Monthly Archives: November 2018

Where Are Fisher, Neyman, Pearson in 1919? Opening of Excursion 3

Excursion 3 Statistical Tests and Scientific Inference

Tour I Ingenious and Severe Tests

[T]he impressive thing about [the 1919 tests of Einstein’s theory of gravity] is the risk involved in a prediction of this kind. If observation shows that the predicted effect is definitely absent, then the theory is simply refuted.The theory is incompatible with certain possible results of observation – in fact with results which everybody before Einstein would have expected. This is quite different from the situation I have previously described, [where] . . . it was practically impossible to describe any human behavior that might not be claimed to be a verification of these [psychological] theories. (Popper 1962, p. 36)

Mayo 2018, CUP

The 1919 eclipse experiments opened Popper’ s eyes to what made Einstein’ s theory so different from other revolutionary theories of the day: Einstein was prepared to subject his theory to risky tests.[1] Einstein was eager to galvanize scientists to test his theory of gravity, knowing the solar eclipse was coming up on May 29, 1919. Leading the expedition to test GTR was a perfect opportunity for Sir Arthur Eddington, a devout follower of Einstein as well as a devout Quaker and conscientious objector. Fearing “ a scandal if one of its young stars went to jail as a conscientious objector,” officials at Cambridge argued that Eddington couldn’ t very well be allowed to go off to war when the country needed him to prepare the journey to test Einstein’ s predicted light deflection (Kaku 2005, p. 113). Continue reading

Categories: SIST, Statistical Inference as Severe Testing | 1 Comment

Stephen Senn: On the level. Why block structure matters and its relevance to Lord’s paradox (Guest Post)

.

Stephen Senn
Consultant Statistician
Edinburgh

Introduction

In a previous post I considered Lord’s paradox from the perspective of the ‘Rothamsted School’ and its approach to the analysis of experiments. I now illustrate this in some detail giving an example.

What I shall do

I have simulated data from an experiment in which two diets have been compared in 20 student halls of residence, each diet having been applied to 10 halls. I shall assume that the halls have been randomly allocated the diet and that in each hall 10 students have been randomly chosen to have their weights recorded at the beginning of the academic year and again at the end. Continue reading

Categories: Lord's paradox, Statistical Inference as Severe Testing, Stephen Senn | 34 Comments

SIST* Posts: Excerpts & Mementos (to Nov 30, 2018)

Surveying SIST Posts so far

SIST* BLOG POSTS (up to Nov 30, 2018)

Excerpts

  • 05/19: The Meaning of My Title: Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars
  • 09/08: Excursion 1 Tour I: Beyond Probabilism and Performance: Severity Requirement (1.1)
  • 09/11: Excursion 1 Tour I (2nd stop): Probabilism, Performance, and Probativeness (1.2)
  • 09/15: Excursion 1 Tour I (3rd stop): The Current State of Play in Statistical Foundations: A View From a Hot-Air Balloon (1.3)
  • 09/29: Excursion 2: Taboos of Induction and Falsification: Tour I (first stop)
  • 10/10: Excursion 2 Tour II (3rd stop): Falsification, Pseudoscience, Induction (2.3)
  • 11/30: Where are Fisher, Neyman, Pearson in 1919? Opening of Excursion 3

Mementos, Keepsakes and Souvenirs

  • 10/29: Tour Guide Mementos (Excursion 1 Tour II of How to Get Beyond the Statistics Wars)
  • 11/8:   Souvenir C: A Severe Tester’s Translation Guide (Excursion 1 Tour II)
  • 10/5:  “It should never be true, though it is still often said, that the conclusions are no more accurate than the data on which they are based” (Keepsake by Fisher, 2.1)
  • 11/14: Tour Guide Mementos and Quiz 2.1 (Excursion 2 Tour I Induction and Confirmation)
  • 11/17: Mementos for Excursion 2 Tour II Falsification, Pseudoscience, Induction

*Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (Mayo, CUP 2018)

Categories: SIST, Statistical Inference as Severe Testing | 3 Comments

Mementos for Excursion 2 Tour II: Falsification, Pseudoscience, Induction (2.3-2.7)

.

Excursion 2 Tour II: Falsification, Pseudoscience, Induction*

Outline of Tour. Tour II visits Popper, falsification, corroboration, Duhem’s problem (what to blame in the case of anomalies) and the demarcation of science and pseudoscience (2.3). While Popper comes up short on each, the reader is led to improve on Popper’s notions (live exhibit (v)). Central ingredients for our journey are put in place via souvenirs: a framework of models and problems, and a post-Popperian language to speak about inductive inference. Defining a severe test, for Popperians, is linked to when data supply novel evidence for a hypothesis: family feuds about defining novelty are discussed (2.4). We move into Fisherian significance tests and the crucial requirements he set (often overlooked): isolated significant results are poor evidence of a genuine effect, and statistical significance doesn’t warrant substantive, e.g., causal inference (2.5). Applying our new demarcation criterion to a plausible effect (males are more likely than females to feel threatened by their partner’s success), we argue that a real revolution in psychology will need to be more revolutionary than at present. Whole inquiries might have to be falsified, their measurement schemes questioned (2.6). The Tour’s pieces are synthesized in (2.7), where a guest lecturer explains how to solve the problem of induction now, having redefined induction as severe testing.

