Monthly Archives: September 2017

G.A. Barnard: The “catch-all” factor: probability vs likelihood

 

Barnard 23 Sept.1915 – 9 Aug.20

With continued acknowledgement of Barnard’s birthday on Friday, Sept.23, I reblog an exchange on catchall probabilities from the “The Savage Forum” (pp 79-84 Savage, 1962) with some new remarks.[i] 

 BARNARD:…Professor Savage, as I understand him, said earlier that a difference between likelihoods and probabilities was that probabilities would normalize because they integrate to one, whereas likelihoods will not. Now probabilities integrate to one only if all possibilities are taken into account. This requires in its application to the probability of hypotheses that we should be in a position to enumerate all possible hypotheses which might explain a given set of data. Now I think it is just not true that we ever can enumerate all possible hypotheses. … If this is so we ought to allow that in addition to the hypotheses that we really consider we should allow something that we had not thought of yet, and of course as soon as we do this we lose the normalizing factor of the probability, and from that point of view probability has no advantage over likelihood. This is my general point, that I think while I agree with a lot of the technical points, I would prefer that this is talked about in terms of likelihood rather than probability. I should like to ask what Professor Savage thinks about that, whether he thinks that the necessity to enumerate hypotheses exhaustively, is important. Continue reading

Categories: Barnard, highly probable vs highly probed, phil/history of stat

George Barnard’s birthday: stopping rules, intentions

G.A. Barnard: 23 Sept.1915 – 9 Aug.2002

Today is George Barnard’s birthday. I met him in the 1980s and we corresponded off and on until 1999. Here’s a snippet of his discussion with Savage (1962) (link below [i]) that connects to issues often taken up on this blog: stopping rules and the likelihood principle. (It’s a slightly revised reblog of an earlier post.) I’ll post some other items related to Barnard this week, in honor of his birthday.

Happy Birthday George!

Barnard: I have been made to think further about this issue of the stopping rule since I first suggested that the stopping rule was irrelevant (Barnard 1947a,b). This conclusion does not follow only from the subjective theory of probability; it seems to me that the stopping rule is irrelevant in certain circumstances.  Since 1947 I have had the great benefit of a long correspondence—not many letters because they were not very frequent, but it went on over a long time—with Professor Bartlett, as a result of which I am considerably clearer than I was before. My feeling is that, as I indicated [on p. 42], we meet with two sorts of situation in applying statistics to data One is where we want to have a single hypothesis with which to confront the data. Do they agree with this hypothesis or do they not? Now in that situation you cannot apply Bayes’s theorem because you have not got any alternatives to think about and specify—not yet. I do not say they are not specifiable—they are not specified yet. And in that situation it seems to me the stopping rule is relevant. Continue reading

Categories: Likelihood Principle, Philosophy of Statistics | Tags:

Revisiting Popper’s Demarcation of Science 2017

28 July 1902- 17 Sept. 1994

Karl Popper died on September 17 1994. One thing that gets revived in my new book (Statistical Inference as Severe Testing, 2018, CUP) is a Popperian demarcation of science vs pseudoscience Here’s a snippet from what I call a “live exhibit” (where the reader experiments with a subject) toward the end of a chapter on Popper:

Live Exhibit. Revisiting Popper’s Demarcation of Science: Here’s an experiment: Try shifting what Popper says about theories to a related claim about inquiries to find something out. To see what I have in mind, join me in watching a skit over the lunch break:

Physicist: “If mere logical falsifiability suffices for a theory to be scientific, then, we can’t properly oust astrology from the scientific pantheon. Plenty of nutty theories have been falsified, so by definition they’re scientific. Moreover, scientists aren’t always looking to subject well corroborated theories to “grave risk” of falsification.”

