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Background

The severe testing perspective in statistics grows
out of a general philosophy of error-prone rea-
soning. It is based on a minimal principle for
regarding data x as evidence for a claim C:
Data fail to provide evidence for a claim C, if
little if anything has been done that would have
uncovered flaws in C, even if they are present. In
order for x to provide evidence for a claim C, C
must have passed an analysis that would probably
have found C flawed, just if it is. This proba-
bility is the stringency or severity with which
it has passed the test. It represents the extent
to which the claim has withstood scrutiny with
given data. This perspective is developed in Mayo
(1991, 1996, 2018), Mayo and Cox (2006), Mayo
and Spanos (2006, 2011), and Mayo and Hand
(2022).

Severe Testing Philosophy
The probability that a method erroneously inter-
prets data is an error probability, and statistical
methods based on error probabilities may be
called error statistics. Severe testing is regarded
as part of a “philosophy” because it is a general
conception of the interpretation and justification
for formal error statistical methods. As with all
statistical philosophies, it goes beyond what is
typically found in statistical textbooks, but it
underlies the principles and uses of a cluster of
statistical methods in science. Severity relates to
error statistical methods because it is possible to
use formal error probabilities (e.g., type 1 and 2
errors, P-values, and confidence levels) to eval-
uate how severely, or inseverely, probed various
statistical claims are, given the data. Its function
is twofold: (1) to provide a postdata evidential
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interpretation of error statistical methods and (2)
to understand and avoid fallacies surrounding
these methods.

Much like other concepts introduced to
set out philosophies of statistical inference—
credibility, support, and confirmation—severe
testing relies on general assumptions concerning
the underlying statistical models, and the
connections between statistical inquiries and
substantive questions. In the case of error
statistics, checking assumptions is part of the
methodology under the concept of “auditing.”
Until the assumptions pass an audit, there is at
most an indication of severity (Mayo 2018). Even
acknowledging that the application of formal
statistical tools, in isolation from background
information, fails to yield inferences that align
with attractive-sounding metrics, it is important
to set out the overarching statistical philosophy
that guides the interpretation of these methods.
A central difference between error statistical and
non-error statistical methods is the former’s use
of the sampling distribution postdata. That is the
basis for error probabilities.

Severity Requirement and Severity
Principle: From Philosophy to Statistics
Popper introduced a notion of severity to contrast
his account of falsification with popular accounts
of confirmation. For the latter, evidence x con-
firms hypothesis H to the extent that the proba-
bility of H given x exceeds the prior probability
of H. While confirmation theories follow Bayes
rule, the notion of probability most often used
was “logical” probability, defined in terms of sim-
ple first-order languages (Jeffreys 1961; Carnap
1962). That a hypothesis is highly confirmed,
according to Popper, tells us only that it accords
with the data: H passes the test with x to some
degree. It does not tell how stringently H has
passed. For Popper, “the probability of a state-
ment . . . simply does not express an appraisal
of the severity of the tests a theory has passed, or
of the manner in which it has passed these tests”
(1959, 394–395).

Severity Requirement: For data to warrant a claim
C with severity requires not just that
(S-1) H agrees with the data (H passes the

test), but also
(S-2) with high probability, H would not have

passed the test so well, were H false.

Even claims that are known to be true or
probable, in whatever sense one chooses, may
have been poorly probed by the data x at hand.

Popper never applied his intuitive notion to
statistical inference. Mayo’s account of severe
testing employs modern statistical methods to
render Popper’s falsificationist philosophy rele-
vant to contemporary practice. Where Popper’s
work contrasted with confirmation theories in
philosophy, severity in statistics contrasts error
statistics with varieties of Bayesian approaches.

The severity function in statistics has three
arguments. SEV(T, x0, C) is used to abbrevi-
ate: “The severity with which claim C passes
test T with outcome x0.” When the testing con-
text is clear, it can be abbreviated as SEV(C).
Claim C is not limited to the result of a formal
test; it may be an estimate, prediction, or other
inference.