Mementos from 2.3 Continue reading

Categories: Popper, Statistical Inference as Severe Testing, Statistics | 5 Comments

Tour Guide Mementos and QUIZ 2.1 (Excursion 2 Tour I: Induction and Confirmation)

.

Excursion 2 Tour I: Induction and Confirmation (Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars)

Tour Blurb. The roots of rival statistical accounts go back to the logical Problem of Induction. (2.1) The logical problem of induction is a matter of finding an argument to justify a type of argument (enumerative induction), so it is important to be clear on arguments, their soundness versus their validity. These are key concepts of fundamental importance to our journey. Given that any attempt to solve the logical problem of induction leads to circularity, philosophers turned instead to building logics that seemed to capture our intuitions about induction. This led to confirmation theory and some projects in today’s formal epistemology. There’s an analogy between contrasting views in philosophy and statistics: Carnapian confirmation is to Bayesian statistics, as Popperian falsification is to frequentist error statistics. Logics of confirmation take the form of probabilisms, either in the form of raising the probability of a hypothesis, or arriving at a posterior probability. (2.2) The contrast between these types of probabilisms, and the problems each is found to have in confirmation theory are directly relevant to the types of probabilisms in statistics. Notably, Harold Jeffreys’ non-subjective Bayesianism, and current spin-offs, share features with Carnapian inductive logics. We examine the problem of irrelevant conjunctions: that if x confirms H, it confirms (H & J) for any J. This also leads to what’s called the tacking paradox.

Quiz on 2.1 Soundness vs Validity in Deductive Logic. Let ~C be the denial of claim C. For each of the following argument, indicate whether it is valid and sound, valid but unsound, invalid. Continue reading

Categories: induction, SIST, Statistical Inference as Severe Testing, Statistics | 10 Comments

Stephen Senn: Rothamsted Statistics meets Lord’s Paradox (Guest Post)

.

Stephen Senn
Consultant Statistician
Edinburgh

The Rothamsted School

I never worked at Rothamsted but during the eight years I was at University College London (1995-2003) I frequently shared a train journey to London from Harpenden (the village in which Rothamsted is situated) with John Nelder, as a result of which we became friends and I acquired an interest in the software package Genstat®.

That in turn got me interested in John Nelder’s approach to analysis of variance, which is a powerful formalisation of ideas present in the work of others associated with Rothamsted. Nelder’s important predecessors in this respect include, at least, RA Fisher (of course) and Frank Yates and others such as David Finney and Frank Anscombe. John died in 2010 and I regard Rosemary Bailey, who has done deep and powerful work on randomisation and the representation of experiments through Hasse diagrams, as being the greatest living proponent of the Rothamsted School. Another key figure is Roger Payne who turned many of John’s ideas into code in Genstat®. Continue reading

Categories: Error Statistics | 11 Comments

Souvenir C: A Severe Tester’s Translation Guide (Excursion 1 Tour II)

.

I will continue to post mementos and, at times, short excerpts following the pace of one “Tour” a week, in sync with some book clubs reading Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (SIST or Statinfast 2018, CUP), e.g., Lakens. This puts us at Excursion 2 Tour I, but first, here’s a quick Souvenir (Souvenir C) from Excursion 1 Tour II:

Souvenir C: A Severe Tester’s Translation Guide

Just as in ordinary museum shops, our souvenir literature often probes treasures that you didn’t get to visit at all. Here’s an example of that, and you’ll need it going forward. There’s a confusion about what’s being done when the significance tester considers the set of all of the outcomes leading to a d(x) greater than or equal to 1.96, i.e., {x: d(x) ≥ 1.96}, or just d(x) ≥ 1.96. This is generally viewed as throwing away the particular x, and lumping all these outcomes together. What’s really happening, according to the severe tester, is quite different. What’s actually being signified is that we are interested in the method, not just the particular outcome. Those who embrace the LP make it very plain that data-dependent selections and stopping rules drop out. To get them to drop in, we signal an interest in what the test procedure would have yielded. This is a counterfactual and is altogether essential in expressing the properties of the method, in particular, the probability it would have yielded some nominally significant outcome or other. Continue reading

Categories: Statistical Inference as Severe Testing | 8 Comments

The Replication Crises and its Constructive Role in the Philosophy of Statistics-PSA2018

Below are my slides from a session on replication at the recent Philosophy of Science Association meetings in Seattle.

 

Categories: Error Statistics | Leave a comment

Blog at WordPress.com.