.For the second year in a row, unlike the previous 9 years that I’ve been blogging, it’s not feasible to actually revisit that spot in the road, looking to get into a strange-looking taxi, to head to “Midnight With Birnbaum”. Because of the extended pandemic, I am not going out this New Year’s Eve again, so the best I can hope for is a zoom link of the sort I received last year, not long before midnight– that will link me to a hypothetical party with him. (The pic on the left is the only blurry image I have of the club I’m taken to.) I just keep watching my email, to see if a zoom link arrives. My book *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (CUP, 2018)* doesn’t include the argument from my article in Statistical Science (“On the Birnbaum Argument for the Strong Likelihood Principle”), but you can read it at that link along with commentaries by A. P. David, Michael Evans, Martin and Liu, D. A. S. Fraser (who sadly passed away in 2021), Jan Hannig, and Jan Bjornstad but there’s much in it that I’d like to discuss with him. The (Strong) Likelihood Principle (LP or SLP)–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics and statistical significance testing in general. Continue reading

# strong likelihood principle

## Midnight With Birnbaum (Remote, Virtual Happy New Year 2021)!

## The Statistics Wars and Intellectual Conflicts of Interest

My editorial in Conservation Biology is published (open access): “The Statistical Wars and Intellectual Conflicts of Interest”. Share your comments, here and/or send a separate item (to Error), if you wish, for possible guest posting*. (All readers are invited to a special January 11 Phil Stat Session with Y. Benjamini and D. Hand described here.) Here’s most of the editorial:

**The Statistics Wars and Intellectual Conflicts of Interest**

How should journal editors react to heated disagreements about statistical significance tests in applied fields, such as conservation science, where statistical inferences often are the basis for controversial policy decisions? They should avoid taking sides. They should also avoid obeisance to calls for author guidelines to reflect a particular statistical philosophy or standpoint. The question is how to prevent the misuse of statistical methods without selectively favoring one side.

The statistical‐significance‐test controversies are well known in conservation science. In a forum revolving around Murtaugh’s (2014) “In Defense of P values,” Murtaugh argues, correctly, that most criticisms of statistical significance tests “stem from misunderstandings or incorrect interpretations, rather than from intrinsic shortcomings of the P value” (p. 611). However, underlying those criticisms, and especially proposed reforms, are often controversial philosophical presuppositions about the proper uses of probability in uncertain inference. Should probability be used to assess a method’s probability of avoiding erroneous interpretations of data (i.e., error probabilities) or to measure comparative degrees of belief or support? Wars between frequentists and Bayesians continue to simmer in calls for reform.

Consider how, in commenting on Murtaugh (2014), Burnham and Anderson (2014 : 627) aver that “P‐values are not proper evidence as they violate the likelihood principle (Royall, 1997).” This presupposes that statistical methods ought to obey the likelihood principle (LP), a long‐standing point of controversy in the statistics wars. The LP says that all the evidence is contained in a ratio of likelihoods (Berger & Wolpert, 1988). Because this is to condition on the particular sample data, there is no consideration of outcomes other than those observed and thus no consideration of error probabilities. One should not write this off because it seems technical: methods that obey the LP fail to directly register gambits that alter their capability to probe error. Whatever one’s view, a criticism based on presupposing the irrelevance of error probabilities is radically different from one that points to misuses of tests for their intended purpose—to assess and control error probabilities.

Error control is nullified by biasing selection effects: cherry‐picking, multiple testing, data dredging, and flexible stopping rules. The resulting (nominal) *p* values are not legitimate *p* values. In conservation science and elsewhere, such misuses can result from a publish‐or‐perish mentality and experimenter’s flexibility (Fidler et al., 2017). These led to calls for preregistration of hypotheses and stopping rules–one of the most effective ways to promote replication (Simmons et al., 2012). However, data dredging can also occur with likelihood ratios, Bayes factors, and Bayesian updating, but the direct grounds to criticize inferences as flouting error probability control is lost. This conflicts with a central motivation for using *p* values as a “first line of defense against being fooled by randomness” (Benjamini, 2016). The introduction of prior probabilities (subjective, default, or empirical)–which may also be data dependent–offers further flexibility.

