much debated by Barnard and Fisher 
at that time. Pearson's position is that the appropriate sample space "is defined by 
the nature of the random process actually used in the collection of the data, " which 
in tum directs the appropriate choice of test (Pearson 1966a, 190). But Pearson 
does not think there is a need for a rigid choice from among several plausible tests. 

11. Pearson's conclusion inadvertently switches the observation to 2 of 12 and 
5 of 8 successful perforations, where originally they had been failures. I have stated 
his conclusion to be consistent with the original results reported in this example. 
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(P here is equal to the significance leveL) In other words, if the decision 
model of NP is taken literally, one accepts or rejects H according to 
whether or not the observed outcome falls in the preselected rejection 
region. Just missing the cutoff for rejection, say, because the observed 
significance level is .06 while the fixed level for rejection is .OS, auto­
matically makes the difference between an acceptance and a rejection 
of H. The "Pearsonian" view rejects such automation in scientific con­
texts because 

it is doubtful whether the knowledge that [the observed significance 
level] was really .03 (or .06) rather than .05 ... would in fact ever 
modify our judgment when balancing the probabilities regarding the 
origin of a single sample. (Ibid., 27) 

Most significant in this joint contribution is the declaration that 

if properly interpreted we should not describe one [test] as more accu­
rate than another, but according to the problem in hand should rec­
ommend this one or that as providing information which is more 
relevant to the purpose. (Ibid., 56-57) 

This introduces a criterion distinct from low error rates, namely, the 
relevance of the information. In addition, clues emerge for connecting 
tests (used nonroutinely) to learning about causes by probing key 
errors: 

The tests should only be regarded as tools which must be used with 
discretion and understanding .... We must not discard the original 
hypothesis until we have examined the alternative suggested, and 
have satisfied ourselves that it does involve a change in the real un­
derlying factors in which we are interested; ... that the alternative 
hypothesis is not error in observation, error in record, variation due 
to some outside factor that it was believed had been controlled, or to 
anyone of many causes. (Ibid., 58) 

This sentiment is clear enough: we should not infer some alternative 
to a hypothesis H until other alternative explanations for the dis­
cordancy with H have been ruled out. The surprise is only that such 
nonbehavioral talk should occur in a joint paper. Its very title-"On 
the Use and Interpretation of Certain Test Criteria for Purposes of Sta­
tistical Inference"-is at odds with Neyman's philosophy, which con­
cerned behavior and not inference. A curious note by Neyman tucked 
at the end of this paper may explain its Pearsonian flavor. 

I feel it necessary to make a brief comment on the authorship of this 
paper. Its origin was a matter of close co-operation, both personal and 
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by letter .... Later I was much occupied with other work, and there­
fore unable to co-operate. The experimental work, the calculation of 
tables and the developments of the theory of Chapters III and IV are 
due solely to Dr Egon S. Pearson. (Neyman and Pearson 1967c, 66; 
signed by J. Neyman) 

This "joint" paper, it appears, was largely a contribution of Pearson's. 

11.5 A PEARSONIAN PHILOSOPHY OF EXPERIMENTAL LEARNING 

I want now to turn to Pearson's discussion of the steps involved in the 
original construction of NP tests (of H: no difference). His discussion 
underscores the key difference between the NP error statistical (or 
"sampling") framework and approaches based on the likelihood prin­
ciple. The previous chapters have amply illustrated the enormous con­
sequences that this difference makes to an account of scientific testing. 
This background should let us quickly get to the heart of why different 
choices were made in the mathematical development of NP error sta­
tistics. The choices stem not only from a concern for controlling a test's 
error probabilities, but also from a concern for ensuring that a test is 
based on a plausible distance measure (between data and hypotheses). 
By recognizing these twin concerns, we can answer a number of criti­
cisms of NP tests. 

Three Steps in the Original Construction of NP Tests 

After setting up the test (or nUll) hypothesis, and the alternative 
hypotheses against which "we wish the test to have maximum discrimi­
nating power" (Pearson 1966a, 173), Pearson defines three steps in 
specifying tests: 

Step 1. We must specify [the sample spacel2] the set of results which 
could follow on repeated application of the random process used in 
the collection of the data .... 

[ 

Step 2. We then divide this set [of possible results] by a system of 
ordered boundaries ... such that as we pass across one boundary and 
proceed to the next, we come to a class of results which makes us 
more and more inclined, on the information available, to reject the hy­
pothesis tested in favour of alternatives which differ from it by in­
creasing amounts. (Pearson 1966a, 173) 

Results make us "more and more inclined" to reject H as they get fur­
ther away from the results expected under H, that is, as the results 

12. Here Pearson calls it the "experimental probability set." 
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become more probable under the assumption that some alternative J 
is true than under the assumption that H is true. This suggests that one 
plausible measure of inclination is the likelihood of H-the probability 
of a result e given H. We are "more inclined" toward J as against H to 
the extent that J is more likely than H given e. 

NP theory requires a third step-ascertaining the error probability 
associated with each measure of inclination (each "contour level"): 

Step 3. \We then, if possible, associate with each contour level the 
chance 'that, if [H] is true, a result will occur in random sampling 
lying beyond that level. (Ibid.) 13 

For example, step 2 might give us the likelihood or the ratio of likeli­
hoods of hypotheses given evidence, that is, the likelihood ratio. At 
step 3 the likelihood ratio is itself treated as a statistic, a function of 
the data with a probability distribution. This enables calculating, for 
instance, the probability of getting a high likelihood ratio in favor of H 
as against a specific alternative J', when in fact the alternative J' is 
true, that is, an error probability. We are already familiar with this kind 
of calculation from calculating severity. 

Pearson explains that in the original test model step 2 (using likeli­
hood ratios) did precede step 3, and that is why he numbers them this 
way. Only later did formulations of the NP model begin by first fixing 
the error value for step 3 and then determining the associated critical 
bounds for the rejection region. This change came about with advances 
in the mathematical streamlining of the tests. Pearson warns that 

although the mathematical procedure may put Step 3 before 2, we 
cannot put this into operation before we have decided, under Step 2, 
on the guiding principle to be used in choosing the contour system. 
That is why I have numbered the steps in this order. (Ibid., 173) 

However, if the rationale is solely error probabilities in the long run, the 
need to first deliberate over an appropriate choice of measuring dis­
tance at step 2 drops out. That is why it is dropped in the standard 
behavioral model of NP tests. In the behavioral model, having set up 
the hypotheses and sample space (step I), there is a jump to step 3, 
fixing the error probabilities, on the basis of which a good (or best) NP 
test determines the rejection region. In other words, the result of step 
3 automatically accomplishes step 2. From step 3 we can calculate how 
the test, selected for its error probabilities, divides the possible out-

13. Where this is not achievable (e.g., certain tests with discrete probability 
distributions), the test can associate with each contour an upper limit to this error 
probability. 
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comes. Yet this is different from having first deliberated at step 2 about 
which outcomes are "further from" or "closer to" H in some sense, 
and thereby should incline us more or less to reject H. The resulting 
test, despite having adequate error probabilities, might have an inad­
equate distance measure. Such a test may fail to ensure that the test 
has an increasing chance of rejecting H the more the actual situation 
deviates from the one H hypothesizes. The test may even be irrelevant 
to the hypothesis of interest. The reason that critics can construct 
counterintuitive tests that appear to be licensed by NP methods, for 
example, certain mixed tests,14 is that tests are couched in the behav­
ioral framework from which the task Pearson intended for step 2 is 
absentY 

