Author Archives: Mayo

About Mayo

I am a professor in the Department of Philosophy at Virginia Tech and hold a visiting appointment at the Center for the Philosophy of Natural and Social Science of the London School of Economics. I am the author of Error and the Growth of Experimental Knowledge, which won the 1998 Lakatos Prize, awarded to the most outstanding contribution to the philosophy of science during the previous six years. I have applied my approach toward solving key problems in philosophy of science: underdetermination, the role of novel evidence, Duhem's problem, and the nature of scientific progress. I am also interested in applications to problems in risk analysis and risk controversies, and co-edited Acceptable Evidence: Science and Values in Risk Management (with Rachelle Hollander). I teach courses in introductory and advanced logic (including the metatheory of logic and modal logic), in scientific method, and in philosophy of science.I also teach special topics courses in Science and Technology Studies.

Winners of December Palindrome: Kyle Griffiths & Eileen Flanagan

Winners of the December 2016 Palindrome contest

Since both November and December had the contest word verifies/reverifies, the judges decided to give two prizes this month. Thank you both for participating!

 

kyle

.

Kyle Griffiths

Palindrome: Sleep, raw Elba, ere verified ire; Sir, rise, ride! If I revere able war peels.

The requirement: A palindrome using “verifies” (reverifies) or “verified” (reverified) and Elba, of course.

Statement: Here’s my December submission, hope you like it, it has a kind of revolutionary war theme. I have no particular history of palindrome-writing or contest-entering.  Instead, I found Mayo’s work via the recommendation of Jeremy Fox of Dynamic Ecology.  I am interested in her take on modern statistical practices in ecology, and generally in understanding what makes scientific methods robust and reliable.  I’m an outsider to philosophy and stats (I have an MS in Biology), so I appreciate the less-formal tone of the blog. I’m really looking forward to Mayo’s next book.

Book choice (out of 12 or more):  Principles of Applied Statistics (D. R. Cox and C. A. Donnelly 2011, Cambridge: Cambridge University Press)

Bio: Part-time Biology Instructor, Scientific Aide for California Dept. of Fish & Wildlife. Interested in aquatic ecology, fish population dynamics.

*******************************************************************************************

 

.

Eileen Flanagan

Palindrome: Elba man, error reels inanities. I verified art I trade, if I revise it in an isle. Error renamable.

The requirement: A palindrome using “verifies” (reverifies) or “verified” (reverified) and Elba, of course.

Bio: Retired civil servant with a philosophy Ph.D; a bit camera shy so used a stand-in for my photo. 🙂

Statement: I found your blog searching for information on fraud in science a few years ago, and now that I am retired, I am enjoying twisting my mind around palindromes and other word games that I find on-line. 🙂

Book choice (out of 12 or more):  For my book, I would like a copy of Error and the Growth of Experimental Knowledge (D. G. Mayo, 1996, Chicago: Chicago University Press).

 

*******************************************************************************************

Some of Mayo’s attempts, posted through Nov-Dec:

Elba felt busy, reverifies use. I fire very subtle fable.

To I: disabled racecar ties. I verified or erode, if I revise it. Race card: Elba’s idiot.

Elba, I rave to men: “I felt busy!” Reverified, I hide, I fire very subtle fine mote variable.

I deified able deities. I verified a rap parade. If I revise, I tied. Elba deified I.

Categories: Announcement, Palindrome | Leave a comment

BOSTON COLLOQUIUM FOR PHILOSOPHY OF SCIENCE: Understanding Reproducibility & Error Correction in Science

BOSTON COLLOQUIUM FOR PHILOSOPHY OF SCIENCE

2016–2017
57th Annual Program

Download the 57th Annual Program

The Alfred I. Taub forum:

UNDERSTANDING REPRODUCIBILITY & ERROR CORRECTION IN SCIENCE

Cosponsored by GMS and BU’s BEST at Boston University.
Friday, March 17, 2017
1:00 p.m. – 5:00 p.m.
The Terrace Lounge, George Sherman Union
775 Commonwealth Avenue