Signs that one is going beyond merely enforcing proper use of statistical significance tests are that the proposed reform is either the subject of heated controversy or is based on presupposing a philosophy at odds with that of statistical significance testing. It is easy to miss or downplay philosophical presuppositions, especially if one has a strong interest in endorsing the policy upshot: to abandon statistical significance. Having the power to enforce such a policy, however, can create a conflict of interest (COI). Unlike a typical COI, this one is intellectual and could threaten the intended goals of integrity, reproducibility, and transparency in science.

If the reward structure is seducing even researchers who are aware of the pitfalls of capitalizing on selection biases, then one is dealing with a highly susceptible group. For a journal or organization to take sides in these long-standing controversies—or even to appear to do so—encourages groupthink and discourages practitioners from arriving at their own reflective conclusions about methods.

The American Statistical Association (ASA) Board appointed a President’s Task Force on Statistical Significance and Replicability in 2019 that was put in the odd position of needing to “address concerns that a 2019 editorial [by the ASA’s executive director (Wasserstein et al., 2019)] might be mistakenly interpreted as official ASA policy” (Benjamini et al., 2021)—as if the editorial continues the 2016 ASA Statement on *p*-values (Wasserstein & Lazar, 2016). That policy statement merely warns against well‐known fallacies in using *p* values. But Wasserstein et al. (2019) claim it “stopped just short of recommending that declarations of ‘statistical significance’ be abandoned” and announce taking that step. They call on practitioners not to use the phrase *statistical significance* and to avoid *p* value thresholds. Call this the no‐threshold view. The 2016 statement was largely uncontroversial; the 2019 editorial was anything but. The President’s Task Force should be commended for working to resolve the confusion (Kafadar, 2019). Their report concludes: “P-values are valid statistical measures that provide convenient conventions for communicating the uncertainty inherent in quantitative results” (Benjamini et al., 2021). A disclaimer that Wasserstein et al., 2019 was not ASA policy would have avoided both the confusion and the slight to opposing views within the Association.

The no‐threshold view has consequences (likely unintended). Statistical significance tests arise “to test the conformity of the particular data under analysis with [a statistical hypothesis] H_{0} in some respect to be specified” (Mayo & Cox, 2006: 81). There is a function *D* of the data, the test statistic, such that the larger its value (*d*), the more inconsistent are the data with H_{0}. The *p* value is the probability the test would have given rise to a result more discordant from H_{0} than *d* is were the results due to background or chance variability (as described in H_{0}). In computing *p*, hypothesis H_{0} is assumed merely for drawing out its probabilistic implications. If even larger differences than *d* are frequently brought about by chance alone (*p* is not small), the data are not evidence of inconsistency with H_{0}. Requiring a low *pvalue* before inferring inconsistency with H_{0} controls the probability of a type I error (i.e., erroneously finding evidence against H_{0}).

…

Whether interpreting a simple Fisherian or an N‐P test, avoiding fallacies calls for considering one or more discrepancies from the null hypothesis under test. Consider testing a normal mean H_{0}: μ ≤ μ_{0} versus H_{1}: μ > μ_{0}. If the test would fairly probably have resulted in a smaller *p* value than observed, if μ = μ_{1} were true (where μ_{1} = μ_{0} + γ, for γ > 0), then the data provide poor evidence that μ exceeds μ_{1}. It would be unwarranted to infer evidence of μ > μ_{1}. Tests do not need to be abandoned when the fallacy is easily avoided by computing *p* values for one or two additional benchmarks (Burgman, 2005; Hand, 2021; Mayo, 2018; Mayo & Spanos, 2006).

The same is true for avoiding fallacious interpretations of nonsignificant results. These are often of concern in conservation, especially when interpreted as no risks exist. In fact, the test may have had a low probability to detect risks. But nonsignificant results are not uninformative. If the test very probably would have resulted in a more statistically significant result were there a meaningful effect, say μ > μ_{1} (where μ_{1} = μ_{0} + γ, for γ > 0), then the data are evidence that μ < μ_{1}. (This is not to infer μ ≤ μ_{0}.) “Such an assessment is more relevant to specific data than is the notion of power” (Mayo & Cox, 2006: 89). This also matches inferring that μ is less than the upper bound of the corresponding confidence interval (at the associated confidence level) or a severity assessment (Mayo, 2018). Others advance equivalence tests (Lakens, 2017; Wellek, 2017). An N‐P test tells one to specify H_{0} so that the type I error is the more serious (considering costs); that alone can alleviate problems in the examples critics adduce (H_{0}would be that the risk exists).

