This week marks one year since the general availability of my book: *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars* (2018, CUP). Here’s how it begins (Excursion 1 Tour 1 (1.1)). Material from the preface is here. I will sporadically give some “one year later” reflections in the comments. I invite readers to ask me any questions pertaining to the Tour.

I’m talking about a speciﬁc, extra type of integrity that is [beyond] not lying, but bending over backwards to show how you’re maybe wrong, that you ought to have when acting as a scientist. (Feynman 1974/1985, p. 387)

*It is easy to lie with statistics*. Or so the cliché goes. It is also very diﬃcult to uncover these lies without statistical methods – at least of the right kind. Self- correcting statistical methods are needed, and, with minimal technical fanfare, that’s what I aim to illuminate. Since Darrell Huﬀ wrote *How to Lie with Statistics *in 1954, ways of lying with statistics are so well worn as to have emerged in reverberating slogans:

- Association is not causation.
- Statistical signiﬁcance is not substantive signiﬁcamce
- No evidence of risk is not evidence of no risk.
- If you torture the data enough, they will confess.