highly probable vs highly probed

High error rates in discussions of error rates: no end in sight

27D0BB5300000578-3168627-image-a-27_1437433320306

waiting for the other shoe to drop…

“Guides for the Perplexed” in statistics become “Guides to Become Perplexed” when “error probabilities” (in relation to statistical hypotheses tests) are confused with posterior probabilities of hypotheses. Moreover, these posteriors are neither frequentist, subjectivist, nor default. Since this doublespeak is becoming more common in some circles, it seems apt to reblog a post from one year ago (you may wish to check the comments).

Do you ever find yourself holding your breath when reading an exposition of significance tests that’s going swimmingly so far? If you’re a frequentist in exile, you know what I mean. I’m sure others feel this way too. When I came across Jim Frost’s posts on The Minitab Blog, I thought I might actually have located a success story. He does a good job explaining P-values (with charts), the duality between P-values and confidence levels, and even rebuts the latest “test ban” (the “Don’t Ask, Don’t Tell” policy). Mere descriptive reports of observed differences that the editors recommend, Frost shows, are uninterpretable without a corresponding P-value or the equivalent. So far, so good. I have only small quibbles, such as the use of “likelihood” when meaning probability, and various and sundry nitpicky things. But watch how in some places significance levels are defined as the usual error probabilities —indeed in the glossary for the site—while in others it is denied they provide error probabilities. In those other places, error probabilities and error rates shift their meaning to posterior probabilities, based on priors representing the “prevalence” of true null hypotheses.

Begin with one of his kosher posts “Understanding Hypothesis Tests: Significance Levels (Alpha) and P values in Statistics” (blue is Frost): Continue reading

Categories: highly probable vs highly probed, J. Berger, reforming the reformers, Statistics | 1 Comment

The “P-values overstate the evidence against the null” fallacy

3077175-lg

.

The allegation that P-values overstate the evidence against the null hypothesis continues to be taken as gospel in discussions of significance tests. All such discussions, however, assume a notion of “evidence” that’s at odds with significance tests–generally Bayesian probabilities of the sort used in Jeffrey’s-Lindley disagreement (default or “I’m selecting from an urn of nulls” variety). Szucs and Ioannidis (in a draft of a 2016 paper) claim “it can be shown formally that the definition of the p value does exaggerate the evidence against H0” (p. 15) and they reference the paper I discuss below: Berger and Sellke (1987). It’s not that a single small P-value provides good evidence of a discrepancy (even assuming the model, and no biasing selection effects); Fisher and others warned against over-interpreting an “isolated” small P-value long ago.  But the formulation of the “P-values overstate the evidence” meme introduces brand new misinterpretations into an already confused literature! The following are snippets from some earlier posts–mostly this one–and also includes some additions from my new book (forthcoming). 

Categories: Bayesian/frequentist, fallacy of rejection, highly probable vs highly probed, P-values, Statistics | 46 Comments

G.A. Barnard’s 101st Birthday: The Bayesian “catch-all” factor: probability vs likelihood

barnard-1979-picture

G. A. Barnard: 23 Sept 1915-30 July, 2002

Today is George Barnard’s 101st birthday. In honor of this, I reblog an exchange between Barnard, Savage (and others) on likelihood vs probability. The exchange is from pp 79-84 (of what I call) “The Savage Forum” (Savage, 1962).[i] Six other posts on Barnard are linked below: 2 are guest posts (Senn, Spanos); the other 4 include a play (pertaining to our first meeting), and a letter he wrote to me. 

 ♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

BARNARD:…Professor Savage, as I understand him, said earlier that a difference between likelihoods and probabilities was that probabilities would normalize because they integrate to one, whereas likelihoods will not. Now probabilities integrate to one only if all possibilities are taken into account. This requires in its application to the probability of hypotheses that we should be in a position to enumerate all possible hypotheses which might explain a given set of data. Now I think it is just not true that we ever can enumerate all possible hypotheses. … If this is so we ought to allow that in addition to the hypotheses that we really consider we should allow something that we had not thought of yet, and of course as soon as we do this we lose the normalizing factor of the probability, and from that point of view probability has no advantage over likelihood. This is my general point, that I think while I agree with a lot of the technical points, I would prefer that this is talked about in terms of likelihood rather than probability. I should like to ask what Professor Savage thinks about that, whether he thinks that the necessity to enumerate hypotheses exhaustively, is important. Continue reading