Many think the no‐threshold view merely insists that the attained *p* value be reported. But leading N‐P theorists already recommend reporting *p*, which “gives an idea of how strongly the data contradict the hypothesis…[and] enables others to reach a verdict based on the significance level of their choice” (Lehmann & Romano, 2005: 63−64). What the no‐threshold view does, if taken strictly, is preclude testing. If one cannot say ahead of time about any result that it will not be allowed to count in favor of a claim, then one does not test that claim. There is no test or falsification, even of the statistical variety. What is the point of insisting on replication if at no stage can one say the effect failed to replicate? One may argue for approaches other than tests, but it is unwarranted to claim by fiat that tests do not provide evidence. (For a discussion of rival views of evidence in ecology, see Taper & Lele, 2004.)

Many sign on to the no‐threshold view thinking it blocks perverse incentives to data dredge, multiple test, and *p* hack when confronted with a large, statistically nonsignificant *p* value. Carefully considered, the reverse seems true. Even without the word *significance*, researchers could not present a large (nonsignificant) *p* value as indicating a genuine effect. It would be nonsensical to say that even though more extreme results would frequently occur by random variability alone that their data are evidence of a genuine effect. The researcher would still need a small *p *value, which is to operate with a threshold. However, it would be harder to hold data dredgers culpable for reporting a nominally small *p *value obtained through data dredging. What distinguishes nominal *p* values from actual ones is that they fail to meet a prespecified error probability threshold.

…

While it is well known that stopping when the data look good inflates the type I error probability, a strict Bayesian is not required to adjust for interim checking because the posterior probability is unaltered. Advocates of Bayesian clinical trials are in a quandary because “The [regulatory] requirement of Type I error control for Bayesian [trials] causes them to lose many of their philosophical advantages, such as compliance with the likelihood principle” (Ryan etal., 2020: 7).

It may be retorted that implausible inferences will indirectly be blocked by appropriate prior degrees of belief (informative priors), but this misses the crucial point. The key function of statistical tests is to constrain the human tendency to selectively favor views they believe in. There are ample forums for debating statistical methodologies. There is no call for executive directors or journal editors to place a thumb on the scale. Whether in dealing with environmental policy advocates, drug lobbyists, or avid calls to expel statistical significance tests, a strong belief in the efficacy of an intervention is distinct from its having been well tested. Applied science will be well served by editorial policies that uphold that distinction.

For the acknowledgments and references, see the full editorial here.

I will cite as many (constructive) readers’ views as I can at the upcoming forum with Yoav Benjamini and David Hand on January 11 on zoom (see this post). *Authors of articles I put up as guest posts or cite at the Forum will get a free copy of my *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars* (CUP, 2018).

## Should Bayesian Clinical Trialists Wear Error Statistical Hats? (i)

**I. A principled disagreement**

The other day I was in a practice (zoom) for a panel I’m in on how different approaches and philosophies (Frequentist, Bayesian, machine learning) might explain “why we disagree” when interpreting clinical trial data. The focus is radiation oncology.[1] An important point of disagreement between frequentist (error statisticians) and Bayesians concerns whether and if so, how, to modify inferences in the face of a variety of selection effects, multiple testing, and stopping for interim analysis. Such multiplicities directly alter the capabilities of methods to avoid erroneously interpreting data, so the frequentist error probabilities are altered. By contrast, if an account conditions on the observed data, error probabilities drop out, and we get principles such as the *stopping rule principle.* My presentation included a quote from Bayarri and J. Berger (2004): Continue reading

