Monthly Archives: February 2017

3 YEARS AGO (FEBRUARY 2014): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: February 2014. I normally mark in red three posts from each month that seem most apt for general background on key issues in this blog, but I decided just to list these as they are (some are from a seminar I taught with Aris Spanos 3 years ago; several on Fisher were recently reblogged). I hope you find something of interest!    

February 2014

  • (2/1) Comedy hour at the Bayesian (epistemology) retreat: highly probable vs highly probed (vs B-boosts)
  • (2/3) PhilStock: Bad news is bad news on Wall St. (rejected post)
  • (2/5) “Probabilism as an Obstacle to Statistical Fraud-Busting” (draft iii)
  • (2/9) Phil6334: Day #3: Feb 6, 2014
  • (2/10) Is it true that all epistemic principles can only be defended circularly? A Popperian puzzle
  • (2/12) Phil6334: Popper self-test
  • (2/13) Phil 6334 Statistical Snow Sculpture
  • (2/14) January Blog Table of Contents
  • (2/15) Fisher and Neyman after anger management?
  • (2/17) R. A. Fisher: how an outsider revolutionized statistics
  • (2/18) Aris Spanos: The Enduring Legacy of R. A. Fisher
  • (2/20) R.A. Fisher: ‘Two New Properties of Mathematical Likelihood’
  • (2/21) STEPHEN SENN: Fisher’s alternative to the alternative
  • (2/22) Sir Harold Jeffreys’ (tail-area) one-liner: Sat night comedy [draft ii]
  • (2/24) Phil6334: February 20, 2014 (Spanos): Day #5
  • (2/26) Winner of the February 2014 palindrome contest (rejected post)
  • (2/26) Phil6334: Feb 24, 2014: Induction, Popper and pseudoscience (Day #4)

 

 

Categories: 3-year memory lane, Statistics | 2 Comments

R.A Fisher: “It should never be true, though it is still often said, that the conclusions are no more accurate than the data on which they are based”

imgres

.

A final entry in a week of recognizing R.A.Fisher (February 17, 1890 – July 29, 1962). Fisher is among the very few thinkers I have come across to recognize this crucial difference between induction and deduction:

In deductive reasoning all knowledge obtainable is already latent in the postulates. Rigorous is needed to prevent the successive inferences growing less and less accurate as we proceed. The conclusions are never more accurate than the data. In inductive reasoning we are performing part of the process by which new knowledge is created. The conclusions normally grow more and more accurate as more data are included. It should never be true, though it is still often said, that the conclusions are no more accurate than the data on which they are based. Statistical data are always erroneous, in greater or less degree. The study of inductive reasoning is the study of the embryology of knowledge, of the processes by means of which truth is extracted from its native ore in which it is infused with much error. (Fisher, “The Logic of Inductive Inference,” 1935, p 54).

Reading/rereading this paper is very worthwhile for interested readers. Some of the fascinating historical/statistical background may be found in a guest post by Aris Spanos: “R.A.Fisher: How an Outsider Revolutionized Statistics”

Categories: Fisher, phil/history of stat | 30 Comments

Guest Blog: STEPHEN SENN: ‘Fisher’s alternative to the alternative’

“You May Believe You Are a Bayesian But You Are Probably Wrong”

.

As part of the week of recognizing R.A.Fisher (February 17, 1890 – July 29, 1962), I reblog a guest post by Stephen Senn from 2012.  (I will comment in the comments.)

‘Fisher’s alternative to the alternative’

By: Stephen Senn

[2012 marked] the 50th anniversary of RA Fisher’s death. It is a good excuse, I think, to draw attention to an aspect of his philosophy of significance testing. In his extremely interesting essay on Fisher, Jimmie Savage drew attention to a problem in Fisher’s approach to testing. In describing Fisher’s aversion to power functions Savage writes, ‘Fisher says that some tests are more sensitive than others, and I cannot help suspecting that that comes to very much the same thing as thinking about the power function.’ (Savage 1976) (P473).

The modern statistician, however, has an advantage here denied to Savage. Savage’s essay was published posthumously in 1976 and the lecture on which it was based was given in Detroit on 29 December 1971 (P441). At that time Fisher’s scientific correspondence did not form part of his available oeuvre but in 1990 Henry Bennett’s magnificent edition of Fisher’s statistical correspondence (Bennett 1990) was published and this throws light on many aspects of Fisher’s thought including on significance tests.