Categories: Barnard, highly probable vs highly probed, phil/history of stat, Statistics | 14 Comments

Performance or Probativeness? E.S. Pearson’s Statistical Philosophy

egon pearson

E.S. Pearson (11 Aug, 1895-12 June, 1980)

This is a belated birthday post for E.S. Pearson (11 August 1895-12 June, 1980). It’s basically a post from 2012 which concerns an issue of interpretation (long-run performance vs probativeness) that’s badly confused these days. I’ve recently been scouring around the history and statistical philosophies of Neyman, Pearson and Fisher for purposes of a book soon to be completed. I recently discovered a little anecdote that calls for a correction in something I’ve been saying for years. While it’s little more than a point of trivia, it’s in relation to Pearson’s (1955) response to Fisher (1955)–the last entry in this post.  I’ll wait until tomorrow or the next day to share it, to give you a chance to read the background. 

 

Are methods based on error probabilities of use mainly to supply procedures which will not err too frequently in some long run? (performance). Or is it the other way round: that the control of long run error properties are of crucial importance for probing the causes of the data at hand? (probativeness). I say no to the former and yes to the latter. This, I think, was also the view of Egon Sharpe (E.S.) Pearson. 

Cases of Type A and Type B

“How far then, can one go in giving precision to a philosophy of statistical inference?” (Pearson 1947, 172)

Continue reading

Categories: 4 years ago!, highly probable vs highly probed, phil/history of stat, Statistics | Tags: | Leave a comment

High error rates in discussions of error rates (1/21/16 update)

27D0BB5300000578-3168627-image-a-27_1437433320306

waiting for the other shoe to drop…

Do you ever find yourself holding your breath when reading an exposition of significance tests that’s going swimmingly so far? If you’re a frequentist in exile, you know what I mean. I’m sure others feel this way too. When I came across Jim Frost’s posts on The Minitab Blog, I thought I might actually have located a success story. He does a good job explaining P-values (with charts), the duality between P-values and confidence levels, and even rebuts the latest “test ban” (the “Don’t Ask, Don’t Tell” policy). Mere descriptive reports of observed differences that the editors recommend, Frost shows, are uninterpretable without a corresponding P-value or the equivalent. So far, so good. I have only small quibbles, such as the use of “likelihood” when meaning probability, and various and sundry nitpicky things. But watch how in some places significance levels are defined as the usual error probabilities and error rates—indeed in the glossary for the site—while in others it is denied they provide error rates. In those other places, error probabilities and error rates shift their meaning to posterior probabilities, based on priors representing the “prevalence” of true null hypotheses. Continue reading

Categories: highly probable vs highly probed, J. Berger, reforming the reformers, Statistics | 11 Comments

“P-values overstate the evidence against the null”: legit or fallacious?

The allegation that P-values overstate the evidence against the null hypothesis continues to be taken as gospel in discussions of significance tests. All such discussions, however, assume a notion of “evidence” that’s at odds with significance tests–generally likelihood ratios, or Bayesian posterior probabilities (conventional or of the “I’m selecting hypotheses from an urn of nulls” variety). I’m reblogging the bulk of an earlier post as background for a new post to appear tomorrow.  It’s not that a single small P-value provides good evidence of a discrepancy (even assuming the model, and no biasing selection effects); Fisher and others warned against over-interpreting an “isolated” small P-value long ago.  The problem is that the current formulation of the “P-values overstate the evidence” meme is attached to a sleight of hand (on meanings) that is introducing brand new misinterpretations into an already confused literature! 