Fellow traveler: “I’ve been thinking about this. On your first point, Popper confuses things by making it sound as if he’s asking: When is a theory unscientific? What he is actually asking or should be asking is: When is an inquiry into a theory, or an appraisal of claim H unscientific? We want to distinguish meritorious modes of inquiry from those that are BENT. If the test methods enable ad hoc maneuvering, sneaky face-saving devices, then the inquiry–the handling and use of data–is unscientific. Despite being logically falsifiable, theories can be rendered immune from falsification by means of cavalier methods for their testing. Adhering to a falsified theory no matter what is poor science. On the other hand, some areas have so much noise that you can’t pinpoint what’s to blame for failed predictions. This is another way that inquiries become bad science.”

She continues: Continue reading

Categories: Error Statistics, Popper, pseudoscience, science vs pseudoscience | Tags:

Peircean Induction and the Error-Correcting Thesis

C. S. Peirce: 10 Sept, 1839-19 April, 1914

C. S. Peirce: 10 Sept, 1839-19 April, 1914

Sunday, September 10, was C.S. Peirce’s birthday. He’s one of my heroes. He’s a treasure chest on essentially any topic, and anticipated quite a lot in statistics and logic. (As Stephen Stigler (2016) notes, he’s to be credited with articulating and appling randomization [1].) I always find something that feels astoundingly new, even rereading him. He’s been a great resource as I complete my book, Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (CUP, 2018) [2]. I’m reblogging the main sections of a (2005) paper of mine. It’s written for a very general philosophical audience; the statistical parts are very informal. I first posted it in 2013Happy (belated) Birthday Peirce.

Peircean Induction and the Error-Correcting Thesis
Deborah G. Mayo
Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, Volume 41, Number 2, 2005, pp. 299-319

Peirce’s philosophy of inductive inference in science is based on the idea that what permits us to make progress in science, what allows our knowledge to grow, is the fact that science uses methods that are self-correcting or error-correcting:

Induction is the experimental testing of a theory. The justification of it is that, although the conclusion at any stage of the investigation may be more or less erroneous, yet the further application of the same method must correct the error. (5.145)

Inductive methods—understood as methods of experimental testing—are justified to the extent that they are error-correcting methods. We may call this Peirce’s error-correcting or self-correcting thesis (SCT): Continue reading

Categories: Bayesian/frequentist, C.S. Peirce

Professor Roberta Millstein, Distinguished Marjorie Grene speaker September 15

 

CANCELED

Virginia Tech Philosophy Department

2017 Distinguished Marjorie Grene Speaker

 

Professor Roberta L. Millstein


University of California, Davis

“Types of Experiments and Causal Process Tracing: What Happened on the Kaibab Plateau in the 1920s?”

September 15, 2017

320 Lavery Hall: 5:10-6:45pm

 

.

Continue reading

Categories: Announcement

All She Wrote (so far): Error Statistics Philosophy: 6 years on

metablog old fashion typewriter

D.G. Mayo with her  blogging typewriter

Error Statistics Philosophy: Blog Contents (6 years) [i]
By: D. G. Mayo

Dear Reader: It’s hard to believe I’ve been blogging for six years (since Sept. 3, 2011)! A big celebration is taking place at the Elbar Room this evening. If you’re in the neighborhood, stop by for some Elba Grease.

Amazingly, this old typewriter not only still works; one of the whiz kids on Elba managed to bluetooth it to go directly from my typewriter onto the blog (I never got used to computer keyboards.) I still must travel to London to get replacement ribbons for this klunker.

Please peruse the offerings below, and take advantage of some of the super contributions and discussions by guest posters and readers! I don’t know how much longer I’ll continue blogging–I’ve had to cut back this past year (sorry)–but at least until the publication of my book “Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars” (CUP, 2018). After that I plan to run conferences, workshops, and ashrams on PhilStat and PhilSci, and I will invite readers to take part! Keep reading and commenting. Sincerely, D. Mayo

.

 

September 2011

October 2011 Continue reading

Categories: blog contents, Metablog

Blog at WordPress.com.