Severity Principle: An error-prone claim C is
warranted by data just to the extent it has been
subjected to, and passes, a test that probably
would have found flaws in C, if they are
present.

This probability quantifies the stringency with
which C has been probed by the test method.
It does not attach to the claim inferred, but to
the overall method; it is a methodological prob-
ability.1 When a test’s formal error probabilities
succeed in quantifying the capacity of tests to
probe errors in inferring C, they can be used to
assess how well or poorly C is warranted. The
weakest variant of the severity principle merely
denies there is evidence for C if the method
had little if any capacity to find C flawed. This
critical role is the most important function of
severity.

1A severity assessment may also be qualitative.
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Severity in Statistical Significance
Tests

The severity principle captures the underlying
reasoning of statistical significance tests and
addresses long-standing problems and fallacies
associated with it. The severity interpretation
combines aspects from Neyman-Pearson (N-P)
and Fisherian tests, without being guilty of the
charge that they form an inconsistent hybrid
(Gigerenzer 1993, 2006; Cox and Hinkley 1974).

Elements of Statistical Significance Tests
A statistical hypothesis H is a claim about some
aspect of the process that might have generated
the data x, viewed as observed values of a random
variable X. Data x are used to learn about the
probability distribution of X by testing various
statistical hypotheses, generally about a parame-
ter in a model M—an idealized representation of
the data generation. Neyman and Pearson (N-P)
called the reference hypothesis the test hypothesis
(1933), while Fisher called it the null hypothesis
(1935), denoted by H0. (See Cox 1958, 1977,
2006; Cox and Hinkley 1974.)

Statistical significance tests consist of: (a) a
null (or test) hypothesis H0, couched in terms of
unknown parameter θ; and (b) a test statistic d(X),
which reflects how well or poorly the data x0

accord with the null hypothesis H0. The larger the
value of d(x0), the more improbable the outcome
is from what is expected under H0, with respect to
the particular question being asked. An important
aspect of an error statistical test is its ability to
ensure the sampling distribution of the test statis-
tic can be computed under H0 and, generally,
also under hypotheses discrepant from H0. This
enables computing (c) the statistical significance
level or P-value associated with d(x0): the prob-
ability of a worse fit with H0 than the observed
d(x0), under the assumption that H0 is true:

P -value = Pr(d(X) > d(x0);H0).

The larger the value of the test statistic, the
smaller the P-value. If the P-value is very small
(e.g., 0.05, 0.01, 0.005), the data accord with the

denial of H0, but there are two rationales that may
be given: behavioristic and evidential.

Behavioristic Versus Evidential
Justification
The behavioristic rationale, as emphasized in
N-P tests, reflects the goal of ensuring a low
probability of erroneous inferences in a series of
applications. As Cox and Hinkley put it (1974,
p. 66):

Suppose that we were to accept the available data
as evidence against H0. Then we would be bound
to accept all data with a larger value of [d] as
even stronger evidence. Hence, pobs [the observed
P-value] is the probability that we would mistak-
enly declare there is to be evidence against H0,
were we to regard the data under analysis as just
decisive against H0.

An evidential or inferential rationale may
be obtained by appealing to “calibration” (Cox
1958, 1977): “Just as with the use of measuring
instruments . . .we employ the performance
features to make inferences about aspects of
the particular thing that is measured” (Mayo and
Cox 2006, 84).
Example. Consider the case of a random sample
X of size n from a Normal distribution with
unknown mean μ and, for simplicity, known
variance σ 2. In a one-sided test of the hypotheses:

H0:μ ≤ μ0 versus H1:μ > μ0,

the test statistic is d(X) = (X̄−μ0)
σx

, where X̄ =
1
n

∑n
k=1Xk is the sample mean, and the stan-

dard error, SE = (

σ/
√
n
)

.2 In the severe test-
ing interpretation, a very small P-value (e.g.,
p(x0) = 0.01) indicates evidence for H1 because
H1 has passed a severe test, provided the P-value
is properly computed. The severity definition is
instantiated because:

(S-1): x0 accords with H1, and (S-2): There is a
high probability (1 – P) that a less statistically
significant difference would have resulted,
were H0 true.