 

Categories: Bayesian/frequentist, fallacy of rejection, highly probable vs highly probed, P-values | 3 Comments

G.A. Barnard: The “catch-all” factor: probability vs likelihood

Barnard

G.A.Barnard 23 sept. 1915- 30 July 2002

 From the “The Savage Forum” (pp 79-84 Savage, 1962)[i] 

 BARNARD:…Professor Savage, as I understand him, said earlier that a difference between likelihoods and probabilities was that probabilities would normalize because they integrate to one, whereas likelihoods will not. Now probabilities integrate to one only if all possibilities are taken into account. This requires in its application to the probability of hypotheses that we should be in a position to enumerate all possible hypotheses which might explain a given set of data. Now I think it is just not true that we ever can enumerate all possible hypotheses. … If this is so we ought to allow that in addition to the hypotheses that we really consider we should allow something that we had not thought of yet, and of course as soon as we do this we lose the normalizing factor of the probability, and from that point of view probability has no advantage over likelihood. This is my general point, that I think while I agree with a lot of the technical points, I would prefer that this is talked about in terms of likelihood rather than probability. I should like to ask what Professor Savage thinks about that, whether he thinks that the necessity to enumerate hypotheses exhaustively, is important.

SAVAGE: Surely, as you say, we cannot always enumerate hypotheses so completely as we like to think. The list can, however, always be completed by tacking on a catch-all ‘something else’. In principle, a person will have probabilities given ‘something else’ just as he has probabilities given other hypotheses. In practice, the probability of a specified datum given ‘something else’ is likely to be particularly vague­–an unpleasant reality. The probability of ‘something else’ is also meaningful of course, and usually, though perhaps poorly defined, it is definitely very small. Looking at things this way, I do not find probabilities unnormalizable, certainly not altogether unnormalizable. Continue reading

Categories: Barnard, highly probable vs highly probed, phil/history of stat, Statistics | 20 Comments

Higgs discovery three years on (Higgs analysis and statistical flukes)

3rd-birthday-cake2

.

2015: The Large Hadron Collider (LHC) is back in collision mode in 2015[0]. There’s a 2015 update, a virtual display, and links from ATLAS, one of two detectors at (LHC)) here. The remainder is from one year ago. (2014) I’m reblogging a few of the Higgs posts at the anniversary of the 2012 discovery. (The first was in this post.) The following, was originally “Higgs Analysis and Statistical Flukes: part 2″ (from March, 2013).[1]

Some people say to me: “This kind of reasoning is fine for a ‘sexy science’ like high energy physics (HEP)”–as if their statistical inferences are radically different. But I maintain that this is the mode by which data are used in “uncertain” reasoning across the entire landscape of science and day-to-day learning (at least, when we’re trying to find things out)[2] Even with high level theories, the particular problems of learning from data are tackled piecemeal, in local inferences that afford error control. Granted, this statistical philosophy differs importantly from those that view the task as assigning comparative (or absolute) degrees-of-support/belief/plausibility to propositions, models, or theories. 

“Higgs Analysis and Statistical Flukes: part 2”images

Everyone was excited when the Higgs boson results were reported on July 4, 2012 indicating evidence for a Higgs-like particle based on a “5 sigma observed effect”. The observed effect refers to the number of excess events of a given type that are “observed” in comparison to the number (or proportion) that would be expected from background alone, and not due to a Higgs particle. This continues my earlier post (part 1). It is an outsider’s angle on one small aspect of the statistical inferences involved. But that, apart from being fascinated by it, is precisely why I have chosen to discuss it: we [philosophers of statistics] should be able to employ a general philosophy of inference to get an understanding of what is true about the controversial concepts we purport to illuminate, e.g., significance levels. Continue reading

Categories: Higgs, highly probable vs highly probed, P-values, Severity | Leave a comment

Erich Lehmann: Statistician and Poet

Erich Lehmann 20 November 1917 – 12 September 2009

Erich Lehmann                       20 November 1917 –              12 September 2009

Memory Lane 1 Year (with update): Today is Erich Lehmann’s birthday. The last time I saw him was at the Second Lehmann conference in 2004, at which I organized a session on philosophical foundations of statistics (including David Freedman and D.R. Cox).

I got to know Lehmann, Neyman’s first student, in 1997.  One day, I received a bulging, six-page, handwritten letter from him in tiny, extremely neat scrawl (and many more after that).  He told me he was sitting in a very large room at an ASA meeting where they were shutting down the conference book display (or maybe they were setting it up), and on a very long, dark table sat just one book, all alone, shiny red.  He said he wondered if it might be of interest to him!  So he walked up to it….  It turned out to be my Error and the Growth of Experimental Knowledge (1996, Chicago), which he reviewed soon after. Some related posts on Lehmann’s letter are here and here.