## Midnight With Birnbaum (Remote, Virtual Happy New Year 2020)!

Unlike in the past 9 years since I’ve been blogging, I can’t revisit that spot in the road outside the Elbar Room, looking to get into a strange-looking taxi, to head to “Midnight With Birnbaum”. Because of the pandemic, I refuse to go out this New Year’s Eve, so the best I can hope for is a zoom link that will take me to a hypothetical party with him. (The pic on the left is the only blurry image I have of the club I’m taken to.) I just keep watching my email, to see if a zoom link arrives. My book *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (STINT 2018)* doesn’t rehearse the argument from my Birnbaum article, but there’s much in it that I’d like to discuss with him. The (Strong) Likelihood Principle–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics and statistical significance testing in general. Let’s hope that in 2021 the American Statistical Association 9ASA) will finally reveal the recommendations from the ASA Task Force on Statistical Significance and Replicability that the ASA Board itself created one year ago. They completed their recommendations early–back at the end of July 2020–but no response from the ASA has been forthcoming (to my knowledge). As Birnbaum insisted, the “confidence concept” is the “one rock in a shifting scene” of statistical foundations, insofar as there’s interest in controlling the frequency of erroneous interpretations of data. (See my rejoinder.) Birnbaum bemoaned the lack of an explicit evidential interpretation of N-P methods. I purport to give one in SIST 2018. Maybe it will come to fruition in 2021? Anyway, I was just sent an internet link–but it’s not zoom, not Skype, not Webinex, or anything I’ve ever seen before….no time to describe it now, but I’m recording and the rest of the transcript is live; this year there are some new, relevant additions. Happy New Year! Continue reading

## Cox’s (1958) Chestnut: You should not get credit (or blame) for something you didn’t do

Just as you keep up your physical exercise during the pandemic (*sure*), you want to keep up with mental gymnastics too. With that goal in mind, and given we’re just a few days from the New Year (and given especially my promised presentation for January 7), here’s one of the two simple examples that will limber you up for the puzzle to ensue. It’s the famous weighing machine example from Sir David Cox (1958)[1]. It is one of the “chestnuts” in the museum exhibits of “chestnuts and howlers” in Excursion 3 (Tour II) of my book *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars* (SIST, 2018). So block everything else out for a few minutes and consider 3 pages from SIST … Continue reading

## Birthday of Allan Birnbaum: Foundations of Probability and Statistics (27 May 1923 – 1 July 1976)

** Today is Allan Birnbaum’s birthday. In honor of his birthday, I’m posting the articles in the Synthese volume that was dedicated to his memory in 1977. The editors describe it as their way of “paying homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics”. I had posted the volume before, but there are several articles that are very worth rereading. I paste a few snippets from the articles by Giere and Birnbaum. If you’re interested in statistical foundations, and are unfamiliar with Birnbaum, here’s a chance to catch up. (Even if you are, you may be unaware of some of these key papers.)** Continue reading

## Midnight With Birnbaum (Happy New Year 2019)!

Just as in the past 8 years since I’ve been blogging, I revisit that spot in the road at 9p.m., just outside the Elbar Room, look to get into a strange-looking taxi, to head to “Midnight With Birnbaum”. (The pic on the left is the only blurry image I have of the club I’m taken to.) I wonder if the car will come for me this year, as I wait out in the cold, now that *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (STINT 2018)* has been out over a year. STINT doesn’t rehearse the argument from my Birnbaum article, but there’s much in it that I’d like to discuss with him. The (Strong) Likelihood Principle–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics (and cognate methods). 2019 was the 61th birthday of Cox’s “weighing machine” example, which was the basis of Birnbaum’s attempted proof. Yet as Birnbaum insisted, the “confidence concept” is the “one rock in a shifting scene” of statistical foundations, insofar as there’s interest in controlling the frequency of erroneous interpretations of data. (See my rejoinder.) Birnbaum bemoaned the lack of an explicit evidential interpretation of N-P methods. Maybe in 2020? Anyway, the cab is finally here…the rest is live. Happy New Year! Continue reading