Likelihood Prindple versus Error Probability Prindples, Again 

It might be asked, if Pearson is so concerned with step 2, why go 
on to include step 3 in the testing model at all? In other words, if Pear­
son is interested in how much a result "inclines us" to reject H, why 
not just stop after providing a measure of such inclination at step 2, 
instead of going on to consider error probabilities at step 3? This is 
precisely what many critics of NP have asked. It was essentially Hack­
ing's (1965) point during his "likelihood" period. As briefly noted in 
previous chapters, Hacking's likelihood account held that the likelihood 
ratio (of H against alternative J) provides an appropriate measure of 
support for H against J.16 In such a likelihood view, the tests should just 
report the measure of support or inclination (at step 2) given the data. 
For Bayesians also, the relevant evidence contributed by the data is 
fully contained in the likelihood ratio (or the Bayesian ratio of sup-

14. In a mixed test certain outcomes instruct one to apply a given chance 
mechanism and accept or reject H according to the result. Because long-run error 
rates may be improved using some mixed tests, it is hard to see how a strict follower 
of NP theory (where the lower the error probabilities the better the test) can in­
veigh against them. This is not the case for one who rejects the behavioral model 
of NP tests as Pearson does. A Pearsonian could rule out the problematic mixed 
tests as being at odds with the aim of using the data to learn about the causal 
mechanism operating in a given experiment. Ronald Giere presents a related argu­
ment against mixed tests, except that he feels it is necessary to appeal to propensity 
notions, whereas I appeal only to frequentist ones. See, for example, Giere 1976. 

15. A notable exception is the exposition of tests in Kempthorne and Folks 
1971 in which test statistics are explicitly framed in terms of distance measures. See 
also note 28. 

16. Hacking later rejected this approach (e.g., Hacking 1972). Although he 
never dearly came out in favor of NP methods, in 1980 he reversed himself (Hack­
ing 1980) on several of his earlier criticisms of NP methods. 
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port)-the thrust of the likelihood principle (LP)Y We discussed the 
LP at length in chapter 10. To remind us, NP theory violates the LP 
because a hypothesis may receive the same likelihood on two pieces of 
data and yet "say different things" about what inference is war­
ranted-at least to the error statistician's ears. To pick up on this differ­
ence requires considering not only the outcomes that did occur, but 
also the outcomes that might have occurred; and, as we saw, the 
Bayesian (or conditionalist) recoils from such considerations. 

The debate in the philosophy of statistics literature often does little 
more than register the incompatibility between the NP approach on 
the one hand and the likelihood and Bayesian approaches on the 
other. Each side has a store of examples in which the other appears to 
endorse a counterintuitive inference. From the perspective of the aims 
of ampliative inquiry, I have been arguing, we can go further: control 
of error probabilities has a valid epistemological rationale-it is at the 
heart of experimental learning. The main lines of my argument may 
be found in Pearson. Here is where Pearson's rejection of the long-run 
rationale of error probabilities and his nonroutine use of tests come 
together with the Pearsonian logic of test construction. 

Likelihoods Alone (Step 2) Are Insufficient for Pearsonian Reasoning 

Pearson explains why he and Neyman held it essential to add the 
error probability calculations of step 3 to the "measures of inclination" 
at step 2. The concern was not pragmatic, with low error rates (in the 
long run of business), but with learning from experiments. Reflecting 
on this question (in "Some Thoughts on Statistical Inference"), Pearson 
tells of their "dissatisfaction with the logical basis-or lack of it-which 
seemed to underlie the choice and construction of statistical tests" at 
the time. He and Neyman, Pearson explains, "were seeking how to 
bring probability theory into gear with the way we think as rational 
human beings" (Pearson 1966e, 277). 

17. The likelihood principle, we saw in chapter 10, falls out directly from Bay­
es's theorem. Birnbaum is responsible for showing, to the surprise of many, that it 
follows from two other principles, called sufficiency and conditionality (together, 
or conditionality by itself). For an excellent discussion of these principles see 
Birnbaum 1969. Birnbaum's result-while greeted with dismay by many non­
Bayesians (including Birnbaum himself) who balked at the likelihood principle but 
thought sufficiency and conditionality intuitively plausible-was welcomed by 
Bayesians, who (correctly) saw in it a new corridor leading to a key Bayesian tenet. 
A third way would be to steer a path between the likelihood principle and advocat­
ing any principle that decreases error probabilities, thereby keeping certain aspects 
of sufficiency and conditionality when and to the extent that they are warranted. 
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But looking back I think it is clear why we regarded the integral of probability 
density within (or beyond) a contour as more meaningful than the likelihood 
ratio-more readily brought into gear with the particular process of 
reasoning we followed. 

The reason was this. We were regarding the ideal statistical procedure as one 
in which preliminary planning and subsequent interpretation were closely 
linked together-formed part of a single whole. It was in this connexion 
that integrals over regions of the sample space were required. Cer­
tainly, we were much less interested in dealing with situations where the data 
are thrown at the statistician and he is asked to draw a conclusion. I have 
the impression that there is here a point which is often overlooked. 
(Ibid., 277-78; emphasis added) 

I have the impression that Pearson is correct. The main focus of 
philosophical discussions is on what rival statistical accounts tell one 
to do once "data are thrown at the statistician and he is asked to draw 
a conclusion"; for example, to accept or reject for an NP test or com­
pute a posterior probability for a Bayesian. 

Why are error probabilities so important once the "preliminary 
planning and subsequent interpretation" are closely linked? First, if 
one of the roles of a theory of statistics is to teach how to carry out an 
inquiry, then some such before-trial rules are needed. By considering 
ahead of time a test's probabilities of detecting discrepancies of interest, 
One can avoid carrying out a study with little or no chance of teaching 
what one wants to learn; for example, one can determine ahead of 
time how large a sample would be needed for a given test to have 
a reasonably high chance (power) of rejecting H when in fact some 
alternative J is true. Few dispute this (before-trial) function of error 
probabilities. 

But there is a second connection between error probabilities and 
preliminary planning, and this explains their relevance even after the 
data are in hand. It is based On the supposition that in order to correctly 
interpret the bearing of data on hypotheses one must know the proce­
dure by which the data got there; and it is based on the idea that a 
procedure's error probabilities provide this information. The second 
role for error probabilities, then, is one of interpreting experimental 
results after the trial. It is On this "after-trial" function that I want to 
focus; for it is this that is denied by non-error-statistical approaches 
(those accepting the LP)Y The Bayesians, paraphrasing LeCam's re­
mark (chapter 10), have the magic that allows them to draw inferences 

18. Some (e.g., Hacking 1965) have suggested that error probabilities, while 
acceptable for before-trial planning, should be replaced with other measures (e.g., 
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from whatever aspects of data they happen to notice. NP statisticians 
do not. 

Throughout this book I have identified several (after-trial) uses of 
error probabilities, but they may all be traced to the fact that error prob­
abilities are properties of the procedure that generated the experimental result. 19 

This permits error probability information to be used as a key by which 
available data open up answers to questions about the process that 
produced them. Error probability information informs about whether 
given claims are or are not mistaken descriptions of some aspect of the 
data generating procedure. It teaches us how typical given results 
would be under varying hypotheses about the experimental process. 

