The one method that enjoys the approbation of the New Reformers is that of confidence intervals (See May 12, 2012, and links). The general recommended interpretation is essentially this:
For a reasonably high choice of confidence level, say .95 or .99, values of µ within the observed interval are plausible, those outside implausible.
Geoff Cumming, a leading statistical reformer in psychology, has long been pressing for ousting significance tests (or NHST[1]) in favor of CIs. The level of confidence “specifies how confident we can be that our CI includes the population parameter m (Cumming 2012, p.69). He recommends prespecified confidence levels .9, .95 or .99:
“We can say we’re 95% confident our one-sided interval includes the true value. We can say the lower limit (LL) of the one-sided CI…is a likely lower bound for the true value, meaning that for 5% of replications the LL will exceed the true value. “ (Cumming 2012, p. 112)[2]
For simplicity, I will use the 2-standard deviation cut-off corresponding to the one-sided confidence level of ~.98.
However, there is a duality between tests and intervals (the intervals containing the parameter values not rejected at the corresponding level with the given data).[3]
“One-sided CIs are analogous to one-tailed tests but, as usual, the estimation approach is better.”
Is it? Consider a one-sided test of the mean of a Normal distribution with n iid samples, and known standard deviation σ, call it test T+. Continue reading