## Cox’s (1958) Chestnut: You shouldn’t get credit (or blame) for something you didn’t do

Just as you regularly keep up your physical exercise during the pandemic (sure), you also want to keep up with brain exercise. Given we’re just a few days from New Year’s eve, and given especially that on January 7 I will attempt (for the first time) a highly informal presentation of a controversial result in statistical foundations), here’s a little 2018 marked 60 years since the famous weighing machine example from Sir David Cox (1958)[1]. it is now 61. It’s one of the “chestnuts” in the exhibits of “chestnuts and howlers” in Excursion 3 (Tour II) of my (still) new book *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars* (SIST, 2018). It’s especially relevant to take this up now, just before we leave 2019, for reasons that will be revealed over the next day or two. For a sneak preview of those reasons, see the “note to the reader” at the end of this post. So, let’s go back to it, with an excerpt from SIST (pp. 170-173). Continue reading

## Midnight With Birnbaum (Happy New Year 2018)

Just as in the past 7 years since I’ve been blogging, I revisit that spot in the road at 9p.m., just outside the Elbar Room, look to get into a strange-looking taxi, to head to “Midnight With Birnbaum”. (The pic on the left is the only blurry image I have of the club I’m taken to.) I wonder if the car will come for me this year, as I wait out in the cold, now that *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (STINT)* is out. STINT doesn’t rehearse the argument from my Birnbaum article, but there’s much in it that I’d like to discuss with him. The (Strong) Likelihood Principle–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics (and cognate methods). 2018 was the 60th birthday of Cox’s “weighing machine” example, which was the basis of Birnbaum’s attempted proof. Yet as Birnbaum insisted, the “confidence concept” is the “one rock in a shifting scene” of statistical foundations, insofar as there’s interest in controlling the frequency of erroneous interpretations of data. (See my rejoinder.) Birnbaum bemoaned the lack of an explicit evidential interpretation of N-P methods. Maybe in 2019? Anyway, the cab is finally here…the rest is live. Happy New Year! Continue reading

## You Should Be Binge Reading the (Strong) Likelihood Principle

An essential component of inference based on familiar frequentist notions: p-values, significance and confidence levels, is the relevant sampling distribution (hence the term *sampling theory, *or my preferred *error statistics, *as we get error probabilities from the sampling distribution). This feature results in violations of a principle known as the *strong likelihood principle* (SLP). To state the SLP roughly, it asserts that all the evidential import in the data (for parametric inference within a model) resides in the likelihoods. If accepted, it would render error probabilities irrelevant post data.

**SLP** (We often drop the “strong” and just call it the LP. The “weak” LP just boils down to sufficiency)

For any two experiments E

_{1}and E_{2}with different probability models f_{1}, f_{2}, but with the same unknown parameter θ, if outcomesx* andy* (from E_{1}and E_{2}respectively) determine the same (i.e., proportional) likelihood function (f_{1}(x*; θ) = cf_{2}(y*; θ) for all θ), thenx* andy* are inferentially equivalent (for an inference about θ).

(What differentiates the weak and the strong LP is that the weak refers to a single experiment.)

Continue reading

## 60 Years of Cox’s (1958) Chestnut: Excerpt from Excursion 3 Tour II (Mayo 2018, CUP)

2018 marked 60 years since the famous weighing machine example from Sir David Cox (1958)[1]. It’s one of the “chestnuts” in the exhibits of “chestnuts and howlers” in Excursion 3 (Tour II) of my new book *Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars* (SIST). It’s especially relevant to take this up now, just before we leave 2018, for reasons that will be revealed over the next day or two. So, let’s go back to it, with an excerpt from SIST (pp. 170-173).

**Exhibit (vi): Two Measuring Instruments of Different Precisions. ***Did you hear about the frequentist who, knowing she used a scale that’s right only half the time, claimed her method of weighing is right 75% of the time?*

She says, “I flipped a coin to decide whether to use a scale that’s right 100% of the time, or one that’s right only half the time, so, overall, I’m right 75% of the time.” (She wants credit because she could have used a better scale, even knowing she used a lousy one.)