We know how easy it is to be misled if we look only at how well 
data fit hypotheses, ignoring stopping rules, use-constructions, and 
other features that alter error probabilities. That is why fitting, even 
being the best-fitting hypothesis, is not enough. Step 2 assesses the fit, 
step 3 is needed to interpret its import. In a joint paper, Pearson and 
Neyman (1967) explain that 

if we accept the criterion suggested by the method of likelihood it is 
still necessary to determine its sampling distribution in order to con­
trol the error involved in rejecting a true hypothesis, because a 
knowledge of L [the likelihood ratio] alone is not adequate to insure 
control of this error. (P. 106; I substitute L for their A) 

Let L be the ratio of the likelihood of H and an alternative hypothesis 
J on given data x. That is, 

P(x I H) 
L = --'-----=----'-

P(x I J) 

(where in the case of composite hypotheses we take the maximum 
value of the likelihood). Suppose that L is small, say, .01, meaning H 
has a much smaller likelihood than J does. We cannot say that because 

likelihoods) after the trial. Pearson took up and rejected this proposal. raised by 
Barnard in 1950, reasoning that 

if the planning is based on the consequences that will result from follow­
ing a rule of statistical procedure, e.g., is based on a study of the power 
function of a test, and then, having obtained our results, we do not follow 
the first rule but another, based on likelihoods, what is the meaning of 
the planning? (Pearson 1966c, 228). 

19. It may be objected that there are different ways of modeling the procedure. 
That is correct but causes no difficulty for the after-trial uses of error probabilities. 
Indeed, using different models is often a useful way of asking distinct but inter­
related questions of the data. 
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L is a small value, "we should be justified in rejecting the hypothesis" 
H, because 

in order to fix a limit between "small" and "large" values of L we 
must know how often such values appear when we deal with a true 
hypothesis. That is to say we must have knowledge of ... the chance 
of obtaining [L as small or smaller than .01] in the case where the 
hypothesis tested [H] is true. (Ibid., 106) 

Accordingly, without step 3 one cannot determine the test's severity in 
passing J, and without this we cannot determine if there really is any 
warranted evidence against H. 

The position I want to mark out even more strongly and more 
starkly than Pearson does is that the interest in a test's error probabili­
ties (e.g., the probability of it passing hypotheses erroneously) lies not 
in the goal of ensuring a good track record over the long haul, but in 
the goal of learning from the experimental data in front of us. Compar­
isons of likelihoods or other magnitudes of fit can measure the ob­
served difference between the data and some hypothesis, but I cannot 
tell if it should count as big or small without knowledge of error proba­
bilities. In one particularly apt passage, Pearson explains that error 
probability considerations are valuable because 

[they help J us to assess the extent of purely chance fluctuations that are pos­
sible. It may be assumed that in a matter of importance we should 
never be content with a single experiment applied to twenty individ­
uals; but the result of applying the statistical test with its answer in terms of 
the chance of a mistaken conclusion if a certain rule of inference were followed, 
will help to determine the lines of further experimental work. (Pear­
son 1966a, 176-77; emphasis added) 

We saw how in certain cases of use-constructing hypotheses to fit data 
(e.g., gellerization cases), as well as in cases with optional stopping, 
the chance of mistaken conclusions may be very high. This error­
probability information showed us how easily chance fluctuations 
could be responsible for a large extent of the results. 

Let us go back to the case of Pearson's naval shell. The (after-trial) 
question asked was "how much of the difference between (i) two fail­
ures out of twelve and (ii) five failures out of eight is likely to be due to 
this inevitable variability"? (Pearson 1966a, 171). It is asked by testing 
hypothesis H: 

H: The observed difference is due to inevitable or "chance" variability. 

(Alternative J would assert that it is due to a systematic discrepancy 
in the processes, with respect to successfully piercing the plate.) The 
difference statistic D is the difference between the proportions of suc-
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cessful perforations of the plate from the two types of shell. Using the 
experimental (or sampling) distribution of D he can calculate the statis­
tical significance of a given observed difference Dobs: 

The statistical significance of Dobs = P(a difference as great as Dobs I H). 

He found Dobs to be improbably far from what would be expected were 
H correct. (The difference falls in the rejection region of a test of ap­
proximately .05 size.) Even if no repetitions are planned, this analysis 
is informative as to the origin of this difference. There are many ways 
of expressing this information. 

One, paraphrasing Pearson, is that the observed difference (in 
piercing ability) is not the sort easily accounted for by inevitable vari­
ability in the shells and measurement procedures. The observed differ­
ence, rather, is indicative of the existence of a genuine (positive) differ­
ence in piercing ability. Were the two shells about as good, it is very 
probable that we would not have observed so large a difference-the 
severity in passing J is high. Finding the data indicative of hypothesis 
J, even with larger sample sizes than in this simple illustrative example, 
is just a first step. For simplicity, suppose that hypothesis J includes 
positive discrepancies in piercing rates between the first and second 
types of shell. One may also want to know which of the particular 
discrepancies are indicated by outcome D obs' This further information 
may be obtained from the same experimental distribution, but the hy­
pothesis to the right of the given bar would now be a member of J. We 
can thus learn how large a discrepancy in piercing rates would be 
needed to generate differences as large as Dobs fairly frequently. This 
calls for a custom-tailoring of the interpretation of test results to reflect 
the particular outcome reached. In the next section I shall consider 
two basic rules for interpreting test results that take into account the 
particular outcome observed. While they go beyond the usual NP test 
calculations, they fall out directly from the arguments based on sever­
ity calculations considered earlier. 

11.6 Two ERROR STATISTICAL RULES TO GUIDE THE SPECIFICATION 

AND INTERPRETATION OF NP TESTS 

Before proceeding with our next task, let me remind the reader that it 
pertains to just one piece, albeit a central one, of the series of tasks to 
which statistical considerations are put in the present account. In this 
piece, which is often regarded as statistical inference proper, statistical 
methods (tests and estimations) link data to experimental hypotheses, 
hypotheses framed in the experimental model of a given inquiry. Re-
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lating inferences about experimental hypotheses to primary scientific 
claims is, except in special cases, a distinct step. Yet an additional step is 
called for to generate data and check the assumptions of the statistical 
method. Restricting our focus to statistical tests, what I want to con­
sider is how the nonbehavioral construal of tests that I favor supplies 
answers to two questions: how to specify tests, and how to interpret 
the results of tests. In so doing, the construal simultaneously answers 
the main criticisms of NP tests. 

Because I think it is important to tie any proposed philosophy of 
experiment to the actual statistical procedures used, I am deliberately 
sticking to the usual kinds of test reports-either in terms of the statis­
tical significance of a result, or "accept H" and "reject H" -although it 
might be felt that some other terms would be more apt. Rather than 
knock down the edifice of the familiar NP methods, I recommend ef­
fecting the nonbehavioral interpretation by setting out rules to be 
attached to the tests as they presently exist. They might be called "met­
astatistical" rules. To illustrate, it suffices to consider our by now famil­
iar one-sided test with two hypotheses Hand J: 

H: 1.1 equals 1.10 
J: 1.1 exceeds 1.10' 

Parameter /J. is the mean value of some quantity, and the experimental 
statistic for learning about /J. is the sample mean, X. As many of our 
examples showed, it is often of interest to learn whether observed dif­
ferences, say in the positive direction, are due to actual discrepancies 
from some hypothesized value or are typical of chance deviations. 