2The same rejection region follows if H0 is 0.
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However, warranting the existence of some
positive discrepancy from μ0 is rarely adequate
for interpreting the result. A key weakness of
the P-value is that it does not by itself give an
indication of magnitude.

To remedy this, severity reasoning introduces
a discrepancy parameter γ and evaluates infer-
ences of form: H1: μ > μ1 = (μ0 + γ ), γ > 0. For
each of a series of discrepancies of interest, there
is a report of those that are well warranted, and
those poorly warranted on severity grounds. The
basis for doing so is summarized in (a) and (b):

(a) If there is a very high probability (e.g., a
probability > 0.95) that d would have been
smaller than observed if μ ≤ μ1, then d is a
good indication that μ > μ1: SEV(μ > μ1) is
high.

(b) If there is a fairly high probability that
d would have been larger than observed
(a probability > 0.5), even if μ is no greater
than μ1, then d is a poor indication that
μ > μ1, where μ1 = μ0 + γ : SEV(μ > μ1)
is low.

The severe testing assessment is not changing
the original null and alternative hypothesis, but
interpreting the results in relation to the refer-
ence value in H0. Alternatively, these stipulations
might be construed as reporting the results of a
series of tests of form: μ ≤ μ1 versus μ > μ1,
allowing μ1 to vary over several values.

To have some numbers, consider H0: μ ≤ 0
versus H1: μ > 0, and let the SE equal 1 [e.g.,
σ = 10 and n = 100, SE = (

σ/
√
n
)

]. The 2-SE
cutoff giving a P-value of approximately 0.025 is
2. If d (which in this case is x̄) is 2 or greater,
the result is statistically significant at level 0.025.
Suppose the observed d is 2. A useful benchmark
for a poorly warranted discrepancy is a μ1 greater
than x̄, e.g., x̄ + 1SE (3). The hypothesis μ > 3
will be poorly warranted because the probability
that d is even larger than 2, under the assumption
that μ = 3 is fairly high, 0.84. By reporting
various benchmarks, tests can avoid magnitude
errors in interpreting P-values (Fig. 1). (Numer-
ical examples may be found in Spanos 2019.)

There are two points to note: First, inferences
are to inequalities such as (μ > μ1) and not to

Severe Testing, Fig. 1 Severity curve
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points; and second, the fact that severity has the
goal of testing has consequences for what counts
as “high” or “low.” A posterior probability to C
of, say, 0.8 might be construed as fairly good evi-
dence for C, but a severity of 0.8, corresponding
to an error probability of 0.2, is poor evidence
for C.

Statistically Insignificant Results
If the P-value is not small, for example, if it
is greater than 0.1, there is poor evidence of a
discrepancy from H0, but it is important to avoid
the classic fallacy of interpreting it as evidence
for H0. A P-value that is not small is generally
said to be statistically insignificant.3

If d is statistically insignificant, the null
hypothesis “passes” the test, i.e., condition (S-1)
is satisfied, but the test might not have had
much chance of detecting departures even if
they existed. This is addressed by the second
requirement for severity (S-2). We evaluate if it is
good evidence for μ ≤ μ1, where μ1 = μ0 + γ ,
by evaluating the probability that test T+ would
have produced a more statistically significant
result than it did (i.e., d(X) > d(x0)), if μ > μ1:

SEV(T+, x0, μ ≤ μ1)

= P(d(X) > d(x0);μ > μ1).

Severity is computed at the point μ = μ1

because SEV(μ ≤ μ1) is even greater for values
of μ less than μ1.