  • Reputation, Variation, &, Control: Historical Perspectives
    Jutta Schickore History and Philosophy of Science & Medicine, Indiana University, Bloomington.
  • Crisis in Science: Time for Reform?
    Arturo Casadevall Molecular Microbiology & Immunology, Johns Hopkins
  • Severe Testing: The Key to Error Correction
    Deborah Mayo Philosophy, Virginia Tech
  • Replicate That…. Maintaining a Healthy Failure Rate in Science
    Stuart Firestein Biological Sciences, Columbia

 

boston-mayo-2017

Categories: Announcement, philosophy of science, Philosophy of Statistics, Statistical fraudbusting, Statistics | Leave a comment

Midnight With Birnbaum (Happy New Year 2016)

 Just as in the past 5 years since I’ve been blogging, I revisit that spot in the road at 11p.m., just outside the Elbar Room, get into a strange-looking taxi, and head to “Midnight With Birnbaum”. (The pic on the left is the only blurry image I have of the club I’m taken to.) I wonder if the car will come for me this year, given that my Birnbaum article has been out since 2014… The (Strong) Likelihood Principle–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics (and cognate methods). Yet as Birnbaum insisted, the “confidence concept” is the “one rock in a shifting scene” of statistical foundations, insofar as there’s interest in controlling the frequency of erroneous interpretations of data. (See my rejoinder.) Birnbaum bemoaned the lack of an explicit evidential interpretation of N-P methods. Maybe in 2017? Anyway, it’s 6 hrs later here, so I’m about to leave for that spot in the road… If I’m picked up, I’ll add an update at the end.

You know how in that (not-so) recent Woody Allen movie, “Midnight in Paris,” the main character (I forget who plays it, I saw it on a plane) is a writer finishing a novel, and he steps into a cab that mysteriously picks him up at midnight and transports him back in time where he gets to run his work by such famous authors as Hemingway and Virginia Wolf?  He is impressed when his work earns their approval and he comes back each night in the same mysterious cab…Well, imagine an error statistical philosopher is picked up in a mysterious taxi at midnight (New Year’s Eve 2011 2012, 2013, 2014, 2015, 2016) and is taken back fifty years and, lo and behold, finds herself in the company of Allan Birnbaum.[i] There are a couple of brief (12/31/14 & 15) updates at the end.  

.

.

ERROR STATISTICIAN: It’s wonderful to meet you Professor Birnbaum; I’ve always been extremely impressed with the important impact your work has had on philosophical foundations of statistics.  I happen to be writing on your famous argument about the likelihood principle (LP).  (whispers: I can’t believe this!)

BIRNBAUM: Ultimately you know I rejected the LP as failing to control the error probabilities needed for my Confidence concept. Continue reading

Categories: Birnbaum Brakes, Statistics, strong likelihood principle | Tags: , , , | 21 Comments

Szucs & Ioannidis Revive the Limb-Sawing Fallacy

 

images-2

.

When logical fallacies of statistics go uncorrected, they are repeated again and again…and again. And so it is with the limb-sawing fallacy I first posted in one of my “Overheard at the Comedy Hour” posts.* It now resides as a comic criticism of significance tests in a paper by Szucs and Ioannidis (posted this week),  Here’s their version:

“[P]aradoxically, when we achieve our goal and successfully reject Hwe will actually be left in complete existential vacuum because during the rejection of HNHST ‘saws off its own limb’ (Jaynes, 2003; p. 524): If we manage to reject H0then it follows that pr(data or more extreme data|H0) is useless because H0 is not true” (p.15).

Here’s Jaynes (p. 524):

“Suppose we decide that the effect exists; that is, we reject [null hypothesis] H0. Surely, we must also reject probabilities conditional on H0, but then what was the logical justification for the decision? Orthodox logic saws off its own limb.’ 

Ha! Ha! By this reasoning, no hypothetical testing or falsification could ever occur. As soon as H is falsified, the grounds for falsifying disappear! If H: all swans are white, then if I see a black swan, H is falsified. But according to this criticism, we can no longer assume the deduced prediction from H! What? Continue reading

Categories: Error Statistics, P-values, reforming the reformers, Statistics | 14 Comments

3 YEARS AGO (DECEMBER 2013): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: December 2013. I mark in red three posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 3 others I’d recommend[2].  Posts that are part of a “unit” or a group count as one. In this post, that makes 12/27-12/28 count as one.