*Basis for the joke: *An N-P test bases error probability on all possible outcomes or measurements that could have occurred in repetitions, but did not. Continue reading

## Midnight With Birnbaum (Happy New Year 2017)

**Just as in the past 6 years since I’ve been blogging, I revisit that spot in the road at 11p.m., just outside the Elbar Room, look to get into a strange-looking taxi, to head to “Midnight With Birnbaum”. (The pic on the left is the only blurry image I have of the club I’m taken to.) I wondered if the car would come for me this year, as I waited out in the cold, given that my Birnbaum article has been out since 2014. The (Strong) Likelihood Principle–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics (and cognate methods). 2018 will be the 60th birthday of Cox’s “weighing machine” example, which was the start of Birnbaum’s attempted proof. Yet as Birnbaum insisted, the “confidence concept” is the “one rock in a shifting scene” of statistical foundations, insofar as there’s interest in controlling the frequency of erroneous interpretations of data. (See my rejoinder.) Birnbaum bemoaned the lack of an explicit evidential interpretation of N-P methods. Maybe in 2018? Anyway, the cab is finally here…the rest is live. Happy New Year!** Continue reading

## 60 yrs of Cox’s (1958) weighing machine, & links to binge-read the Likelihood Principle

2018 will mark 60 years since the famous chestnut from Sir David Cox (1958). The example “is now usually called the ‘weighing machine example,’ which draws attention to the need for conditioning, at least in certain types of problems” (Reid 1992, p. 582). When I describe it, you’ll find it hard to believe many regard it as causing an earthquake in statistical foundations, unless you’re already steeped in these matters. A simple version: If half the time I reported my weight from a scale that’s always right, and half the time use a scale that gets it right with probability .5, would you say I’m right with probability ¾? Well, maybe. But suppose you *knew* that this measurement was made with the scale that’s right with probability .5? The overall error probability is scarcely relevant for giving the warrant of the particular measurement, *knowing* which scale was used. So what’s the earthquake? First a bit more on the chestnut. Here’s an excerpt from Cox and Mayo (2010, 295-8): Continue reading

## Allan Birnbaum: Foundations of Probability and Statistics (27 May 1923 – 1 July 1976)

*Today is Allan Birnbaum’s birthday. In honor of his birthday, I’m posting the articles in the Synthese volume that was dedicated to his memory in 1977. The editors describe it as their way of “paying homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics”. I paste a few snippets from the articles by Giere and Birnbaum. If you’re interested in statistical foundations, and are unfamiliar with Birnbaum, here’s a chance to catch up. (Even if you are, you may be unaware of some of these key papers.)*

**HAPPY BIRTHDAY ALLAN!**

*Synthese* Volume 36, No. 1 Sept 1977: *Foundations of Probability and Statistics*, Part I

**Editorial Introduction:**

This special issue of

Syntheseon the foundations of probability and statistics is dedicated to the memory of Professor Allan Birnbaum. Professor Birnbaum’s essay ‘The Neyman-Pearson Theory as Decision Theory; and as Inference Theory; with a Criticism of the Lindley-Savage Argument for Bayesian Theory’ was received by the editors ofSynthesein October, 1975, and a decision was made to publish a special symposium consisting of this paper together with several invited comments and related papers. The sad news about Professor Birnbaum’s death reached us in the summer of 1976, but the editorial project could nevertheless be completed according to the original plan. By publishing this special issue we wish to pay homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics. We are grateful to Professor Ronald Giere who wrote an introductory essay on Professor Birnbaum’s concept of statistical evidence and who compiled a list of Professor Birnbaum’s publications.THE EDITORS

## Cox’s (1958) weighing machine example

A famous chestnut given by Cox (1958) recently came up in conversation. The example “is now usually called the ‘weighing machine example,’ which draws attention to the need for conditioning, at least in certain types of problems” (Reid 1992, p. 582). When I describe it, you’ll find it hard to believe many regard it as causing an earthquake in statistical foundations, unless you’re already steeped in these matters. If half the time I reported my weight from a scale that’s always right, and half the time use a scale that gets it right with probability .5, would you say I’m right with probability ¾? Well, maybe. But suppose you knew that this measurement was made with the scale that’s right with probability .5? The overall error probability is scarcely relevant for giving the warrant of the particular measurement,knowing which scale was used. Continue reading

