I’m talking about a speciﬁc, extra type of integrity that is [beyond] not lying, but bending over backwards to show how you’re maybe wrong, that you ought to have when acting as a scientist. (Feynman 1974/1985, p. 387)

*It is easy to lie with statistics*. Or so the cliché goes. It is also very diﬃcult to uncover these lies without statistical methods – at least of the right kind. Self- correcting statistical methods are needed, and, with minimal technical fanfare, that’s what I aim to illuminate. Since Darrell Huﬀ wrote *How to Lie with Statistics *in 1954, ways of lying with statistics are so well worn as to have emerged in reverberating slogans:

- Association is not causation.
- Statistical signiﬁcance is not substantive signiﬁcamce
- No evidence of risk is not evidence of no risk.
- If you torture the data enough, they will confess.

Exposés of fallacies and foibles ranging from professional manuals and task forces to more popularized debunking treatises are legion. New evidence has piled up showing lack of replication and all manner of selection and publication biases. Even expanded “evidence-based” practices, whose very rationale is to emulate experimental controls, are not immune from allegations of illicit cherry picking, signiﬁcance seeking, *P*-hacking, and assorted modes of extra- ordinary rendition of data. Attempts to restore credibility have gone far beyond the cottage industries of just a few years ago, to entirely new research programs: statistical fraud-busting, statistical forensics, technical activism, and widespread reproducibility studies. There are proposed methodological reforms – many are generally welcome (preregistration of experiments, transparency about data collection, discouraging mechanical uses of statistics), some are quite radical. If we are to appraise these evidence policy reforms, a much better grasp of some central statistical problems is needed. Continue reading