December 2013

  • (12/3) Stephen Senn: Dawid’s Selection Paradox (guest post)
  • (12/7) FDA’s New Pharmacovigilance
  • (12/9) Why ecologists might want to read more philosophy of science (UPDATED)
  • (12/11) Blog Contents for Oct and Nov 2013
  • (12/14) The error statistician has a complex, messy, subtle, ingenious piece-meal approach
  • (12/15) Surprising Facts about Surprising Facts
  • (12/19) A. Spanos lecture on “Frequentist Hypothesis Testing
  • (12/24) U-Phil: Deconstructions [of J. Berger]: Irony & Bad Faith 3
  • (12/25) “Bad Arguments” (a book by Ali Almossawi)
  • (12/26) Mascots of Bayesneon statistics (rejected post)
  • (12/27) Deconstructing Larry Wasserman
  • (12/28) More on deconstructing Larry Wasserman (Aris Spanos)
  • (12/28) Wasserman on Wasserman: Update! December 28, 2013
  • (12/31) Midnight With Birnbaum (Happy New Year)

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30, 2016-very convenient.

 

Save

Save

Save

Save

Save

Categories: 3-year memory lane, Bayesian/frequentist, Error Statistics, Statistics | 1 Comment

S. Senn: “Placebos: it’s not only the patients that are fooled” (Guest Post)

Stephen Senn

Stephen Senn

Placebos: it’s not only the patients that are fooled

Stephen Senn
Head of  Competence Center for Methodology and Statistics (CCMS)
Luxembourg Institute of Health

In my opinion a great deal of ink is wasted to little purpose in discussing placebos in clinical trials. Many commentators simply do not understand the nature and purpose of placebos. To start with the latter, their only purpose is to permit blinding of treatments and, to continue to the former, this implies that their nature is that they are specific to the treatment studied.

Consider an example. Suppose that Pannostrum Pharmaceuticals wishes to prove that its new treatment for migraine, Paineaze® (which is in the form of a small red circular pill) is superior to the market-leader offered by Allexir Laboratories, Kalmer® (which is a large purple lozenge). Pannostrum decides to do a head-to head comparison and of course, therefore will require placebos. Every patient will have to take a red pill and a purple lozenge. In the Paineaze arm what is red will be Paineaze and what is purple ‘placebo to Kalmer’. In the Kalmer arm what is red will be ‘placebo to Paineaze’ and what is purple will be Kalmer.

senn-placebo

Continue reading

Categories: PhilPharma, PhilStat/Med, Statistics, Stephen Senn | 6 Comments

“Tests of Statistical Significance Made Sound”: excerpts from B. Haig

images-34

.

I came across a paper, “Tests of Statistical Significance Made Sound,” by Brian Haig, a psychology professor at the University of Canterbury, New Zealand. It hits most of the high notes regarding statistical significance tests, their history & philosophy and, refreshingly, is in the error statistical spirit! I’m pasting excerpts from his discussion of “The Error-Statistical Perspective”starting on p.7.[1]

The Error-Statistical Perspective

An important part of scientific research involves processes of detecting, correcting, and controlling for error, and mathematical statistics is one branch of methodology that helps scientists do this. In recognition of this fact, the philosopher of statistics and science, Deborah Mayo (e.g., Mayo, 1996), in collaboration with the econometrician, Aris Spanos (e.g., Mayo & Spanos, 2010, 2011), has systematically developed, and argued in favor of, an error-statistical philosophy for understanding experimental reasoning in science. Importantly, this philosophy permits, indeed encourages, the local use of ToSS, among other methods, to manage error. Continue reading

Categories: Bayesian/frequentist, Error Statistics, fallacy of rejection, P-values, Statistics | 12 Comments

Gelman at the PSA: “Confirmationist and Falsificationist Paradigms in Statistical Practice”: Comments & Queries

screen-shot-2016-10-26-at-10-23-07-pmTo resume sharing some notes I scribbled down on the contributions to our Philosophy of Science Association symposium on Philosophy of Statistics (Nov. 4, 2016), I’m up to Gelman. Comments on Gigerenzer and Glymour are here and here. Gelman didn’t use slides but gave a very thoughtful, extemporaneous presentation on his conception of “falsificationist Bayesianism”, its relation to current foundational issues, as well as to error statistical testing. My comments follow his abstract.