## Midnight With Birnbaum (Happy New Year 2016)

**Just as in the past 5 years since I’ve been blogging, I revisit that spot in the road at 11p.m., just outside the Elbar Room, get into a strange-looking taxi, and head to “Midnight With Birnbaum”. (The pic on the left is the only blurry image I have of the club I’m taken to.) I wonder if the car will come for me this year, given that my Birnbaum article has been out since 2014… The (Strong) Likelihood Principle–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics (and cognate methods). Yet as Birnbaum insisted, the “confidence concept” is the “one rock in a shifting scene” of statistical foundations, insofar as there’s interest in controlling the frequency of erroneous interpretations of data. (See my rejoinder.) Birnbaum bemoaned the lack of an explicit evidential interpretation of N-P methods. Maybe in 2017? Anyway, it’s 6 hrs later here, so I’m about to leave for that spot in the road… If I’m picked up, I’ll add an update at the end.**

You know how in that (not-so) recent Woody Allen movie, “Midnight in Paris,” the main character (I forget who plays it, I saw it on a plane) is a writer finishing a novel, and he steps into a cab that mysteriously picks him up at midnight and transports him back in time where he gets to run his work by such famous authors as Hemingway and Virginia Wolf? He is impressed when his work earns their approval and he comes back each night in the same mysterious cab…Well, imagine an error statistical philosopher is picked up in a mysterious taxi at midnight (New Year’s Eve ~~2011~~ ~~2012~~, ~~2013~~, ~~2014~~, ~~2015~~, 2016) and is taken back fifty years and, lo and behold, finds herself in the company of Allan Birnbaum.[i] There are a couple of brief (12/31/14 & 15) updates at the end.

ERROR STATISTICIAN: It’s wonderful to meet you Professor Birnbaum; I’ve always been extremely impressed with the important impact your work has had on philosophical foundations of statistics. I happen to be writing on your famous argument about the likelihood principle (LP). (whispers: I can’t believe this!)

BIRNBAUM: Ultimately you know I rejected the LP as failing to control the error probabilities needed for my Confidence concept. Continue reading

## Allan Birnbaum: Foundations of Probability and Statistics (27 May 1923 – 1 July 1976)

*Today is Allan Birnbaum’s birthday. In honor of his birthday this year, I’m posting the articles in the *Synthese* volume that was dedicated to his memory in 1977. The editors describe it as their way of “paying homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics”. I paste a few snippets from the articles by Giere and Birnbaum. If you’re interested in statistical foundations, and are unfamiliar with Birnbaum, here’s a chance to catch up.(Even if you are,you may be unaware of some of these key papers.)*

**HAPPY BIRTHDAY ALLAN!**

*Synthese* Volume 36, No. 1 Sept 1977: *Foundations of Probability and Statistics*, Part I

**Editorial Introduction:**

This special issue of

Syntheseon the foundations of probability and statistics is dedicated to the memory of Professor Allan Birnbaum. Professor Birnbaum’s essay ‘The Neyman-Pearson Theory as Decision Theory; and as Inference Theory; with a Criticism of the Lindley-Savage Argument for Bayesian Theory’ was received by the editors ofSynthesein October, 1975, and a decision was made to publish a special symposium consisting of this paper together with several invited comments and related papers. The sad news about Professor Birnbaum’s death reached us in the summer of 1976, but the editorial project could nevertheless be completed according to the original plan. By publishing this special issue we wish to pay homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics. We are grateful to Professor Ronald Giere who wrote an introductory essay on Professor Birnbaum’s concept of statistical evidence and who compiled a list of Professor Birnbaum’s publications.THE EDITORS

## Midnight With Birnbaum (Happy New Year)

**Just as in the past 4 years since I’ve been blogging, I revisit that spot in the road at 11p.m., just outside the Elbar Room, get into a strange-looking taxi, and head to “Midnight With Birnbaum”. (The pic on the left is the only blurry image I have of the club I’m taken to.) I wonder if the car will come for me this year, given that my Birnbaum article has been out since 2014… The (Strong) Likelihood Principle–whether or not it is named–remains at the heart of many of the criticisms of Neyman-Pearson (N-P) statistics (and cognate methods). Yet as Birnbaum insisted, the “confidence concept” is the “one rock in a shifting scene” of statistical foundations, insofar as there’s interest in controlling the frequency of erroneous interpretations of data. (See my rejoinder.) Birnbaum bemoaned the lack of an explicit evidential interpretation of N-P methods. Maybe in 2016? Anyway, it’s 6 hrs later here, so I’m about to leave for that spot in the road…**

