Monthly Archives: September 2016

Announcement: Scientific Misconduct and Scientific Expertise

Scientific Misconduct and Scientific Expertise

1st Barcelona HPS workshop

November 11, 2016

Departament de Filosofia & Centre d’Història de la Ciència (CEHIC),  Universitat Autònoma de Barcelona (UAB)

Location: CEHIC, Mòdul de Recerca C, Seminari L3-05, c/ de Can Magrans s/n, Campus de la UAB, 08193 Bellaterra (Barcelona)

Organized by Thomas Sturm & Agustí Nieto-Galan

Current science is full of uncertainties and risks that weaken the authority of experts. Moreover, sometimes scientists themselves act in ways that weaken their standing: they manipulate data, exaggerate research results, do not give credit where it is due, violate the norms for the acquisition of academic titles, or are unduly influenced by commercial and political interests. Such actions, of which there are numerous examples in past and present times, are widely conceived of as violating standards of good scientific practice. At the same time, while codes of scientific conduct have been developed in different fields, institutions, and countries, there is no universally agreed canon of them, nor is it clear that there should be one. The workshop aims to bring together historians and philosophers of science in order to discuss questions such as the following: What exactly is scientific misconduct? Under which circumstances are researchers more or less liable to misconduct? How far do cases of misconduct undermine scientific authority? How have standards or mechanisms to avoid misconduct, and to regain scientific authority, been developed? How should they be developed?

All welcome – but since space is limited, please register in advance. Write to:

09:30 Welcome (Thomas Sturm & Agustí Nieto-Galan) Continue reading

Categories: Announcement, replication research | 7 Comments

G.A. Barnard’s 101st Birthday: The Bayesian “catch-all” factor: probability vs likelihood


G. A. Barnard: 23 Sept 1915-30 July, 2002

Today is George Barnard’s 101st birthday. In honor of this, I reblog an exchange between Barnard, Savage (and others) on likelihood vs probability. The exchange is from pp 79-84 (of what I call) “The Savage Forum” (Savage, 1962).[i] Six other posts on Barnard are linked below: 2 are guest posts (Senn, Spanos); the other 4 include a play (pertaining to our first meeting), and a letter he wrote to me. 


BARNARD:…Professor Savage, as I understand him, said earlier that a difference between likelihoods and probabilities was that probabilities would normalize because they integrate to one, whereas likelihoods will not. Now probabilities integrate to one only if all possibilities are taken into account. This requires in its application to the probability of hypotheses that we should be in a position to enumerate all possible hypotheses which might explain a given set of data. Now I think it is just not true that we ever can enumerate all possible hypotheses. … If this is so we ought to allow that in addition to the hypotheses that we really consider we should allow something that we had not thought of yet, and of course as soon as we do this we lose the normalizing factor of the probability, and from that point of view probability has no advantage over likelihood. This is my general point, that I think while I agree with a lot of the technical points, I would prefer that this is talked about in terms of likelihood rather than probability. I should like to ask what Professor Savage thinks about that, whether he thinks that the necessity to enumerate hypotheses exhaustively, is important. Continue reading

Categories: Barnard, highly probable vs highly probed, phil/history of stat, Statistics | 14 Comments

The Myth of ‘The Myth of Objectivity” (i)

images-28Objectivity in statistics, as in science more generally, is a matter of both aims and methods. Objective science, in our view, aims to find out what is the case as regards aspects of the world [that hold] independently of our beliefs, biases and interests; thus objective methods aim for the critical control of inference and hypotheses, constraining them by evidence and checks of error. (Cox and Mayo 2010, p. 276)

I. The myth of objectivity.
Whenever you come up against blanket slogans such as “no methods are objective” or “all methods are equally objective and subjective,” it is a good guess that the problem is being trivialized into oblivion. Yes, there are judgments, disagreements, and values in any human activity, which alone makes it too trivial an observation to distinguish among very different ways that threats of bias and unwarranted inferences may be controlled. Is the objectivity-subjectivity distinction really toothless as many will have you believe? I say no.

Cavalier attitudes toward objectivity are in tension with widely endorsed movements to promote replication, reproducibility, and to come clean on a number of sources behind illicit results: multiple testing, cherry picking, failed assumptions, researcher latitude, publication bias and so on. The moves to take back science–if they are not mere lip-service–are rooted in the supposition that we can more objectively scrutinize results,even if it’s only to point out those that are poorly tested. The fact that the term “objectivity” is used equivocally should not be taken as grounds to oust it, but rather to engage in the difficult work of identifying what there is in “objectivity” that we won’t give up, and shouldn’t. Continue reading

Categories: Background knowledge | Tags: | 6 Comments

Peircean Induction and the Error-Correcting Thesis (Part I)

C. S. Peirce: 10 Sept, 1839-19 April, 1914

C. S. Peirce: 10 Sept, 1839-19 April, 1914

Today is C.S. Peirce’s birthday. He’s one of my all time heroes. You should read him: he’s a treasure chest on essentially any topic, and he anticipated several major ideas in statistics (e.g., randomization, confidence intervals) as well as in logic. I’ll reblog the first portion of a (2005) paper of mine. Links to Parts 2 and 3 are at the end. It’s written for a very general philosophical audience; the statistical parts are pretty informal. Happy birthday Peirce.

Peircean Induction and the Error-Correcting Thesis
Deborah G. Mayo
Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, Volume 41, Number 2, 2005, pp. 299-319

Peirce’s philosophy of inductive inference in science is based on the idea that what permits us to make progress in science, what allows our knowledge to grow, is the fact that science uses methods that are self-correcting or error-correcting:

Induction is the experimental testing of a theory. The justification of it is that, although the conclusion at any stage of the investigation may be more or less erroneous, yet the further application of the same method must correct the error. (5.145)

Continue reading

Categories: Bayesian/frequentist, C.S. Peirce, Error Statistics, Statistics | 18 Comments

All She Wrote (so far): Error Statistics Philosophy: 5 years on

metablog old fashion typewriter

D.G. Mayo with her  blogging typewriter

Error Statistics Philosophy: Blog Contents (5 years) [i]
By: D. G. Mayo

Dear Reader: It’s hard to believe I’ve been blogging for five years (since Sept. 3, 2011)! A big celebration is taking place at the Elbar Room this evening. If you’re in the neighborhood, stop by for some Elba Grease.

Amazingly, this old typewriter not only still works; one of the whiz kids on Elba managed to bluetooth it to go directly from my typewriter onto the blog (I never got used to computer keyboards.) I still must travel to London to get replacement ribbons for this klunker.

Please peruse the offerings below, and take advantage of some of the super contributions and discussions by guest posters and readers! I don’t know how much longer I’ll continue blogging, but at least until the publication of my book on statistical inference. After that I plan to run conferences, workshops, and ashrams on PhilStat and PhilSci, and will invite readers to take part! Keep reading and commenting. Sincerely, D. Mayo



September 2011

Continue reading

Categories: blog contents, Metablog, Statistics | 11 Comments

Blog at