Confirmationist and Falsificationist Paradigms in Statistical Practice

gelman5

.

Andrew Gelman

There is a divide in statistics between classical frequentist and Bayesian methods. Classical hypothesis testing is generally taken to follow a falsificationist, Popperian philosophy in which research hypotheses are put to the test and rejected when data do not accord with predictions. Bayesian inference is generally taken to follow a confirmationist philosophy in which data are used to update the probabilities of different hypotheses. We disagree with this conventional Bayesian-frequentist contrast: We argue that classical null hypothesis significance testing is actually used in a confirmationist sense and in fact does not do what it purports to do; and we argue that Bayesian inference cannot in general supply reasonable probabilities of models being true. The standard research paradigm in social psychology (and elsewhere) seems to be that the researcher has a favorite hypothesis A. But, rather than trying to set up hypothesis A for falsification, the researcher picks a null hypothesis B to falsify, which is then taken as evidence in favor of A. Research projects are framed as quests for confirmation of a theory, and once confirmation is achieved, there is a tendency to declare victory and not think too hard about issues of reliability and validity of measurements. Continue reading

Categories: Bayesian/frequentist, Gelman, Shalizi, Statistics | 148 Comments

3 YEARS AGO (NOVEMBER 2013): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: November 2013. I mark in red three posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 3 others I’d recommend[2].  Posts that are part of a “unit” or a group count as one. Here I’m counting 11/9, 11/13, and 11/16 as one

November 2013

  • (11/2) Oxford Gaol: Statistical Bogeymen
  • (11/4) Forthcoming paper on the strong likelihood principle
  • (11/9) Null Effects and Replication (cartoon pic)
  • (11/9) Beware of questionable front page articles warning you to beware of questionable front page articles (iii)
  • (11/13) T. Kepler: “Trouble with ‘Trouble at the Lab’?” (guest post)
  • (11/16) PhilStock: No-pain bull
  • (11/16) S. Stanley Young: More Trouble with ‘Trouble in the Lab’ (Guest post)
  • (11/18) Lucien Le Cam: “The Bayesians hold the Magic”
  • (11/20) Erich Lehmann: Statistician and Poet
  • (11/23) Probability that it is a statistical fluke [i]
  • (11/27)The probability that it be a statistical fluke” [iia]
  • (11/30) Saturday night comedy at the “Bayesian Boy” diary (rejected post*)

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30, 2016-very convenient.

 

Save

Save

Save

Save

Save

Categories: 3-year memory lane, Error Statistics, Statistics | Leave a comment

Glymour at the PSA: “Exploratory Research is More Reliable Than Confirmatory Research”

psa-homeI resume my comments on the contributions to our symposium on Philosophy of Statistics at the Philosophy of Science Association. My earlier comment was on Gerd Gigerenzer’s talk. I move on to Clark Glymour’s “Exploratory Research Is More Reliable Than Confirmatory Research.” His complete slides are after my comments.

GLYMOUR’S ARGUMENT (in a nutshell):Glymour_2006_IMG_0965

“The anti-exploration argument has everything backwards,” says Glymour (slide #11). While John Ioannidis maintains that “Research findings are more likely true in confirmatory designs,” the opposite is so, according to Glymour. (Ioannidis 2005, Glymour’s slide #6). Why? To answer this he describes an exploratory research account for causal search that he has been developing:

exploratory-research-is-more-reliable-than-confirmatory-research-13-1024(slide #5)

What’s confirmatory research for Glymour? It’s moving directly from rejecting a null hypothesis with a low P-value to inferring a causal claim. Continue reading

Categories: fallacy of rejection, P-values, replication research | 20 Comments

Taking errors seriously in forecasting elections

1200x-1

.