The difference statistic D is the positive difference between the ob­
served mean and the mean hypothesized in H. That is, 

D = X - /J.o' 

The NP test, call it r, instructs H to be rejected whenever the value of 
variable X differs from H by more than some amount-that is, when­
ever it exceeds some cutoff point X*. One can work with X or with D 
to specify the cutoff point beyond which our test rejects H and accepts 
J. The cutoff is specified so that the probability of a type I error (re­
jecting H, given that H is true) is no more than ex. Let us suppose that 
the test r is a "best" NP test with small size ex, say, for convenience, 20 

that ex is .03. Then 

20. It is convenient because it corresponds to approximately a 2-standard­
deviation cutoff point. If one were looking for discrepancies in both directions, that 
is, if this were a 2-sided rather than a I-sided test, then the 2-standard-deviation 
cutoff would give, approximately, a test with size 0.05. See note 2, chapter 9. 
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Test y+: Reject H at level .03 iff X exceeds fLo by 2 s.d.(xn ) 

where s.d.(xn ) is the standard deviation of X. For simplicity, let the sam­
ple size n be large enough to assume approximate normality of X ac­
cording to the central limit theorem (say, n is greater than 30). Let us 
review the error probabilities of test y+. 

Error Probabilities of y+ 

a. The type I error is rejecting H when H is true. The probability of 
this occurring, <x, is no more than .02 because that is the preset size of 
the test. This holds because X exceeds its mean by 2 standard devia­
tions less than 3 percent of the time. 

b. The type II error is accepting (or failing to reject) H when His 
false (and J is true). Hypothesis J is a "composite" alternative, since it 
contains all the fL values in excess of fLo' The probability of the type II 
error varies depending on which value in J is the true one. 

The probability of a type II error is usually written as 13, but because 
it will depend for its value on which specific value in J is true, it is 
clearer to use J3(fL/) to refer to the probability of a type II error when 
fL' is true. One should read J3(fL') as follows: 

l3(fL'): the probability that test r+ fails to reject H (and accept J) when 
alternative fL' is true. 

The assertion that the mean equals fL' may be written as hypothesis J': 

1': fL equals fL'. 

J' is a particular "point" hypothesis within the composite alternative J. 
That is, J3(fL/) is the probability of committing a type II error when J' 
is true. So, J3(fL/) can also be written 

l3(fL'): P(test r+ fails to reject HI J' is true). 

Notice that "failing to reject H" in test y+ is equivalent to obtaining an 
X that is not so far from fLo as to reach the (2-standard-deviation) cutoff 
point X*. SO J3(fL/) is the probability that X is less than x*, given that J' 
is true. 

J3(fL') = P(X < X* I J' is true). 

As is plausible, test y+ has a decreasing probability of committing 
a type II error the "more false" H is-the further fL' is "to the right 
of" fLo. One may wish to state this in terms of the complement to the 
probability of a type II error, namely, the power of the test to detect a 
specific simple alternative fL'. That is, 
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The power ofP against J' = p(X;:::: X* I J' is true). 

The power of the test to reject Hwhen J' is true is 1 - ~(f.1'). As would 
be expected, the more discrepant f.1' is from f.10' the higher is test ']'+'s 
power to detect this. 

A test's error probabilities may be used to construct arguments 
from error, arguments based on severity. However, it is important to 
remember that severity is always calculated relative to a specific hy­
pothesis that a given test passes on the basis of a given outcome. You 
cannot assess the severity of a test without considering the process of 
a test's passing a particular hypothesis with one or another outcome of 
a given experiment. So to relate error probabilities to arguments from 
error we need to consider specific kinds of inferences that test T+ can 
license. We can begin with the simple dichotomy of standard NP tests: 
positive and negative results. 

Positive Results: A Rejection of H 

A positive result is the observation of a sample mean that exceeds 
the hypothesized mean f.1o by a statistically significant amount. In the 
standard test ']'+ with a set at .03, a statistically significant difference is 
one that exceeds f.1o by 2 standard-deviation units. Within the NP 
model, this is taken as a rejection of H. That is, the cutoff point, X*, is 
f.1o + 2 s.d.(xn )· 

What is learned from an observed difference Dobs about the exis­
tence of a positive discrepancy from f.1o? For what value of f.1' does J: 
f.1 exceeds f.1' pass a severe test with ']'+? From the pattern of arguing 
from error we get what might be called the rule of rejection (RR): 

RRi. A difference as large as DObs is a good indication that fl. exceeds fl.' 
just to the extent that it is very probable that test r- would have 
resulted in a smaller difference if fl. (the true mean) were as small 
as fl.'. 

Notice that this is the same as saying that Dobs is a good indication 
that f.1 exceeds f.1' to the extent that Jpasses a severe test with D obs' That 
is because "not-J" consists of f.1 values less than or equal to f.1'.21 

From RRi we get a companion rule for what an observed difference 
does not indicate. Let us set it out separately: 

RRii. Dobs is a poor indication that fl. exceeds fl.' if it is very probable that 
test r- yields so large a difference even if fl. is no greater than fl.'. 

21. As discussed in chapter 6, to obtain severity for all of those values it is 
enough that P (a difference smaller than Dob, I fl. equals fl.') is high. See also the rule 
of acceptance (RA) below. 
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The if clause is the same as saying that the claim J: fL exceeds fL' fails 
to pass a severe test (Le., the probability of not getting so large a differ­
ence even if J is false is low). 

In addition to the rule of rejection (RR), I will be setting out a 
rule of acceptance (RA). These rules have many uses. They justify the 
standard prespecified small error probabilities, allow custom-tailoring 
of inferences after the trial, and serve to avoid common criticisms and 
misinterpretations of NP tests. Focusing first on rule RR, I will consider 
each of these uses in turn. 

Rule RR Justifies Preset Significance Levels 

The concern in the case of rejecting the null or test hypothesis H 
is that a rejection of H might be erroneous-that is, the concern is with 
the type I error. By stipulating that H be rejected only if the difference 
is statistically significant at some small level, it is assured that such a 
rejection-at minimum-warrants hypothesis J, that fL exceeds fLo by 
some amount or other. RRi makes this plain. 