.

The key letter here is Fisher’s reply of 6 October 1938 to Chester Bliss’s letter of 13 September. Bliss himself had reported an issue that had been raised with him by Snedecor on 6 September. Snedecor had pointed out that an analysis using inverse sine transformations of some data that Bliss had worked on gave a different result to an analysis of the original values. Bliss had defended his (transformed) analysis on the grounds that a) if a transformation always gave the same result as an analysis of the original data there would be no point and b) an analysis on inverse sines was a sort of weighted analysis of percentages with the transformation more appropriately reflecting the weight of information in each sample. Bliss wanted to know what Fisher thought of his reply.

Fisher replies with a ‘shorter catechism’ on transformations which ends as follows:

A…Have not Neyman and Pearson developed a general mathematical theory for deciding what tests of significance to apply?

B…Their method only leads to definite results when mathematical postulates are introduced, which could only be justifiably believed as a result of extensive experience….the introduction of hidden postulates only disguises the tentative nature of the process by which real knowledge is built up. (Bennett 1990) (p246)

It seems clear that by hidden postulates Fisher means alternative hypotheses and I would sum up Fisher’s argument like this. Null hypotheses are more primitive than statistics: to state a null hypothesis immediately carries an implication about an infinity of test
statistics. You have to choose one, however. To say that you should choose the one with the greatest power gets you nowhere. This power depends on the alternative hypothesis but how will you choose your alternative hypothesis? If you knew that under all circumstances in which the null hypothesis was true you would know which alternative was false you would already know more than the experiment was designed to find out. All that you can do is apply your experience to use statistics, which when employed in valid tests, reject the null hypothesis most often. Hence statistics are more primitive than alternative hypotheses and the latter cannot be made the justification of the former.

I think that this is an important criticism of Fisher’s but not entirely fair. The experience of any statistician rarely amounts to so much that this can be made the (sure) basis for the choice of test. I think that (s)he uses a mixture of experience and argument. I can give an example from my own practice. In carrying out meta-analyses of binary data I have theoretical grounds (I believe) for a prejudice against the risk difference scale and in favour of odds ratios. I think that this prejudice was originally analytic. To that extent I was being rather Neyman-Pearson. However some extensive empirical studies of large collections of meta-analyses have shown that there is less heterogeneity on the odds ratio scale compared to the risk-difference scale. To that extent my preference is Fisherian. However, there are some circumstances (for example where it was reasonably believed that only a small proportion of patients would respond) under which I could be persuaded that the odds ratio was not a good scale. This strikes me as veering towards the N-P.

Nevertheless, I have a lot of sympathy with Fisher’s criticism. It seems to me that what the practicing scientist wants to know is what is a good test in practice rather than what would be a good test in theory if this or that could be believed about the world.

References: 

J. H. Bennett (1990) Statistical Inference and Analysis Selected Correspondence of R.A. Fisher, Oxford: Oxford University Press.

L. J. Savage (1976) On rereading R A Fisher. The Annals of Statistics, 441-500.

Categories: Fisher, S. Senn, Statistics | 13 Comments

R.A. Fisher: “Statistical methods and Scientific Induction”

I continue a week of Fisherian posts in honor of his birthday (Feb 17). This is his contribution to the “Triad”–an exchange between  Fisher, Neyman and Pearson 20 years after the Fisher-Neyman break-up. They are each very short.

17 February 1890 — 29 July 1962

“Statistical Methods and Scientific Induction”

by Sir Ronald Fisher (1955)

SUMMARY

The attempt to reinterpret the common tests of significance used in scientific research as though they constituted some kind of  acceptance procedure and led to “decisions” in Wald’s sense, originated in several misapprehensions and has led, apparently, to several more.

The three phrases examined here, with a view to elucidating they fallacies they embody, are:

  1. “Repeated sampling from the same population”,
  2. Errors of the “second kind”,
  3. “Inductive behavior”.

Mathematicians without personal contact with the Natural Sciences have often been misled by such phrases. The errors to which they lead are not only numerical.

To continue reading Fisher’s paper.