You know how in that (not-so) recent Woody Allen movie, “Midnight in Paris,” the main character (I forget who plays it, I saw it on a plane) is a writer finishing a novel, and he steps into a cab that mysteriously picks him up at midnight and transports him back in time where he gets to run his work by such famous authors as Hemingway and Virginia Wolf? He is impressed when his work earns their approval and he comes back each night in the same mysterious cab…Well, imagine an error statistical philosopher is picked up in a mysterious taxi at midnight (New Year’s Eve ~~2011~~ ~~2012~~, ~~2013~~, ~~2014~~, 2015) and is taken back fifty years and, lo and behold, finds herself in the company of Allan Birnbaum.[i] There are a couple of brief (12/31/14 & 15) updates at the end.

ERROR STATISTICIAN: It’s wonderful to meet you Professor Birnbaum; I’ve always been extremely impressed with the important impact your work has had on philosophical foundations of statistics. I happen to be writing on your famous argument about the likelihood principle (LP). (whispers: I can’t believe this!)

BIRNBAUM: Ultimately you know I rejected the LP as failing to control the error probabilities needed for my Confidence concept.

ERROR STATISTICIAN: Yes, but I actually don’t think your argument shows that the LP follows from such frequentist concepts as sufficiency S and the weak conditionality principle WLP.[ii] Sorry,…I know it’s famous…

BIRNBAUM: Well, I shall happily invite you to take any case that violates the LP and allow me to demonstrate that the frequentist is led to inconsistency, provided she also wishes to adhere to the WLP and sufficiency (although less than S is needed).

ERROR STATISTICIAN: Well I happen to be a frequentist (error statistical) philosopher; I have recently (2006) found a hole in your proof,..er…well I hope we can discuss it.

BIRNBAUM: Well, well, well: I’ll bet you a bottle of Elba Grease champagne that I can demonstrate it! Continue reading

## Statistical “reforms” without philosophy are blind (v update)

Is it possible, today, to have a fair-minded engagement with debates over statistical foundations? I’m not sure, but I know it is becoming of pressing importance to try. Increasingly, people are getting serious about methodological reforms—some are quite welcome, others are quite radical. Too rarely do the reformers bring out the philosophical presuppositions of the criticisms and proposed improvements. Today’s (radical?) reform movements are typically launched from criticisms of statistical significance tests and P-values, so I focus on them. Regular readers know how often the P-value (that most unpopular girl in the class) has made her appearance on this blog. Here, I tried to quickly jot down some queries. (Look for later installments and links.) *What are some key questions we need to ask to tell what’s true about today’s criticisms of P-values? *

*I. To get at philosophical underpinnings, the single most import question is this:*

**(1) Do the debaters distinguish different views of the nature of statistical inference and the roles of probability in learning from data? ** Continue reading

## Joan Clarke, Turing, I.J. Good, and “that after-dinner comedy hour…”

I finally saw *The Imitation Game* about Alan Turing and code-breaking at Bletchley Park during WWII. This short clip of Joan Clarke, who was engaged to Turing, includes my late colleague I.J. Good at the end (he’s not second as the clip lists him). Good used to talk a great deal about Bletchley Park and his code-breaking feats while asleep there (see note[a]), but I never imagined Turing’s code-breaking machine (which, by the way, was called the Bombe and not Christopher as in the movie) was so clunky. The movie itself has two tiny scenes including Good. Below I reblog: “Who is Allowed to Cheat?”—one of the topics he and I debated over the years. Links to the full “Savage Forum” (1962) may be found at the end (creaky, but better than nothing.)

[a]”Some sensitive or important Enigma messages were enciphered twice, once in a special variation cipher and again in the normal cipher. …Good dreamed one night that the process had been reversed: normal cipher first, special cipher second. When he woke up he tried his theory on an unbroken message – and promptly broke it.” This, and further examples may be found in this obituary

[b] Pictures comparing the movie cast and the real people may be found here. Continue reading