Monthly Archives: July 2021

Statistics and the Higgs Discovery: 9 yr Memory Lane


I’m reblogging two of my Higgs posts at the 9th anniversary of the 2012 discovery. (The first was in this post.) The following, was originally “Higgs Analysis and Statistical Flukes: part 2” (from March, 2013).[1]

Some people say to me: “severe testing is fine for ‘sexy science’ like in high energy physics (HEP)”–as if their statistical inferences are radically different. But I maintain that this is the mode by which data are used in “uncertain” reasoning across the entire landscape of science and day-to-day learning, at least, when we’re trying to find things out [2] Even with high level theories, the particular problems of learning from data are tackled piecemeal, in local inferences that afford error control. Granted, this statistical philosophy differs importantly from those that view the task as assigning comparative (or absolute) degrees-of-support/belief/plausibility to propositions, models, or theories.

The Higgs discussion finds its way into Tour III in Excursion 3 of my Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (2018, CUP). You can read it (in proof form) here, pp. 202-217. in a section with the provocative title:

3.8 The Probability Our Results Are Statistical Fluctuations: Higgs’ Discovery

Continue reading

Categories: Higgs, highly probable vs highly probed, P-values | Leave a comment

Blog at