
.
Professor Andrew Gelman
Higgins Professor of Statistics
Professor of Political Science
Director of the Applied Statistics Center
Columbia University
(Trying to) clear up a misunderstanding about decision analysis and significance testing
Background
In our 2019 article, Abandon Statistical Significance, Blake McShane, David Gal, Christian Robert, Jennifer Tackett, and I talk about three scenarios: summarizing research, scientific publication, and decision making.
In making our recommendations, we’re not saying it will be easy; we’re just saying that screening based on statistical significance has lots of problems. P-values and related measures are not useless—there can be value in saying that an estimate is only 1 standard error away from 0 and so it is consistent with the null hypothesis, or that an estimate is 10 standard errors from zero and so the null can be rejected, or than an estimate is 2 standard errors from zero, which is something that we would not usually see if the null hypothesis were true. Comparison to a null model can be a useful statistical tool, in its place. The problem we see with “statistical significance” is when this tool is used as a dominant or default or master paradigm: Continue reading