That same year I remember having a last-minute phone call with Erich to ask how best to respond to a “funny Bayesian example” raised by Colin Howson. It is essentially the case of Mary’s positive result for a disease, where Mary is selected randomly from a population where the disease is very rare. See for example here. (It’s just like the case of our high school student Isaac). His recommendations were extremely illuminating, and with them he sent me a poem he’d written (which you can read in my published response here*). Aside from being a leading statistician, Erich had a (serious) literary bent. Continue reading

Categories: highly probable vs highly probed, phil/history of stat, Sir David Cox, Spanos, Statistics | Tags: , | Leave a comment

Why the Law of Likelihood is bankrupt–as an account of evidence

slide11

.

There was a session at the Philosophy of Science Association meeting last week where two of the speakers, Greg Gandenberger and Jiji Zhang had insightful things to say about the “Law of Likelihood” (LL)[i]. Recall from recent posts here and here that the (LL) regards data x as evidence supporting H1 over H0   iff

Pr(x; H1) > Pr(x; H0).

On many accounts, the likelihood ratio also measures the strength of that comparative evidence. (Royall 1997, p.3). [ii]

H0 and H1 are statistical hypothesis that assign probabilities to the random variable X taking value x.  As I recall, the speakers limited  H1 and H0  to simple statistical hypotheses (as Richard Royall generally does)–already restricting the account to rather artificial cases, but I put that to one side. Remember, with likelihoods, the data x are fixed, the hypotheses vary.

1. Maximally likely alternatives. I didn’t really disagree with anything the speakers said. I welcomed their recognition that a central problem facing the (LL) is the ease of constructing maximally likely alternatives: so long as Pr(x; H0) < 1, a maximum likely alternative H1 would be evidentially “favored”. There is no onus on the likelihoodist to predesignate the rival, you are free to search, hunt, post-designate and construct a best (or better) fitting rival. If you’re bothered by this, says Royall, then this just means the evidence disagrees with your prior beliefs.

After all, Royall famously distinguishes between evidence and belief (recall the evidence-belief-action distinction), and these problematic cases, he thinks, do not vitiate his account as an account of evidence. But I think they do! In fact, I think they render the (LL) utterly bankrupt as an account of evidence. Here are a few reasons. (Let me be clear that I am not pinning Royall’s defense on the speakers[iii], so much as saying it came up in the general discussion[iv].) Continue reading

Categories: highly probable vs highly probed, law of likelihood, Richard Royall, Statistics | 63 Comments

“Statistical Flukes, the Higgs Discovery, and 5 Sigma” at the PSA

We had an excellent discussion at our symposium yesterday: “How Many Sigmas to Discovery? Philosophy and Statistics in the Higgs Experiments” with Robert Cousins, Allan Franklin and Kent Staley. Slides from my presentation, “Statistical Flukes, the Higgs Discovery, and 5 Sigma” are posted below (we each only had 20 minutes, so this is clipped,but much came out in the discussion). Even the challenge I read about this morning as to what exactly the Higgs researchers discovered (and I’ve no clue if there’s anything to the idea of a “techni-higgs particle”) — would not invalidate* the knowledge of the experimental effects severely tested.

 

*Although, as always, there may be a reinterpretation of the results. But I think the article is an isolated bit of speculation. I’ll update if I hear more.

Categories: Higgs, highly probable vs highly probed, Statistics | 26 Comments

G.A. Barnard: The Bayesian “catch-all” factor: probability vs likelihood

barnard-1979-picture

G. A. Barnard: 23 Sept 1915-30 July, 2002

Today is George Barnard’s birthday. In honor of this, I have typed in an exchange between Barnard, Savage (and others) on an important issue that we’d never gotten around to discussing explicitly (on likelihood vs probability). Please share your thoughts.

The exchange is from pp 79-84 (of what I call) “The Savage Forum” (Savage, 1962)[i]

 ♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

BARNARD:…Professor Savage, as I understand him, said earlier that a difference between likelihoods and probabilities was that probabilities would normalize because they integrate to one, whereas likelihoods will not. Now probabilities integrate to one only if all possibilities are taken into account. This requires in its application to the probability of hypotheses that we should be in a position to enumerate all possible hypotheses which might explain a given set of data. Now I think it is just not true that we ever can enumerate all possible hypotheses. … If this is so we ought to allow that in addition to the hypotheses that we really consider we should allow something that we had not thought of yet, and of course as soon as we do this we lose the normalizing factor of the probability, and from that point of view probability has no advantage over likelihood. This is my general point, that I think while I agree with a lot of the technical points, I would prefer that this is talked about in terms of likelihood rather than probability. I should like to ask what Professor Savage thinks about that, whether he thinks that the necessity to enumerate hypotheses exhaustively, is important.

