Monthly Archives: May 2020

Birthday of Allan Birnbaum: Foundations of Probability and Statistics (27 May 1923 – 1 July 1976)

27 May 1923-1 July 1976

27 May 1923-1 July 1976

Today is Allan Birnbaum’s birthday. In honor of his birthday, I’m posting the articles in the Synthese volume that was dedicated to his memory in 1977. The editors describe it as their way of  “paying homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics”. I had posted the volume before, but there are several articles that are very worth rereading. I paste a few snippets from the articles by Giere and Birnbaum. If you’re interested in statistical foundations, and are unfamiliar with Birnbaum, here’s a chance to catch up. (Even if you are, you may be unaware of some of these key papers.) Continue reading

Categories: Birnbaum, Likelihood Principle, Statistics, strong likelihood principle | Tags:

Graduate Research Seminar: Current Controversies in Phil Stat: LSE PH 500: 21 May – 18 June 2020

.

Ship StatInfasST will embark on a new journey from 21 May – 18 June, a graduate research seminar for the Philosophy, Logic & Scientific Method Department at the LSE, but given the pandemic has shut down cruise ships, it will remain at dock in the U.S. and use zoom. If you care to follow any of the 5 sessions, nearly all of the materials will be linked here collected from excerpts already on this blog. If you are interested in observing on zoom beginning 28 May, please follow the directions here

For the updated schedule, see the seminar web page.

Topic: Current Controversies in Phil Stat
(LSE, Remote 10am-12 EST, 15:00 – 17:00 London time; Thursdays 21 May-18 June) Continue reading

Categories: Announcement, SIST

Final part of B. Haig’s ‘What can psych stat reformers learn from the error-stat perspective?’ (Bayesian stats)

.

Here’s the final part of Brian Haig’s recent paper ‘What can psychology’s statistics reformers learn from the error-statistical perspective?’ in Methods in Psychology 2 (Nov. 2020). The full article, which is open access, is here. I will make some remarks in the comments.

5. The error-statistical perspective and the nature of science

Haig

As noted at the outset, the error-statistical perspective has made significant contributions to our philosophical understanding of the nature of science. These are achieved, in good part, by employing insights about the nature and place of statistical inference in experimental science. The achievements include deliberations on important philosophical topics, such as the demarcation of science from non-science, the underdetermination of theories by evidence, the nature of scientific progress, and the perplexities of inductive inference. In this article, I restrict my attention to two such topics: The process of falsification and the structure of modeling.

5.1. Falsificationism Continue reading

Categories: Brian Haig, SIST

Part 2 of B. Haig’s ‘What can psych stat reformers learn from the error-stat perspective?’ (Bayesian stats)

.

Here’s a picture of ripping open the first box of (rush) copies of Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars*, and here’s a continuation of Brian Haig’s recent paper ‘What can psychology’s statistics reformers learn from the error-statistical perspective?’ in Methods in Psychology 2 (Nov. 2020). Haig contrasts error statistics, the “new statistics”, and Bayesian statistics from the perspective of the statistics wars in psychology. The full article, which is open access, is here. I will make several points in the comments.

Haig

4. Bayesian statistics

Despite its early presence, and prominence, in the history of statistics, the Bayesian outlook has taken an age to assert itself in psychology. However, a cadre of methodologists has recently advocated the use of Bayesian statistical methods as a superior alternative to the messy frequentist practice that dominates psychology’s research landscape (e.g., Dienes, 2011; Kruschke and Liddell, 2018; Wagenmakers, 2007). These Bayesians criticize NHST, often advocate the use of Bayes factors for hypothesis testing, and rehearse a number of other well-known Bayesian objections to frequentist statistical practice. Continue reading

Categories: Brian Haig, SIST

Blog at WordPress.com.