The most noteworthy feature is Fisher’s position on Fiducial inference, typically downplayed. I’m placing a summary and link to Neyman’s response below–it’s that interesting. Continue reading

Categories: fiducial probability, Fisher, Neyman, phil/history of stat | 6 Comments

Guest Blog: ARIS SPANOS: The Enduring Legacy of R. A. Fisher

By Aris Spanos

One of R. A. Fisher’s (17 February 1890 — 29 July 1962) most re­markable, but least recognized, achievement was to initiate the recast­ing of statistical induction. Fisher (1922) pioneered modern frequentist statistics as a model-based approach to statistical induction anchored on the notion of a statistical model, formalized by:

Mθ(x)={f(x;θ); θ∈Θ}; x∈Rn ;Θ⊂Rm; m < n; (1)

where the distribution of the sample f(x;θ) ‘encapsulates’ the proba­bilistic information in the statistical model.

Before Fisher, the notion of a statistical model was vague and often implicit, and its role was primarily confined to the description of the distributional features of the data in hand using the histogram and the first few sample moments; implicitly imposing random (IID) samples. The problem was that statisticians at the time would use descriptive summaries of the data to claim generality beyond the data in hand x0:=(x1,x2,…,xn) As late as the 1920s, the problem of statistical induction was understood by Karl Pearson in terms of invoking (i) the ‘stability’ of empirical results for subsequent samples and (ii) a prior distribution for θ.

Fisher was able to recast statistical inference by turning Karl Pear­son’s approach, proceeding from data x0 in search of a frequency curve f(x;ϑ) to describe its histogram, on its head. He proposed to begin with a prespecified Mθ(x) (a ‘hypothetical infinite population’), and view x0 as a ‘typical’ realization thereof; see Spanos (1999). Continue reading

Categories: Fisher, Spanos, Statistics | Tags: , , , , , , | Leave a comment

R.A. Fisher: ‘Two New Properties of Mathematical Likelihood’

17 February 1890–29 July 1962

Today is R.A. Fisher’s birthday. I’ll post some different Fisherian items this week in honor of it. This paper comes just before the conflicts with Neyman and Pearson erupted.  Fisher links his tests and sufficiency, to the Neyman and Pearson lemma in terms of power.  It’s as if we may see them as ending up in a similar place while starting from different origins. I quote just the most relevant portions…the full article is linked below. Happy Birthday Fisher!

Two New Properties of Mathematical Likelihood

by R.A. Fisher, F.R.S.

Proceedings of the Royal Society, Series A, 144: 285-307 (1934)

  The property that where a sufficient statistic exists, the likelihood, apart from a factor independent of the parameter to be estimated, is a function only of the parameter and the sufficient statistic, explains the principle result obtained by Neyman and Pearson in discussing the efficacy of tests of significance.  Neyman and Pearson introduce the notion that any chosen test of a hypothesis H0 is more powerful than any other equivalent test, with regard to an alternative hypothesis H1, when it rejects H0 in a set of samples having an assigned aggregate frequency ε when H0 is true, and the greatest possible aggregate frequency when H1 is true. Continue reading

Categories: Fisher, phil/history of stat, Statistics | Tags: , , , | 2 Comments

Winner of the January 2017 Palindrome contest: Cristiano Sabiu

Winner of January 2017 Palindrome Contest: (a dozen book choices)

sabiu

.

Cristiano Sabiu: Postdoctoral researcher in Cosmology and Astrophysics

Palindrome: El truth supremo nor tsar is able, Elba Sir Astronomer push turtle.

The requirement: A palindrome using “astronomy” or “(astronomer/astronomical” (and Elba, of course).cosmic-turtle-1

Book choiceError and the Growth of Experimental Knowledge (D. Mayo 1996, Chicago)

Bio: Cristiano Sabiu is a postdoctoral researcher in Cosmology and Astrophysics, working on Dark Energy and testing Einstein’s theory of General Relativity. He was born in Scotland with Italian roots and currently resides in Daejeon, South Korea.

Statement: This was my first palindrome! I was never very interested in writing when I was younger (I almost failed English at school!). However, as my years progress I feel that writing/poetry may be the easiest way for us non-artists to express that which cannot easily be captured by our theorems and logical frameworks. Constrained writing seems to open some of those internal mental doors, I think I am hooked now. Thanks for organising this!

Mayo Comment: Thanks for entering Cristiano, you just made the “time extension” for this month. That means we won’t have a second month of “astronomy” and the judges will have to come up with a new word. I’m glad you’re hooked. Good choice of book! I especially like the “truth supremo/push turtle” . I’m also very interested in experimental testing of GTR–we’ll have to communicate on this.