SAVAGE: Surely, as you say, we cannot always enumerate hypotheses so completely as we like to think. The list can, however, always be completed by tacking on a catch-all ‘something else’. In principle, a person will have probabilities given ‘something else’ just as he has probabilities given other hypotheses. In practice, the probability of a specified datum given ‘something else’ is likely to be particularly vague­–an unpleasant reality. The probability of ‘something else’ is also meaningful of course, and usually, though perhaps poorly defined, it is definitely very small. Looking at things this way, I do not find probabilities unnormalizable, certainly not altogether unnormalizable.

Whether probability has an advantage over likelihood seems to me like the question whether volts have an advantage over amperes. The meaninglessness of a norm for likelihood is for me a symptom of the great difference between likelihood and probability. Since you question that symptom, I shall mention one or two others. …

On the more general aspect of the enumeration of all possible hypotheses, I certainly agree that the danger of losing serendipity by binding oneself to an over-rigid model is one against which we cannot be too alert. We must not pretend to have enumerated all the hypotheses in some simple and artificial enumeration that actually excludes some of them. The list can however be completed, as I have said, by adding a general ‘something else’ hypothesis, and this will be quite workable, provided you can tell yourself in good faith that ‘something else’ is rather improbable. The ‘something else’ hypothesis does not seem to make it any more meaningful to use likelihood for probability than to use volts for amperes.

Let us consider an example. Off hand, one might think it quite an acceptable scientific question to ask, ‘What is the melting point of californium?’ Such a question is, in effect, a list of alternatives that pretends to be exhaustive. But, even specifying which isotope of californium is referred to and the pressure at which the melting point is wanted, there are alternatives that the question tends to hide. It is possible that californium sublimates without melting or that it behaves like glass. Who dare say what other alternatives might obtain? An attempt to measure the melting point of californium might, if we are serendipitous, lead to more or less evidence that the concept of melting point is not directly applicable to it. Whether this happens or not, Bayes’s theorem will yield a posterior probability distribution for the melting point given that there really is one, based on the corresponding prior conditional probability and on the likelihood of the observed reading of the thermometer as a function of each possible melting point. Neither the prior probability that there is no melting point, nor the likelihood for the observed reading as a function of hypotheses alternative to that of the existence of a melting point enter the calculation. The distinction between likelihood and probability seems clear in this problem, as in any other.

BARNARD: Professor Savage says in effect, ‘add at the bottom of list H1, H2,…”something else”’. But what is the probability that a penny comes up heads given the hypothesis ‘something else’. We do not know. What one requires for this purpose is not just that there should be some hypotheses, but that they should enable you to compute probabilities for the data, and that requires very well defined hypotheses. For the purpose of applications, I do not think it is enough to consider only the conditional posterior distributions mentioned by Professor Savage. Continue reading

Categories: Barnard, highly probable vs highly probed, phil/history of stat, Statistics | 26 Comments

BREAKING THE LAW! (of likelihood): to keep their fit measures in line (A), (B 2nd)

.

.

1.An Assumed Law of Statistical Evidence (law of likelihood)

Nearly all critical discussions of frequentist error statistical inference (significance tests, confidence intervals, p- values, power, etc.) start with the following general assumption about the nature of inductive evidence or support:

Data x are better evidence for hypothesis H1 than for H0 if x are more probable under H1 than under H0.

Ian Hacking (1965) called this the logic of support: x supports hypotheses H1 more than H0 if H1 is more likely, given x than is H0:

Pr(x; H1) > Pr(x; H0).

[With likelihoods, the data x are fixed, the hypotheses vary.]*

Or,

x is evidence for H1 over H0 if the likelihood ratio LR (H1 over H0 ) is greater than 1.

It is given in other ways besides, but it’s the same general idea. (Some will take the LR as actually quantifying the support, others leave it qualitative.)