Given the symmetry in this example, severity
assessments for claims of form (μ ≤ μ1) are a
mirror image of those for (μ > μ1), provided
assumptions hold. With failed assumptions, both
a claim and its denial can fail to be warranted with
severity.

3The same severity interpretation applies whether or not
a tester is using a predesignated threshold for “signifi-
cance.” Thus, it holds regardless of which side is taken
on the recent debate about using significance thresholds
(Wasserstein et al. 2019).

Summary of Severity with Significant
and Insignificant Results
(I) Interpreting a statistically significant result

in testing H0: μ ≤ μ0 against H1: μ > μ0:

SEV(T+, x0, μ > μ1)

= P(d(X) ≤ d(x0) ;μ ≤ μ1)

where μ1 = μ0 + γ, γ ≥ 0.

Compute this at the point P(d(X) ≤ d(x0);
μ = μ1) because SEV is even greater for
μ < μ1.

(II) Interpreting a statistically insignificant result
in testing H0: μ ≤ μ0 against H1: μ > μ0:

SEV(T+, x0, μ ≤ μ1)

= P(d(X) > d(x0);μ > μ1).

Again, this is computed at the point
P(d(X) > d(x0);μ = μ1) because SEV is even
greater for μ > μ1.

In the case of a small P-value, the concern is
with interpreting it as indicating a larger effect
than is actually warranted (making “mountains
out of molehills”). With P-values that are not
small, the concern is fallaciously inferring evi-
dence of no discrepancy, or inferring one that is
smaller than warranted. A severity assessment is
designed to avoid both:

A statistically significant result (small P-value)
licenses inferences of the form μ > [μ0 + γ ],
for some γ ≥ 0, but with a warning that
μ > [μ0 + κ] is unwarranted, for some κ ≥ 0.

A nonstatistically significant result (P-value
not small) licenses inferences of the form
μ ≤ [μ0 + γ ], for some γ ≥ 0, but with a
warning that μ ≤ [μ0 + κ] is unwarranted for
sufficiently small values of κ.

Severity Versus Power
An N-P test sets a cutoff beyond which the test
“rejects” H0, often written as cα . The type 1 error
probability is Pr(d(X) > cα; H0) = α. Fixing α at
a small value, the N-P test seeks to minimize the
probability of a type 2 error: erroneously failing
to reject H0, or maximize the test’s power. The
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Severe Testing, Fig. 2 Power curve

power of the test is relative to an alternative,
yielding a power curve. The power curve for
testing H0: μ≤ 0 where cα = 2 against H1: μ > 0
where cα = 2 is shown in Fig. 2. The power of
the test T+ to detect alternative μ = μ1 may be
abbreviated as POW (μ1).

As the POW (μ1) increases, a result that is just
statistically significant at level α (i.e., d(x0) = dα)
corresponds to a decreasing severity for μ > μ1

(compare Figs. 1 and 2).

Error Probabilities Versus Posterior Probs
The most well-known fallacy in interpreting sig-
nificance tests is to equate the P-value with a pos-
terior probability on the null hypothesis. How-
ever:

(i) P (d(X) ≥ d(x0);H0) is not equal to

(ii) P (H0 | d(X) ≥ d(x0)).

The P-value assessment in (i) refers only to
the sampling distribution of the test statistic d(X);
there is no use of prior probabilities, as would
be necessitated in (ii). There are cases where
P-values match posterior probabilities, notably in
our one-sided test T+ with suitably diffuse priors

(frequentist matching) (Pratt 1965; Casella and
Berger 1987; Berger 2006; Fraser et al. 2010).

D. Mayo and D.R Cox: SEV and FEV
In their proposal to view “Frequentist Statistics as
a Theory of Inductive Inference,” D. Mayo and
Sir D. R. Cox develop an analogous approach to
a severity assessment by means of a frequentist
principle of evidence (FEV) introduced for the
one-sided test in Mayo and Cox (2006):

FEV (i): y is (strong) evidence against H0, i.e.,
(strong) evidence of discrepancy from H0, if and
only if, where H0 a correct description of the mech-
anism generating y, then, with high probability, this
would have resulted in a less discordant result than
is exemplified by y.

