Monthly Archives: August 2019

(one year ago) RSS 2018 – Significance Tests: Rethinking the Controversy

.

Here’s what I posted 1 year ago on Aug 30, 2018.

 

Day 2, Wednesday 05/09/2018

11:20 – 13:20

Keynote 4 – Significance Tests: Rethinking the Controversy Assembly Room

Speakers:
Sir David Cox, Nuffield College, Oxford
Deborah Mayo, Virginia Tech
Richard Morey, Cardiff University
Aris Spanos, Virginia Tech

Intermingled in today’s statistical controversies are some long-standing, but unresolved, disagreements on the nature and principles of statistical methods and the roles for probability in statistical inference and modelling. In reaction to the so-called “replication crisis” in the sciences, some reformers suggest significance tests as a major culprit. To understand the ramifications of the proposed reforms, there is a pressing need for a deeper understanding of the source of the problems in the sciences and a balanced critique of the alternative methods being proposed to supplant significance tests. In this session speakers offer perspectives on significance tests from statistical science, econometrics, experimental psychology and philosophy of science. There will be also be panel discussion.

Categories: memory lane | Tags:

Palavering about Palavering about P-values

.

Nathan Schachtman (who was a special invited speaker at our recent Summer Seminar in Phil Stat) put up a post on his law blog the other day (“Palavering About P-values”) on an article by a statistics professor at Stanford, Helena Kraemer. “Palavering” is an interesting word choice of Schachtman’s. Its range of meanings is relevant here [i]; in my title, I intend both, in turn. You can read Schachtman’s full post here, it begins like this:

The American Statistical Association’s most recent confused and confusing communication about statistical significance testing has given rise to great mischief in the world of science and science publishing.[ASA II 2019]note Take for instance last week’s opinion piece about “Is It Time to Ban the P Value?” Please.

Admittedly, their recent statement, which I refer to as ASA II,note has seemed to open the floodgates to some very zany remarks about P-values, their meaning and role in statistical testing. Continuing with Schachtman’s post: Continue reading

Categories: ASA Guide to P-values, P-values | Tags:

A. Spanos: Egon Pearson’s Neglected Contributions to Statistics

Continuing with posts on E.S. Pearson in marking his birthday:

Egon Pearson’s Neglected Contributions to Statistics

by Aris Spanos

    Egon Pearson (11 August 1895 – 12 June 1980), is widely known today for his contribution in recasting of Fisher’s significance testing into the Neyman-Pearson (1933) theory of hypothesis testing. Occasionally, he is also credited with contributions in promoting statistical methods in industry and in the history of modern statistics; see Bartlett (1981). What is rarely mentioned is Egon’s early pioneering work on:

(i) specification: the need to state explicitly the inductive premises of one’s inferences,

(ii) robustness: evaluating the ‘sensitivity’ of inferential procedures to departures from the Normality assumption, as well as

(iii) Mis-Specification (M-S) testing: probing for potential departures from the Normality  assumption.

Arguably, modern frequentist inference began with the development of various finite sample inference procedures, initially by William Gosset (1908) [of the Student’s t fame] and then Fisher (1915, 1921, 1922a-b). These inference procedures revolved around a particular statistical model, known today as the simple Normal model:

Xk ∽ NIID(μ,σ²), k=1,2,…,n,…             (1)

where ‘NIID(μ,σ²)’ stands for ‘Normal, Independent and Identically Distributed with mean μ and variance σ²’. These procedures include the ‘optimal’ estimators of μ and σ², Xbar and s², and the pivotal quantities:

(a) τ(X) =[√n(Xbar- μ)/s] ∽ St(n-1),  (2)

(b) v(X) =[(n-1)s²/σ²] ∽ χ²(n-1),        (3)

where St(n-1) and χ²(n-1) denote the Student’s t and chi-square distributions with (n-1) degrees of freedom. Continue reading

Categories: Egon Pearson, Statistics

Statistical Concepts in Their Relation to Reality–E.S. Pearson

11 August 1895 – 12 June 1980

In marking Egon Pearson’s birthday (Aug. 11), I’ll  post some Pearson items this week. They will contain some new reflections on older Pearson posts on this blog. Today, I’m posting “Statistical Concepts in Their Relation to Reality” (Pearson 1955). I’ve linked to it several times over the years, but always find a new gem or two, despite its being so short. E. Pearson rejected some of the familiar tenets that have come to be associated with Neyman and Pearson (N-P) statistical tests, notably the idea that the essential justification for tests resides in a long-run control of rates of erroneous interpretations–what he termed the “behavioral” rationale of tests. In an unpublished letter E. Pearson wrote to Birnbaum (1974), he talks about N-P theory admitting of two interpretations: behavioral and evidential:

“I think you will pick up here and there in my own papers signs of evidentiality, and you can say now that we or I should have stated clearly the difference between the behavioral and evidential interpretations. Certainly we have suffered since in the way the people have concentrated (to an absurd extent often) on behavioral interpretations”.

(Nowadays, it might be said that some people concentrate to an absurd extent on “science-wise error rates” in their view of statistical tests as dichotomous screening devices.) Continue reading

Categories: Egon Pearson, phil/history of stat, Philosophy of Statistics | Tags: , ,

Performance or Probativeness? E.S. Pearson’s Statistical Philosophy: Belated Birthday Wish

E.S. Pearson

This is a belated birthday post for E.S. Pearson (11 August 1895-12 June, 1980). It’s basically a post from 2012 which concerns an issue of interpretation (long-run performance vs probativeness) that’s badly confused these days. I’ll post some Pearson items this week to mark his birthday.

HAPPY BELATED BIRTHDAY EGON!

Are methods based on error probabilities of use mainly to supply procedures which will not err too frequently in some long run? (performance). Or is it the other way round: that the control of long run error properties are of crucial importance for probing the causes of the data at hand? (probativeness). I say no to the former and yes to the latter. This, I think, was also the view of Egon Sharpe (E.S.) Pearson. 

Cases of Type A and Type B

“How far then, can one go in giving precision to a philosophy of statistical inference?” (Pearson 1947, 172)

Pearson considers the rationale that might be given to N-P tests in two types of cases, A and B:

“(A) At one extreme we have the case where repeated decisions must be made on results obtained from some routine procedure…

(B) At the other is the situation where statistical tools are applied to an isolated investigation of considerable importance…?” (ibid., 170)

Continue reading

Categories: E.S. Pearson, Error Statistics

S. Senn: Red herrings and the art of cause fishing: Lord’s Paradox revisited (Guest post)

 

Stephen Senn
Consultant Statistician
Edinburgh

Background

Previous posts[a],[b],[c] of mine have considered Lord’s Paradox. To recap, this was considered in the form described by Wainer and Brown[1], in turn based on Lord’s original formulation:

A large university is interested in investigating the effects on the students of the diet provided in the university dining halls : : : . Various types of data are gathered. In particular, the weight of each student at the time of his arrival in September and his weight the following June are recorded. [2](p. 304)

The issue is whether the appropriate analysis should be based on change-scores (weight in June minus weight in September), as proposed by a first statistician (whom I called John) or analysis of covariance (ANCOVA), using the September weight as a covariate, as proposed by a second statistician (whom I called Jane). There was a difference in mean weight between halls at the time of arrival in September (baseline) and this difference turned out to be identical to the difference in June (outcome). It thus follows that, since the analysis of change score is algebraically equivalent to correcting the difference between halls at outcome by the difference between halls at baseline, the analysis of change scores returns an estimate of zero. The conclusion is thus, there being no difference between diets, diet has no effect. Continue reading

Categories: Stephen Senn

Blog at WordPress.com.