If H is rejected, then the hypothesis that passes the test is J, the 
assertion that fL exceeds the null value fLo. To obtain severity, we have 
to consider one minus the probability of such a statistically significant 
result even if H is true (1 - the probability of a type I error). This will 
vary depending on how much the observed result exceeds the minimal 
boundary for declaring a result significant enough to reject H o' namely, 
X*. Its lowest value, however, would be for a result that just makes it 
to the boundary X*. In this case, the observed mean, Xobs' equals the 
cutoff value X* for calling a result "positive." The severity for this 
"worst case" of rejecting H is one minus the probability of a type I error 
(Le., 1 - !3(fLo))' So the assurance given by a test with a low type I 
error is that it tells me ahead of time that whenever r+ rejects HO' J has 
passed a severe test (at least to degree 1 - a).22 

22. To review the argument with a bit more detail, remember that a test y+ 

with low size or significance level ot assures that the cutoff X* beyond which point 
the sample mean is taken to reject H and accept J is one that occurs with no more 
than probability ot when H is true. That is, it ensures that 

1. P(test r- yields a sample mean that exceeds X* I H is true) :s ot. 

But (1) ensures that whenever such a test passes J, the result is that J has passed a 
severe test, the severity being at least 1 - ot. The reason is that (1) is equivalent 
to (2): 

2. P(test r- passes J I H is true) :s ot. 

From which we get 
3. P(test r- does not pass J I H is true) > 1 - ot (or 2: 1 - ot for continuous 

cases). 
And so 

4. if J passes test r-, then J passes a severe test. 
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Custom-Tailoring 

When outcomes deviate from H by even more than the a cutoff, 
rule RR justifies two kinds of custom-tailored results: (a) it warrants 
passing J at an even higher severity value than 1 - a, and (b) it war­
rants passing alternatives J': J.L is greater than J.L', where J.L' is larger 
than J.Lo' with severity 1 - a. With (a) we make the same inference­
pass J-but with a higher severity than with a minimally positive re­
sult. With (b) we keep the same level of severity but make a more 
informative inference-that the mean exceeds some particular value 
J.L' greater than the null value J.Lo' 

To illustrate (b), suppose that null hypothesis H: J.L = .5 in our lady 
tasting tea example is rejected with a result Xobs is equal to .7. (Mean 
J.L, recall, is the same as the probability of success p.) That is, out of 100 
trials, 70 percent are successes. The 2-standard-deviation cutoff was 60 
percent successes, so this result indicates even more than that J.L ex­
ceeds .5. The result is also a good indication that J.L exceeds .6. That is 
because the observed difference exceeds .6 by 2 standard deviations. 
The probability of so large a difference from .6 if J.L were no greater 
than .6 is small (about .03). Thus the assertion "J.L exceeds .6" passes a 
severe test with result .7 (severity .97). 

Avoiding Misinterpretations and Alleged Paradoxes for NP Tests 

Where RRi shows that an a-significant difference from H (for small 
a) indicates some positive discrepancy from Ho' RRii makes it clear that 
it does not indicate any and all positive discrepancies. My failing exam 
score may indicate that I am ignorant of some of the material yet not 
indicate that I know none of it. 

We can make the point by means of the usual error probabilities, 
even without customizing to the particular result. Consider the power 
of a test (1 - the type II error) regarding some alternative J.L'. We 
know: 

The power of y+ against J': J.L = J.L' equals P(X 2: X* I J' is true), 
which equals 1 - 13(J.L'). The test's power may be seen as a measure of 
its sensitivity. The higher the test's probability of detecting a discrep­
ancy J.L', the more powerful or sensitive it is at doing so. If, however, a 
test has a good chance of rejecting H even if J.L is no greater than some 
value J.L', then such a rejection is a poor indication that J.L is even greater 
than J.L'. So-although this may seem odd at first-a statistically sig­
nificant difference is indicative of a larger discrepancy the less sensitive 
or powerful the test is. If the test rings the alarm (Le., rejects Ho) even 
for comparatively tiny discrepancies from the null value, then the ring-
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ing alarm is poor grounds for supposing that larger discrepancies exist. 
As obvious as this reasoning becomes using severity considerations, 
the exact opposite is assumed in a very common criticism of tests. 

Before turning to this criticism, let us illustrate the reasoning in 
both parts of the RR by means of a medical instrument. Imagine an 
ultrasound probe to detect ovarian cysts. If the image observed is of 
the sort that very rarely arises when there is no cyst, but is common 
with cysts, then the image is a good indication a cyst exists. If, however, 
you learned that an image of the sort observed very frequently oc­
curred with this probe even for cysts no greater than 2 inches, then 
you would, rightly, deny that it indicated a cyst as large as, say, 6 
inches. The probe's result is a good indication of a cyst of some size, 
say 1/4 inch, but a poor indication of a cyst of some other (much 
greater) size. And so it is with test results. 

If a difference as large as the one observed is very common even if 
fl. equals fl.', then the difference does not warrant taking fl. to exceed 
fl.'. That is because the hypothesis that fl. exceeds fl.' would thereby 
have passed a test with poor severity. And in comparing outcomes 
from two different tests, the one that passes the hypothesis with higher 
severity gives it the better warrant. How do critics of NP tests get this 
backwards? 

A Fallacy regarding Statistically Significant (Positive) Results 

Criticisms of NP tests, we have seen, run to type, and one well­
known type of criticism is based on cases of statistically Significant (or 
positive) results with highly sensitive tests. The criticism begins from 
the fact that any observed difference from the null value, no matter 
how small, would be classified as statistically significant (at any chosen 
level of significance) provided the sample size is large enough. (While 
this fact bears a resemblance to what happens with optional stopping, 
here the sample size is fixed ahead of time.) There is nothing surprising 
about this if it is remembered that the standard deviation decreases as 
the sample size increases. (It is inversely proportional to n.) Indeed, my 
reason for abbreviating the standard deviation of the sample mean as 
s.d.(xn) in this chapter was to emphasize this dependence on n. A 2-
standard-deviation difference with a sample size of, say, 100 is larger 
than a 2-standard-deviation difference with a sample size of 10,000. 

We can make out the criticism by reference to a Binomial experi­
ment, such as in the lady tasting tea example. The null hypothesis His 
that p, the probability of success on each trial, equals .5. Now, in a 
sample of 100 trials, the standard deviation of Xis .05, while in 10,000 
trials it is only .005. Accordingly, a result of 70 percent successes is a 
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very significant result (it exceeds .5 by 4 standard deviations) in a sam­
ple of 100 trials. In a sample of 10,000 trials, an equally statistically 
significant result requires only 52 percent successes! An alleged para­
dox is that a significance test with large enough sample size rejects the 
null with outcomes that seem very close to, and by a Bayesian analysis 
are supportive of, the null hypothesis. This might be called the Jeffreys­
Good-Lindley paradox, after those Bayesians who first raised it. 

I discuss this paradox at length in Mayo 1985a and elsewhere, but 
here I just want to show how easy it is to get around a common criti­
cism that is based on it. The criticism of NP tests results only by confus­
ing the import of positive results. The fallacious interpretation results 
from taking a positive result as indicating a discrepancy beyond that 
licensed by RR. Howson and Urbach give a version of this criticism 
(along the lines of an argument in Lindley 1972). Their Binomial ex­
ample is close enough to the one above to use it to make out their 
criticism (their p is equal to the proportion of flowering bulbs in a pop­
ulation). The criticism is that in a test with sample size 10,000, the null 
hypothesis H: p = .5 is rejected in favor of an alternative J, that p equals 
.6 even though .52 is much closer to .5 (the hypothesis being rejected) 
than it is to .6. And yet, the criticism continues, the large-scale test is 
presumably a better NP test than the smaller test, since it has a higher 
power (nearly 1) against the alternative that p = .6 than the smaller 
test (.5).23 

The authors take this as a criticism of NP tests because "The thesis 
implicit in the [NP] approach, that a hypothesis may be rejected with 
increasing confidence or reasonableness as the power of the test in­
creases, is not borne out in the example" (Howson and Urbach 1989, 
168). Not only is this thesis not implicit in the NP approach, but it is 
the exact reverse of the appropriate way of evaluating a positive (Le., 
statistically significant) result. The thesis that gives rise to the criticism 
comes down to thinking that if a test indicates the existence of some 
discrepancy then it is an even better indication of a very large dis­
crepancy! 