FEV (ii): A moderate p value [e.g., greater than .1]
is evidence of the absence of a discrepancy δ from
H0, only if there is a high probability the test would
have given a worse fit with H0 (i.e., smaller p value)
were a discrepancy δ to exist (Mayo and Cox 2006,
82–84).

. . .To infer the absence of a discrepancy from H0
as large as δ we may examine the probability β(δ)
of observing a worse fit with H0 if μ = μ0 +
δ. If that probability is near one then, following
FEV(ii), the data are good evidence that μ < μ0
+ δ. Thus β(δ) may be regarded as the stringency
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or severity with which the test has probed the
discrepancy δ; equivalently, one might say that μ
< μ0 + δ has passed a severe test . . . . Such an
assessment is more relevant to specific data than
is the notion of power, which is calculated relative
to a predesignated critical value beyond which the
test “rejects” the null (Mayo and Cox 2006, 88–89;
Cox 2006, 25).

A discussion and extension of the Mayo/Cox
joint work is Spanos 2010.

Severity Reinterprets Confidence
Intervals

Neyman (1937) developed confidence intervals
as inversions of tests. The confidence interval
contains the values of μ that would not be
rejected by x̄0, were they the ones under test. x̄0 is
the observed sample mean. The one-sided lower
confidence-bound CIL corresponding to test T+:
μ = μ1 versus μ > μ1 is x̄0 – kεσ /

√
n, although

typically σ would be estimated. Given the duality
between CIs and N-P tests, it is unsurprising that
CIs inherit problems of N-P tests. The textbook
frequentist justification for inferring μ > CIL is
behavioristic: It is an estimate that arose from
a procedure that includes the true value of the
parameter (1 – ε)% of the time. By contrast,
the severity rationale for inferring μ > CIL is
counterfactual: If μ were less than or equal to
the lower confidence-bound CIL, then with high
probability (1 – ε), the procedure would have
resulted in a sample mean that is smaller than x̄0.
By the severity principle, it follows that μ > CIL

passes with severity (1 – ε).
Another shortcoming of standard CIs is treat-

ing all members of the confidence interval on a
par, whereas it is important to distinguish them.
In the severity construal, each point μ’ in the con-
fidence interval corresponds to a distinct claim of
form either μ > μ’ or μ < μ’ and is assessed
with a different severity. Finally, the severity
construal deals painlessly with cases where a
1 – ε confidence interval (ε > 0) contains all
possible parameter values or is empty. The first
case informs us that no possible parameter value
is ruled out with severity 1 – ε. The empty interval
indicates model violation (see Cox and Mayo
2010, 291).

Biasing Selection Effects

When null hypotheses, test statistics, or data gen-
eration are influenced by preliminary inspection
of the data, the error probabilities associated with
a test may be altered in such a way as to violate
severity requirements, or prevent severity from
being assessed (even approximately). These are
biasing selection effects, and they are the most
common reason that results fail to replicate when
independent groups set out with predesignated
protocols (Benjamini 2020). Several well-known
gambits—cherry picking, data dredging, multi-
ple testing, optional stopping, and P-hacking—
invalidate error probabilities and thereby vitiate
claims to have done a good job avoiding erro-
neous interpretations of data. A classic example
that threatens the interpretation of P-values in
clinical trials is to data dredge until finding a
subgroup of the treated group showing a large
difference in the direction sought.

