
.
Stephen Senn
Consultant Statistician
Edinburgh, Scotland
The Many Halls Problem
It’s not that paradox but another
Generalisation is passing…from the consideration of a restricted set to that of a more comprehensive set containing the restricted one…Generalization may be useful in the solution of problems. George Pólya [1] (P108)
Introduction
In a previous blog https://www.linkedin.com/pulse/cause-concern-stephen-senn/ I considered Lord’s Paradox[2], applying John Nelder’s calculus of experiments[3, 4]. Lord’s paradox involves two different analyses of the effect of two different diets, one for each of two different student halls, on weight of students. One statistician compares the so-called change scores or gain scores (final weight minus initial weight) and the other compares final weights, adjusting for initial weights using analysis of covariance. Since the mean initial weights vary between halls, the two analyses will come to different conclusions unless the slope of final on initial weights just happens to be one (in practice, it would usually be less). The fact that two apparently reasonable analyses would lead to different conclusions constitutes the paradox. I chose the version of the paradox outlined by Wainer and Brown [5] and also discussed in The Book of Why[6]. I illustrated this by considering two different experiments: one in which, as in the original example, the diet varies between halls and a further example in which it varies within halls. I simulated some data which are available in the appendix to that blog but which can also be downloaded from here http://www.senns.uk/Lords_Paradox_Simulated.xls so that any reader who wishes to try their hand at analysis can have a go. Continue reading →