Looking at RRii makes this clear. Let us compare the import of the 
two 4-standard-deviation results, one from a test with sample size n = 
100, the second from a test with sample size n = 10,000. In the experi­
ment with 10,000 trials, the observation of 52 percent successes is an 
extremely poor indicator that p is as large as .6. For such a result is 
very probable even if the true value of p is actually less than .6, 

23. I am calculating power here with the cutoff for rejection set at .6-the 2-
standard-deviation cutoff. 
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say, if P = .55. Indeed, it is practically certain that such a large result 
would occur for p as small as .55. Were one to take such a result as 
warranting that p is .6, one would be wrong with probability very 
near one. 

In contrast, the observation of 70 percent successes with n = 100 
trials is a very good indication that p is as large as .6. The probability of 
getting so large a proportion of successes is very small (about .03) if IJ. 
is less than .6. The severity of a test that passes "p is as large as .6" with 
70 percent successes out of 100 trials is high (.97). 

Howson and Urbach's criticism, and a great many others with this 
same pattern, are based on an error to which researchers have very 
often fallen prey. The error lies in taking an a-significant difference 
(from H) with a large sample size as more impressive (better evidence 
of a discrepancy from H) than one with a smaller sample size.24 That, 
in fact, it is the reverse is clearly seen with rule RR. The reasoning can 
be made out informally with an example such as our ultrasound probe. 
Take an even more homey example. Consider two smoke detectors. 
The first is not very sensitive, rarely going off unless the house is fully 
ablaze. The second is very sensitive: merely burning toast nearly 
always triggers it. That the first (less sensitive) alarm goes off is a 
stronger indication of the presence of a fire than the second alarm's 
going off. Likewise, an a-significant result with the less powerful test is 
more indicative of a discrepancy from H than with the more powerful 
test.25 Interpreting the results accordingly, the authors' criticism disap­
pears. 

To be fair, the NP test, if regarded as an automatic "accept-reject" 
rule, only tells you to construct the best test for a small size a and then 
accept or reject. A naive use of the NP tools might seem to license 
the problematic inference. Rule RR is not an explicit part of the usual 
formulation of tests. Nevertheless, that rule, and the fallacious inter­
pretation it guards against, is part of the error statistician's use of 
these tests.26 

24. Rosenthal and Gaito (1963) explain the fallacy as the result of interpreting 
significance levels-quite illicitly-as E-R measures of the plausibility of the null 
hypothesis. In this view, the smaller the significance level, the less plausible is null 
hypothesis H, and so the more plausible is its rejection. Coupled with the greater: 
weight typically accorded to experiments as the sample size increases, the fallacy 
emerges. 

25. See Good 1980, 1982 for a Bayesian way of accommodating the diminish­
ing Significance of a rejection of H as the sample size increases. 

26. The probabilities called for by RR would be obtained using the usual proba­
bility tables (e.g., for the Normal distribution). A good way to make use of rule 
RR without calculating exact severity values for each result is to substitute certain 

Mayo, Deborah G.. <i>Error and the Growth of Experimental Knowledge</i>, University of Chicago Press, 1996. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/vt/detail.action?docID=648144.
Created from vt on 2019-06-20 09:16:01.

C
op

yr
ig

ht
 ©

 1
99

6.
 U

ni
ve

rs
ity

 o
f C

hi
ca

go
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



404 CHAPTER ELEVEN 

Negative Results: Failures to Reject 

Let us turn now to considering negative results, cases where the 
observed difference is not statistically significant at the specified small 
a level. Here the null hypothesis H (/-L = /-Lo) is not rejected. NP theory 
describes the result as "accept H," but one must be careful about how 
to interpret this. As we saw in section 6.5, it would not license the 
inference that /-L is exactly /-Lo-that /-L does not exceed /-Lo at all. How­
ever, as we also saw, we may find a positive discrepancy that can be 
well ruled out. The pattern of reasoning again follows the pattern of 
arguing from error. We can capsulize this by the following rule of ac­
ceptance (RA): 

RAi. A difference as small as Dob, is a good indication that fL is less 
than fL' if and only if it is very probable that a larger difference would 
have resulted from test r+ if the mean were as large as fL / . 

That is, a statistically insignificant difference indicates that J: /-L is less 
than /-L' just in case J passes a severe test. As with the RR, we get a 
companion rule: 

RAii. A difference as small as Dob, is a poor indication that fL is less than 
fL' if it is very improbable that the test would have resulted in a larger 
difference even if the mean were as large as fL'. 

Notice that when the result is negative, the error of interest is a false 
negative (a type II error)-that H will be accepted even though some 
alternative J is true. 

Rule RA Directs Specifying Tests with High Power to Detect 
Alternatives of Interest 

Now r "accepts" H whenever X is less than27 the .03 Significance 
level cutoff. Before the test, one does not yet know what value of X 
will be observed. Ensuring ahead of time that test r has a high power 
1 - 13 against an alternative J': /-L = /-L' ensures that a failure to reject 

benchmarks for good and poor indications. Still focusing on test r+, useful bench­
marks for interpreting rejections of hypothesis H would be as follows: 

1. A r+ rejection of H is a good indication that fL exceeds Xob, - 2s.d.(xn ). 

2. A r+ rejection is a poor indication that fL exceeds Xob, + Is.d.(xn ). 

(I) corresponds to passing the claim that "fL exceeds Xob, - 2s.d.(xn )" with se­
verity.97. 

(2) corresponds to passing the claim that "fL exceeds Xob, + Is.d.(xn)" with se­
verity .16. For a more general discussion of benchmarks for both the RR and RA 
see Mayo 1983. 

27. In continuous cases or discrete cases with fairly large n, it does not matter 
if we take it as < or s. 
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H-a case where H passes-is a case that indicates that IJ. does not 
exceed IJ.'. That is, by assuring ahead of time that the power to detect 
IJ.' is high, the experimental tester is ensuring that accepting H consti­
tutes passing severely the hypothesis H': 

H': IL is no greater than IL'. 

Tests should be specified according to the smallest discrepancy from lJ.o 
that is ofinterest. 

Notice that this power calculation is a calculation of severity for 
the case where the result just misses the critical boundary for statistical 
significance. By custom-tailoring this calculation to the particular sta­
tistically insignificant result obtained, the after-trial analysis may war­
rant ruling out values of IJ. even closer to lJ.o. 

A variant on this after-trial question is to ask, with regard to a 
particular alternative IJ.", whether the obtained negative result Xobs 

warrants ruling out a IJ. value as large as IJ.". Severity tells you to calcu­
late the probability that a mean larger than the one observed, (XObJ, 
would have occurred, given that the true value of IJ. were equal to IJ.". 
That is, you must calculate, still referring to test 7"", 

P(X> Xobs IIJ. equals IJ."). 

If this value is high, then Xobs indicates that IJ. is less than IJ.". Equiva­
lently, the claim that IJ. is less than IJ." passes a severe test with the 
obtained negative result Xobs• For, were IJ. as large as IJ.", the probability 
is high that a result greater than the one obtained would have oc­
curred. 