Another type of multiplicity is optional stop-
ping. A famous example is the two-sided test:
H0: μ = 0 against H1: μ �= 0, where instead of
fixing the sample size, the test continues sam-
pling until |d(X)| ≥ 2SE.4 With probability 1,
it will stop with a “nominally” significant result
even though θ = 0 (Edwards et al. 1963). In
the same way, it can be ensured that the true
parameter value is always excluded from the cor-
responding 95% confidence or Bayesian credible
interval (Berger and Wolpert 1988, p. 81).

In cases of multiplicity, auditing the P-value
or confidence level, if it is to be used in a severity
assessment, requires a P-value adjustment. By
contrast,

The likelihood principle emphasized in Bayesian
statistics implies, among other things, that the rules
governing when data collection stops are irrelevant
to data interpretation. (Edwards et al. 1963, p. 193)

Inference by Bayes rule is conditional on the
data. Error probabilities, which require consider-
ing outcomes other than the one observed, do not
enter.

4This is an example of what is called a proper stopping
rule: The probability it will stop in a finite number of trials
is 1, regardless of the true value (Savage 1962).
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Those who endorse the likelihood principle
often defend ignoring the stopping rule, arguing
that error probabilities matter only if the concern
is good performance in the long run. Severe
testing gives an inferential rationale: The test has
done a poor job at avoiding the error of concern:
being fooled by randomness (Mayo 2018; Mayo
and Hand 2022; Mayo and Kruse 2001). One is
not always in the context of severe probing of
error. In contexts of discovery or exploration, it
might be argued, the goal is to arrive at fruitful
hypotheses to subject to subsequent tests.

Conclusion

By supplementing statistical significance tests
with a discrepancy parameter, and supplying
a postdata quantitative assessment of well-
testedness, severity avoids many classic fallacies
and perceived shortcomings of statistical
significance tests. At a deeper level, severe testing
affords a novel philosophical standpoint about
the role of probability in inference. What a severe
tester seeks is not a comparative measure of
belief, plausibility, or support, but the ability
to falsify, statistically, claims about population
effect sizes or discrepancies. The quantitative
aspects arise in the form of degrees of severity
and sizes of discrepancies detected or not.
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About the Author

Note by the Editor: The concept of Severe testing
is intricately linked to the philosophical contri-
butions of Deborah G. Mayo, a notable figure in
the field of the philosophy of science. Renowned
for her work in areas such as statistical inference

and the philosophy of statistics, Mayo formulated
the concept of severe testing as an integral com-
ponent of her broader outlook on the philosophy
of science. Her emphasis lies in underscoring the
significance of rigorous testing and falsifiability
within the realm of scientific inquiry.

Mayo’s extensive body of work, including her
impactful book titled Error and the Growth of
Experimental Knowledge, delves into the princi-
ples of severe testing and explores its application
in the context of scientific hypotheses and statis-
tical methods. This concept has played a pivotal
role in shaping conversations and controversies
within the domains of the philosophy of science
and the philosophy of statistics.
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Sign Test, The

Peter Sprent
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Dundee, Scotland

The sign test is a nonparametric test for hypothe-
ses about a population median given a sample of
observations from that population, or for testing
for equality of medians, or for a prespecified
constant median difference, given paired sample
(i.e. matched pairs) values from two populations.
These tests are analogues of the one-sample and
matched pairs t-test for means in a parametric test
such as the t-test.

The sign test is one of the simplest and oldest
nonparametric tests. The name reflects the fact
that each more detailed observation is effectively
replaced by one of the signs plus (+) or minus
(−). This was basically the test used by Arbuthnot
(1710) to refute claims that births are equally
likely to be male or female. Records in London
showed that for each of 81 consecutive years an
excess of male over female births. Calling such a
difference a plus, Arbuthnot argued that if births
were equally likely to be of either gender, then
the probability of such an outcome was, (0.5)81,
or effectively zero.

Given a sample of n observations from any
population which may be discrete or continuous
and not necessarily symmetric, the test is used
to test a hypothesis H0 : M = M0 where M is
the population median. If H0 holds the number
of values less than M0 will have a binomial
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