In terms of rejection:

“An hypothesis should be rejected if and only if there is some rival hypothesis much better supported [i.e., much more likely] than it is.” (Hacking 1965, 89)

2. Barnard (British Journal of Philosophy of Science )

But this “law” will immediately be seen to fail on our minimal severity requirement. Hunting for an impressive fit, or trying and trying again, it’s easy to find a rival hypothesis H1 much better “supported” than H0 even when H0 is true. Or, as Barnard (1972) puts it, “there always is such a rival hypothesis, viz. that things just had to turn out the way they actually did” (1972 p. 129).  H0: the coin is fair, gets a small likelihood (.5)k given k tosses of a coin, while H1: the probability of heads is 1 just on those tosses that yield a head, renders the sequence of k outcomes maximally likely. This is an example of Barnard’s “things just had to turn out as they did”. Or, to use an example with P-values: a statistically significant difference, being improbable under the null H0 , will afford high likelihood to any number of explanations that fit the data well.

3.Breaking the law (of likelihood) by going to the “second,” error statistical level:

How does it fail our severity requirement? First look at what the frequentist error statistician must always do to critique an inference: she must consider the capability of the inference method that purports to provide evidence for a claim. She goes to a higher level or metalevel, as it were. In this case, the likelihood ratio plays the role of the needed statistic d(X). To put it informally, she asks:

What’s the probability the method would yield an LR disfavoring H0 compared to some alternative H1  even if H0 is true?

Continue reading

Categories: highly probable vs highly probed, law of likelihood, Likelihood Principle, Statistics | 72 Comments

Continued:”P-values overstate the evidence against the null”: legit or fallacious?

.

continued…

Categories: Bayesian/frequentist, CIs and tests, fallacy of rejection, highly probable vs highly probed, P-values, Statistics | 39 Comments

“P-values overstate the evidence against the null”: legit or fallacious? (revised)

0. July 20, 2014: Some of the comments to this post reveal that using the word “fallacy” in my original title might have encouraged running together the current issue with the fallacy of transposing the conditional. Please see a newly added Section 7.

Continue reading

Categories: Bayesian/frequentist, CIs and tests, fallacy of rejection, highly probable vs highly probed, P-values, Statistics | 71 Comments

Higgs discovery two years on (2: Higgs analysis and statistical flukes)

Higgs_cake-sI’m reblogging a few of the Higgs posts, with some updated remarks, on this two-year anniversary of the discovery. (The first was in my last post.) The following, was originally “Higgs Analysis and Statistical Flukes: part 2″ (from March, 2013).[1]

Some people say to me: “This kind of reasoning is fine for a ‘sexy science’ like high energy physics (HEP)”–as if their statistical inferences are radically different. But I maintain that this is the mode by which data are used in “uncertain” reasoning across the entire landscape of science and day-to-day learning (at least, when we’re trying to find things out)[2] Even with high level theories, the particular problems of learning from data are tackled piecemeal, in local inferences that afford error control. Granted, this statistical philosophy differs importantly from those that view the task as assigning comparative (or absolute) degrees-of-support/belief/plausibility to propositions, models, or theories.  Continue reading

Categories: Higgs, highly probable vs highly probed, P-values, Severity, Statistics | 13 Comments

Phil 6334: Duhem’s Problem, highly probable vs highly probed; Day #9 Slides

 

picture-216-1April 3, 2014: We interspersed discussion with slides; these cover the main readings of the day (check syllabus): the Duhem’s Probem and the Bayesian Way, and “Highly probable vs Highly Probed”. syllabus four. Slides are below (followers of this blog will be familiar with most of this, e.g., here). We also did further work on misspecification testing.

Monday, April 7, is an optional outing, “a seminar class trip”

"Thebes", Blacksburg, VA

“Thebes”, Blacksburg, VA

you might say, here at Thebes at which time we will analyze the statistical curves of the mountains, pie charts of pizza, and (seriously) study some experiments on the problem of replication in “the Hamlet Effect in social psychology”. If you’re around please bop in!

Mayo’s slides on Duhem’s Problem and more from April 3 (Day#9):

 

 

Categories: Bayesian/frequentist, highly probable vs highly probed, misspecification testing | 8 Comments

Blog at WordPress.com.