11.7 A NOTE ON OBJECTIVITY 

The task of specifying the analytical tool for an experimental inquiry 
(e.g., tests) is a task we placed within the experimental model of our 
hierarchy. That it lies outside the formalism of standard NP tests has 
often led critics to charge that NP methods do not really get around 
the subjectivity that plagues the subjective Bayesian account. Deciding 
upon test statistics, sample sizes, significance levels, and so on, after all 
involves judgments-and these judgments, critics allege, are what the 
NP will "sweep under the carpet" (to use I. J. Good's phrase): 

You usually have to use subjective judgment in laying down your 
parametric model. Now the hidebound objectivist tends to hide that 
fact; he will not volunteer the information that he uses judgment at 
all. (Good 1976(143) 
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A favorite line of subjective Bayesians is that by quantifying their sub­
jective beliefs they are actually being more objective than users of non­
Bayesian, error probability methods. How do we respond to this 
charge? First, the judgments the NP test requires are not assignments 
of degrees of belief to hypotheses. Although subjective Bayesians seem 
to think that all judgments come down to judgments of prior probabili­
ties, I see no reason to accept this Bayesian dogma. Second, there is a 
tremendous difference between the kinds of judgments in error statis­
tical methods and subjective probability assignments. 

The two main differences are these: First, the choice of statistical 
test may be justified by specific epistemological goals. As rules RR and 
RA helped us to see, the choice of NP test with low error probabilities 
reflects a desire to substantiate certain standard types of arguments 
from error. With increasing experience, experimenters learn which 
types of tests are likely to provide informative results. There is leeway 
in the specification, but it is of a rather restricted variety. Often, differ­
ent studies will deliberately vary test specifications. Indeed, exploiting 
different ways of analyzing results is often the basis for learning the 
most. Second, and most important, the latitude that exists in the choice 
of test does not prevent the determination of what a given result does 
and does not say. The error probabilistic properties of a test proce­
dure-however that test was chosen-allows for an objective interpreta­
tion of the results. Let us elaborate on these two points, making refer­
ence to the results we have already seen. 

Severity and the Epistemological Grounds for Test Specifications 
When tests are used in scientific inquiry, the basis for specifying 

tests reflects the aims of learning from experiment. A low probability 
of a type I error, for example, is of interest not because of a concern 
about being wrong some small proportion of times in a long-run series 
of applications. It is of interest because of what one wants to learn. If 
you can split off a portion of what you wish to learn so that one of the 
canonical experimental models can be used, then specifying the test's 
error properties grows directly out of what one wants to know-what 
kinds and extents of errors are of interest, what kinds of checks are 
likely to be available, and so on. 

What I am arguing, then, is that the grounds for specifying the 
error probabilities of tests stem from the experimental argument one 
wants to be able to sustain. By fixing the type I error at some low value 
(X the experimental tester ensures that any rejection of H, any passing 
of J, is a good indication that J is the case. It should not be forgotten, 
of course, that this depends on a suitable choice of distance measure 
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at step 2 in test construction. In the canonical tests, such as the one 
just described, the choice of distance measure is already accomplished 
for us. 

But as Neyman and Pearson saw, this leaves too much latitude in 
the choice of a test. One must also consider the type II error-failing to 
reject H when H is false. The problem in cases where H is not rejected is 
that the test may have had little power (probability) of rejecting H even 
if a discrepancy from H exists. So severity considerations tell us that a 
failure to reject H cannot be taken as a good indication that H is pre­
cisely true, that no discrepancy from H exists. It is, however, possible 
to find some value of a discrepancy from H that the result "accept H" 
does warrant ruling out. 

What I am proposing, I believe, is a way of drawing out the impli­
cations of Pearson's hints and suggestions. Before the trial, we are in­
terested in how to ensure that the experiment is capable of telling us 
what we want to know, and we set these "worst case" values for the 
probabilities of type I and type II errors accordingly. After the trial, 
with the data in hand, Pearson says we should base our conclusions 
on the actual "tail area" found, which is tantamount to saying, "look 
at the severity values. " 

Telling the Truth with Error-Statistics 

Of course there is no guarantee that an appropriate test will actu­
ally be run. Indeed, the existence of poorly specified and wrongly in­
terpreted NP tests is at the heart of criticisms of that approach. We 
noted the problem of positive results with too-sensitive tests. An even 
more common problem arises when negative results arise from too­
insensitive tests. As A. W. F. Edwards puts it: 

Repeated non-rejection of the null hypothesis is too easily interpreted 
as indicating its acceptance, so that on the basis of no prior informa­
tion coupled with little observational data, the null hypothesis is ac­
cepted .... Far from being an exercise in scientific objectivity, such a 
procedure is open to the gravest misgivings. (Edwards 1971, 18) 

Although such interpretations of negative results occur, it does not fol­
low that they are licensed by the logic of error statistics. They are not. 
And because researchers must provide us with enough information to 
assess the error probabilities of their tests, we are able to check if what 
they want to accept is really warranted by the evidence. 

To illustrate, we can pick up on the study on birth-control pills 
introduced in chapter 5 and scrutinized in section 6.5. The result, re­
call, was 9 cases of a blood-clotting disorder among women treated 
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with the birth-control pill compared with 8 out of 5,000 in the control 
group. Suppose that the researchers reach the following interpretation 
of their result: "These results indicate that no more than 1 additional 
case of clotting disorders among 10,000 women on the pill would be 
expected." That is, using our abbreviation for the risk increase in the 
population, the researchers infer claim C: 

c: the evidence indicates He: 6. < .0001. 

The rule of acceptance (RA) is the basis for denying that this is a war­
ranted interpretation of the results. 

The observed difference .0002 was not statistically significant; it 
reaches a significance level of .4. We can see right away that an ob­
served difference of .0002 or one even more insignificant would occur 
50 percent of the time even if the actual increased rate of the disorder 
was 2 in 10,000.28 Hence RA tells us that the negative result from this 
study cannot be taken as ruling out increases as small as 2 in 10,000. 
The result is just the sort of thing that would occur half the time in 
studies of substances that cause 2 additional cases of the disorder per 
10,000 women. Such an insignificant difference would therefore be 
even more probable if the pill caused only 1 additional case of the disor­
der in lO,OOO women. Hence the result of this study is a poor indication 
of hypothesis He: A < .0001. The inference in C is not warranted. Such 
an insignificant result would occur more than half the time even if He 
is false. Equivalently, the assertion He passes a test with severity of less 
than .5, on the basis of this result. 

Utilizing a test's error probabilities in this manner, customizing 
even further to take account of the particular result, enables distin­
guishing warranted from unwarranted interpretations of the results, 
and it enables doing so objectively. The objectivity of the assessment is 
afforded by the objectivity of the error probability properties of the test. 
Even without calculating precise severity values, we can distinguish 
(reasonably) warranted and (flagrantly) unwarranted interpretations 
of results. Plenty of shortcut calculations are available for making this 
discrimination (see note 26), and more can be developed.29 

28. This can be seen without any calculations. Label the supposition here as 
alternative hypothesis J': the increased risk is .0002. Now the observed outcome 
does not differ at all from what is hypothesized by J'. But even if J' is true, 50 
percent of the time sample differences would be less than .0002, and 50 percent of 
the time they would be greater. (That is, half of the area under the normal curve 
would be "to the left of" J', and half "to the right.") See also the discussion of this 
example in section 6.5. A longer discussion occurs in Mayo 1985b. 