Science isn’t about predicting one-off events like election results, but that doesn’t mean the way to make election forecasts scientific (which they should be) is to build “theories of voting.” A number of people have sent me articles on statistical aspects of the recent U.S. election, but I don’t have much to say and I like to keep my blog non-political. I won’t violate this rule in making a couple of comments on Faye Flam’s Nov. 11 article: “Why Science Couldn’t Predict a Trump Presidency”[i].

For many people, Donald Trump’s surprise election victory was a jolt to very idea that humans are rational creatures. It tore away the comfort of believing that science has rendered our world predictable. The upset led two New York Times reporters to question whether data science could be trusted in medicine and business. A Guardian columnist declared that big data works for physics but breaks down in the realm of human behavior. Continue reading

Categories: Bayesian/frequentist, evidence-based policy | 15 Comments

Gigerenzer at the PSA: “How Fisher, Neyman-Pearson, & Bayes Were Transformed into the Null Ritual”: Comments and Queries (ii)

screen-shot-2016-10-26-at-10-23-07-pm

.

Gerd Gigerenzer, Andrew Gelman, Clark Glymour and I took part in a very interesting symposium on Philosophy of Statistics at the Philosophy of Science Association last Friday. I jotted down lots of notes, but I’ll limit myself to brief reflections and queries on a small portion of each presentation in turn, starting with Gigerenzer’s “Surrogate Science: How Fisher, Neyman-Pearson, & Bayes Were Transformed into the Null Ritual.” His complete slides are below my comments. I may write this in stages, this being (i).

SLIDE #19

gigerenzer-slide-19

  1. Good scientific practice–bold theories, double-blind experiments, minimizing measurement error, replication, etc.–became reduced in the social science to a surrogate: statistical significance.

I agree that “good scientific practice” isn’t some great big mystery, and that “bold theories, double-blind experiments, minimizing measurement error, replication, etc.” are central and interconnected keys to finding things out in error prone inquiry. Do the social sciences really teach that inquiry can be reduced to cookbook statistics? Or is it simply that, in some fields, carrying out surrogate science suffices to be a “success”? Continue reading

Categories: Fisher, frequentist/Bayesian, Gigerenzer, Gigerenzer, P-values, spurious p values, Statistics | 11 Comments

I’ll be speaking to a biomedical group at Emory University, Nov 3

 

d-g-mayo-emory-flyer
Link to Seminar Flyer pdf.

Categories: Announcement | 1 Comment

Philosophy of Science Association 2016 Symposium

screen-shot-2016-10-26-at-10-23-07-pmPSA 2016 Symposium:
Philosophy of Statistics in the Age of Big Data and Replication Crises
Friday November 4th  9-11:45 am
(includes coffee  break 10-10:15)
Location: Piedmont 4 (12th Floor) Westin Peachtree Plaza
Speakers:

  • Deborah Mayo (Professor of Philosophy, Virginia Tech, Blacksburg, Virginia) “Controversy Over the Significance Test Controversy” (Abstract)
  • Gerd Gigerenzer (Director of Max Planck Institute for Human Development, Berlin, Germany) “Surrogate Science: How Fisher, Neyman-Pearson, and Bayes Were Transformed into the Null Ritual” (Abstract)
  • Andrew Gelman (Professor of Statistics & Political Science, Columbia University, New York) “Confirmationist and Falsificationist Paradigms in Statistical Practice” (Abstract)
  • Clark Glymour (Alumni University Professor in Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania) “Exploratory Research is More Reliable Than Confirmatory Research” (Abstract)

Key Words: big data, frequentist and Bayesian philosophies, history and philosophy of statistics, meta-research, p-values, replication, significance tests.