Mayo’s January attempts (selected):

  • Elba rap star comedy: Mr. Astronomy. Testset tests etymon or tsar, my democrats’ parable.
  • Parable for astronomy gym, on or tsar of Elba rap.
Categories: Palindrome | Leave a comment

Cox’s (1958) weighing machine example

IMG_0079

.

A famous chestnut given by Cox (1958) recently came up in conversation. The example  “is now usually called the ‘weighing machine example,’ which draws attention to the need for conditioning, at least in certain types of problems” (Reid 1992, p. 582). When I describe it, you’ll find it hard to believe many regard it as causing an earthquake in statistical foundations, unless you’re already steeped in these matters. If half the time I reported my weight from a scale that’s always right, and half the time use a scale that gets it right with probability .5, would you say I’m right with probability ¾? Well, maybe. But suppose you knew that this measurement was made with the scale that’s right with probability .5? The overall error probability is scarcely relevant for giving the warrant of the particular measurement,knowing which scale was used. Continue reading

Categories: Error Statistics, Sir David Cox, Statistics, strong likelihood principle | 1 Comment

Hocus pocus! Adopt a magician’s stance, if you want to reveal statistical sleights of hand

images-3

.

Here’s the follow-up post to the one I reblogged on Feb 3 (please read that one first). When they sought to subject Uri Geller to the scrutiny of scientists, magicians had to be brought in because only they were sufficiently trained to spot the subtle sleight of hand shifts by which the magician tricks by misdirection. We, too, have to be magicians to discern the subtle misdirections and shifts of meaning in the discussions of statistical significance tests (and other methods)—even by the same statistical guide. We needn’t suppose anything deliberately devious is going on at all! Often, the statistical guidebook reflects shifts of meaning that grow out of one or another critical argument. These days, they trickle down quickly to statistical guidebooks, thanks to popular articles on the “statistics crisis in science”. The danger is that their own guidebooks contain inconsistencies. To adopt the magician’s stance is to be on the lookout for standard sleights of hand. There aren’t that many.[0]

I don’t know Jim Frost, but he gives statistical guidance at the minitab blog. The purpose of my previous post is to point out that Frost uses the probability of a Type I error in two incompatible ways in his posts on significance tests. I assumed he’d want to clear this up, but so far he has not. His response to a comment I made on his blog is this: Continue reading

Categories: frequentist/Bayesian, P-values, reforming the reformers, S. Senn, Statistics | 39 Comments

High error rates in discussions of error rates: no end in sight

27D0BB5300000578-3168627-image-a-27_1437433320306

waiting for the other shoe to drop…

“Guides for the Perplexed” in statistics become “Guides to Become Perplexed” when “error probabilities” (in relation to statistical hypotheses tests) are confused with posterior probabilities of hypotheses. Moreover, these posteriors are neither frequentist, subjectivist, nor default. Since this doublespeak is becoming more common in some circles, it seems apt to reblog a post from one year ago (you may wish to check the comments).

Do you ever find yourself holding your breath when reading an exposition of significance tests that’s going swimmingly so far? If you’re a frequentist in exile, you know what I mean. I’m sure others feel this way too. When I came across Jim Frost’s posts on The Minitab Blog, I thought I might actually have located a success story. He does a good job explaining P-values (with charts), the duality between P-values and confidence levels, and even rebuts the latest “test ban” (the “Don’t Ask, Don’t Tell” policy). Mere descriptive reports of observed differences that the editors recommend, Frost shows, are uninterpretable without a corresponding P-value or the equivalent. So far, so good. I have only small quibbles, such as the use of “likelihood” when meaning probability, and various and sundry nitpicky things. But watch how in some places significance levels are defined as the usual error probabilities —indeed in the glossary for the site—while in others it is denied they provide error probabilities. In those other places, error probabilities and error rates shift their meaning to posterior probabilities, based on priors representing the “prevalence” of true null hypotheses.

Begin with one of his kosher posts “Understanding Hypothesis Tests: Significance Levels (Alpha) and P values in Statistics” (blue is Frost): Continue reading

Categories: highly probable vs highly probed, J. Berger, reforming the reformers, Statistics | 1 Comment

Blog at WordPress.com.