29. Consider interpreting negative results, that is, acceptances of H, in test T"". 
Rule RA directs us to find a value of 11-, call it 11-+, such that the result indicates that 
II- < 11-+. Equivalently, we are to find the value 11-+ such that the claim" II- < 11-+" 
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The latitude in specifying tests is no different from that in the use 
of other kinds of reliable instruments in science. Understanding the 
properties of the instruments allows scrutinizing what a given reading 
does and does not say. The same holds for tests. It does not matter 
that test specifications might reflect the beliefs, biases, or hopes of the 
researcher. Perhaps the reason for selecting an insensitive test is your 
personal desire to find no increased risk, or perhaps it is due to eco­
nomic or ethical factors. Those factors are entirely irrelevant to scruti­
nizing what the data do and do not say. They pose no obstacle to my 
scrutinizing any claims you might make based on the tests, nor to my 
criticizing your choice of test as inappropriate for given learning goals. 
There is no sort of comparable basis for criticizing your subjective 
degrees of belief. 

Inferences without Numbers 

There is one final objection that may be raised by Bayesians and 
others wedded to E-R accounts of inference. The present account of 
testing licenses claims about hypotheses that are and are not indicated 
by tests without assigning quantitative measures of support or proba­
bility to those hypotheses. But without such assignments of support or 
probability to hypotheses, the E-R theorist, I expect, will deny that the 
present account constitutes a genuine account of inductive or statistical 
inference. Yet this is just to assume that an E-R account is what is 
needed, and that is what those who embrace testing accounts of infer­
ence wish to deny. The Bayesian critic may persist that if I do not se­
cretly really mean to assign some number to the inferences licensed by 
my tests, then what do I mean by evidence indicating hypotheses? My 
answer is the one I have been giving throughout this book. That data 
indicate hypothesis H means that the data indicate or signal that H is 

passes a severe test. Say we take .97 as a benchmark for severity. Then jJ.. + would 
equal X'bS + 2s.d.(xn ). (See also section 6.5.) 

Mathematically, the calculation of jJ.. + (for the case of test r+) is equivalent 
to formulating the upper confidence bound of a (one-sided) interval estimate at the 
corresponding level of confidence. However, unlike the report that "jJ.. is some­
where between jJ..o and jJ.. +," RA instructs a distinct severity assessment for each 
value in the interval. More generally, RA directs us to understand what a specific 
negative statistical result indicates (more or less well) by calculating all or several 
of the upper bounds for different degrees of severity. This would yield what might 
be called severity curves. It most closely corresponds to forming a series of upper 
confidence intervals, one for each confidence level. I have recently come across an 
article by Poole (1987) using what are essentially severity curves in medical statis­
tics. Similar curves are employed by Kempthorne and Folks (1971), but with a 
different interpretation. Clearly, more work is called for in studying statistical prac­
tice and in generalizing these ideas. 
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410 CHAPTER ELEVEN 

correct-much as I might say that a scale reading indicates my weight. 
Generally, several checks of a given indication of H (e.g., checks of the 
experimental assumptions) are required before reaching the inference 
that the data indicate the correctness of H. What does it mean to infer 
that H is indicated by the data? It means that the data provide good 
grounds for the correctness of H-good grounds that H correctly de­
scribes some aspect of an experimental process. What aspect, of course, 
depends on the particular hypothesis H in question. One can, if one 
likes, construe the correctness of H in terms of H being reliable, pro­
vided one is careful in the latter's interpretation. Learning that hypoth­
esis H is reliable, I proposed (chapter 4), means learning that what H 
says about certain experimental results will often be close to the results 
that would actually be produced-that H will or would often succeed 
in specified experimental applications. What further substantive claims 
are warranted will depend on the case at hand. 

What is learned receives a formal construal in terms of experimen­
tal distributions-assertions about what outcomes would be expected, 
and how often, if certain experiments were to be carried out. Infor­
mally and substantively, this corresponds to learning that data do or 
do not license ruling out certain errors and mistakes. 

To those who insist that every uncertain inference must have a 
quantity attached, our position'is that this insistence is seriously at 
odds with the kinds of inferences made every day, in science and in 
our daily lives. There is no assignment of probabilities to the claims 
themselves when we say things such as the evidence is a good (or a 
poor) indication that light passing near the sun is deflected, that treat­
ment X prolongs the lives of AIDS patients, that certain dinosaurs were 
warm blooded, that my four-year-old can read, that metabolism slows 
down when one ingests fewer calories, or any of the other claims that 
we daily substantiate from evidence. 

Concluding Remarks 

To summarize, the key difference between standard NP methods 
and those based on the likelihood principle is that the former have an 
interest in and an ability to control error probabilities, whereas the 
latter do not. Criticisms of NP tests that are not merely misinterpreta­
tions arise from supposing that long-run error probabilities are all that 
matter in NP tests, and that the reason error probabilities matter in NP 
tests is their interest in ensuring a low probability of erroneous "acts" 
in the long run. A Pearsonian error statistician denies both of these 
suppositions. For a Pearsonian, the ability to control error probabilities 
matters (in a scientific context) because of the desire to correctly learn 
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WHY PEARSON REJECTED NEYMAN-PEARSON PHILOSOPHY 411 

about underlying causes, distinguish genuine from spurious effects, 
and so on, to all that may be learned by arguing from error_ 

On the Pearsonian view of tests, the greater "seriousness" the be­
havioristic model attaches to the type I error goes over into the concern 
to be assured that a rejection of H is a good indication of the existence 
of a real departure from H, for example, a real effect. The particular 
balance chosen between the two types of errors is not an arbitrary mat­
ter reflecting pragmatic, decision-theoretic values, as Fisher had feared. 
In learning contexts, their specification is guided by the aims of in­
quiry, by what one wants to learn. After the results are in, utilizing 
these error probabilities is the key to scrutinizing objectively inferences 
based on test results. 

In any substantive inquiry, NP methods would need to be used for 
a series of tests aimed at rejecting different types of alternatives and 
errors. Rejecting a "chance" hypothesis H, with its indication that some 
systematic factor is operating, is likely to be only a first step. Ruling 
out other substantive factors may be accomplished with subsequent 
statistical tests linking different experimental and data models. As 
Pearson stressed, there is no need to justify any single test as best; sev­
eral tests may be used to learn the answers to different questions, as 
well as to check each other's assumptions. It is only by understanding 
how standard error statistical methods afford this type of piecemeal ap­
proach that one can capture the manner in which these tools are used 
in day-to-day experimental inquiries. 

However, Pearson's advocacy of a piecemeal, inferential use of NP 
tests requires him to reject the basic tenets of the behavioral decision 
philosophy that has come to be associated with NP methods. There is 
no inconsistency in his rejection. While the interpretation of test re­
sults differs from the behavioral-decision one, still retained is what is 
central to error statistical theory: the focus on a procedure's error prob­
abilities. The control of error probabilities has fundamental uses in 
learning contexts. The link between controlling error probabilities and 
experimental learning comes by way of the link between error proba­
bilities and severity. The ability to provide methods whose actual error 
probabilities will be close to those specified by a formal statistical 
model, I believe, is the key to achieving experimental knowledge. 
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