Summary:

Science is undergoing a crisis over reliability and reproducibility. High-powered methods are prone to cherry-picking correlations, significance-seeking, and assorted modes of extraordinary rendition of data. The Big Data revolution may encourage a reliance on statistical methods without sufficient scrutiny of whether they are teaching us about causal processes of interest. Mounting failures of replication in the social and biological sciences have resulted in new institutes for meta-research, replication research, and widespread efforts to restore scientific integrity and transparency. Statistical significance test controversies, long raging in the social sciences, have spread to all fields using statistics. At the same time, foundational debates over frequentist and Bayesian methods have shifted in important ways that are often overlooked in the debates. The problems introduce philosophical and methodological questions about probabilistic tools, and science and pseudoscience—intertwined with technical statistics and the philosophy and history of statistics. Our symposium goal is to address foundational issues around which the current crisis in science revolves. We combine the insights of philosophers, psychologists, and statisticians whose work interrelates philosophy and history of statistics, data analysis and modeling. Continue reading

Categories: Announcement | 1 Comment

Formal Epistemology Workshop 2017: call for papers

images-33

.

Formal Epistemology Workshop (FEW) 2017


Home Call For Papers Schedule Venue Travel and Accommodations

Call for papers

Submission Deadline: December 1st, 2016
Authors Notified: February 8th, 2017

We invite papers in formal epistemology, broadly construed. FEW is an interdisciplinary conference, and so we welcome submissions from researchers in philosophy, statistics, economics, computer science, psychology, and mathematics.

Submissions should be prepared for blind review. Contributors ought to upload a full paper of no more than 6000 words and an abstract of up to 300 words to the Easychair website. Please submit your full paper in .pdf format. The deadline for submissions is December 1st, 2016. Authors will be notified on February 1st, 2017.

The final selection of the program will be made with an eye towards diversity. We especially encourage submissions from PhD candidates, early career researchers and members of groups that are underrepresented in philosophy. Continue reading

Categories: Announcement | Leave a comment

International Prize in Statistics Awarded to Sir David Cox

00-statprize

Unknown-1

.

International Prize in Statistics Awarded to Sir David Cox for
Survival Analysis Model Applied in Medicine, Science, and Engineering

EMBARGOED until October 19, 2016, at 9 p.m. ET

ALEXANDRIA, VA (October 18, 2016) – Prominent British statistician Sir David Cox has been named the inaugural recipient of the International Prize in Statistics. Like the acclaimed Fields Medal, Abel Prize, Turing Award and Nobel Prize, the International Prize in Statistics is considered the highest honor in its field. It will be bestowed every other year to an individual or team for major achievements using statistics to advance science, technology and human welfare.

Cox is a giant in the field of statistics, but the International Prize in Statistics Foundation is recognizing him specifically for his 1972 paper in which he developed the proportional hazards model that today bears his name. The Cox Model is widely used in the analysis of survival data and enables researchers to more easily identify the risks of specific factors for mortality or other survival outcomes among groups of patients with disparate characteristics. From disease risk assessment and treatment evaluation to product liability, school dropout, reincarceration and AIDS surveillance systems, the Cox Model has been applied essentially in all fields of science, as well as in engineering. Continue reading

Categories: Announcement | 1 Comment

3 YEARS AGO (OCTOBER 2013): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: October 2013. I mark in red three posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 3 others I’d recommend[2].  Posts that are part of a “unit” or a pair count as one.

October 2013

  • (10/3) Will the Real Junk Science Please Stand Up? (critical thinking)
     
  • (10/5) Was Janina Hosiasson pulling Harold Jeffreys’ leg?
  • (10/9) Bad statistics: crime or free speech (II)? Harkonen update: Phil Stat / Law /Stock
  • (10/12) Sir David Cox: a comment on the post, “Was Hosiasson pulling Jeffreys’ leg?”(10/5 and 10/12 are a pair)
     
  • (10/19) Blog Contents: September 2013
  • (10/19) Bayesian Confirmation Philosophy and the Tacking Paradox (iv)*
  • (10/25) Bayesian confirmation theory: example from last post…(10/19 and 10/25 are a pair)
  • (10/26) Comedy hour at the Bayesian (epistemology) retreat: highly probable vs highly probed (vs what ?)
  • (10/31) WHIPPING BOYS AND WITCH HUNTERS (interesting to see how things have changed and stayed the same over the past few years, share comments)

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30, 2016-very convenient.

 

Save

Save

Save

Save

Save

Categories: 3-year memory lane, Error Statistics, Statistics | 22 Comments

For Statistical Transparency: Reveal Multiplicity and/or Just Falsify the Test (Remark on Gelman and Colleagues)

images-31

.

Gelman and Loken (2014) recognize that even without explicit cherry picking there is often enough leeway in the “forking paths” between data and inference so that by artful choices you may be led to one inference, even though it also could have gone another way. In good sciences, measurement procedures should interlink with well-corroborated theories and offer a triangulation of checks– often missing in the types of experiments Gelman and Loken are on about. Stating a hypothesis in advance, far from protecting from the verification biases, can be the engine that enables data to be “constructed”to reach the desired end [1].

[E]ven in settings where a single analysis has been carried out on the given data, the issue of multiple comparisons emerges because different choices about combining variables, inclusion and exclusion of cases…..and many other steps in the analysis could well have occurred with different data (Gelman and Loken 2014, p. 464).

An idea growing out of this recognition is to imagine the results of applying the same statistical procedure, but with different choices at key discretionary junctures–giving rise to a multiverse analysis, rather than a single data set (Steegen, Tuerlinckx, Gelman, and Vanpaemel 2016). One lists the different choices thought to be plausible at each stage of data processing. The multiverse displays “which constellation of choices corresponds to which statistical results” (p. 797). The result of this exercise can, at times, mimic the delineation of possibilities in multiple testing and multiple modeling strategies. Continue reading

Categories: Bayesian/frequentist, Error Statistics, Gelman, P-values, preregistration, reproducibility, Statistics | 9 Comments

A new front in the statistics wars? Peaceful negotiation in the face of so-called ‘methodological terrorism’

images-30I haven’t been blogging that much lately, as I’m tethered to the task of finishing revisions on a book (on the philosophy of statistical inference!) But I noticed two interesting blogposts, one by Jeff Leek, another by Andrew Gelman, and even a related petition on Twitter, reflecting a newish front in the statistics wars: When it comes to improving scientific integrity, do we need more carrots or more sticks? 

Leek’s post, from yesterday, called “Statistical Vitriol” (29 Sep 2016), calls for de-escalation of the consequences of statistical mistakes:

Over the last few months there has been a lot of vitriol around statistical ideas. First there were data parasites and then there were methodological terrorists. These epithets came from established scientists who have relatively little statistical training. There was the predictable backlash to these folks from their counterparties, typically statisticians or statistically trained folks who care about open source.
Continue reading

Categories: Anil Potti, fraud, Gelman, pseudoscience, Statistics | 15 Comments

Announcement: Scientific Misconduct and Scientific Expertise

Scientific Misconduct and Scientific Expertise

1st Barcelona HPS workshop

November 11, 2016

Departament de Filosofia & Centre d’Història de la Ciència (CEHIC),  Universitat Autònoma de Barcelona (UAB)

Location: CEHIC, Mòdul de Recerca C, Seminari L3-05, c/ de Can Magrans s/n, Campus de la UAB, 08193 Bellaterra (Barcelona)

Organized by Thomas Sturm & Agustí Nieto-Galan

Current science is full of uncertainties and risks that weaken the authority of experts. Moreover, sometimes scientists themselves act in ways that weaken their standing: they manipulate data, exaggerate research results, do not give credit where it is due, violate the norms for the acquisition of academic titles, or are unduly influenced by commercial and political interests. Such actions, of which there are numerous examples in past and present times, are widely conceived of as violating standards of good scientific practice. At the same time, while codes of scientific conduct have been developed in different fields, institutions, and countries, there is no universally agreed canon of them, nor is it clear that there should be one. The workshop aims to bring together historians and philosophers of science in order to discuss questions such as the following: What exactly is scientific misconduct? Under which circumstances are researchers more or less liable to misconduct? How far do cases of misconduct undermine scientific authority? How have standards or mechanisms to avoid misconduct, and to regain scientific authority, been developed? How should they be developed?

All welcome – but since space is limited, please register in advance. Write to: Thomas.Sturm@uab.cat

09:30 Welcome (Thomas Sturm & Agustí Nieto-Galan) Continue reading

Categories: Announcement, replication research | 7 Comments

Blog at WordPress.com.