slides

Bad Statistics is Their Product: Fighting Fire With Fire (ii)

Mayo fights fire w/ fire

I. Doubt is Their Product is the title of a (2008) book by David Michaels, Assistant Secretary for OSHA from 2009-2017. I first mentioned it on this blog back in 2011 (“Will the Real Junk Science Please Stand Up?) The expression is from a statement by a cigarette executive (“doubt is our product”), and the book’s thesis is explained in its subtitle: How Industry’s Assault on Science Threatens Your Health. Imagine you have just picked up a book, published in 2020: Bad Statistics is Their Product. Is the author writing about how exaggerating bad statistics may serve in the interest of denying well-established risks? [Interpretation A]. Or perhaps she’s writing on how exaggerating bad statistics serves the interest of denying well-established statistical methods? [Interpretation B]. Both may result in distorting science and even in dismantling public health safeguards–especially if made the basis of evidence policies in agencies. A responsible philosopher of statistics should care. Continue reading

Categories: ASA Guide to P-values, Error Statistics, P-values, replication research, slides | 33 Comments

The Statistics Wars: Errors and Casualties

.

Had I been scheduled to speak later at the 12th MuST Conference & 3rd Workshop “Perspectives on Scientific Error” in Munich, rather than on day 1, I could have (constructively) illustrated some of the errors and casualties by reference to a few of the conference papers that discussed significance tests. (Most gave illuminating discussions of such topics as replication research, the biases that discredit meta-analysis, statistics in the law, formal epistemology [i]). My slides follow my abstract. Continue reading

Categories: slides, stat wars and their casualties | Tags: | Leave a comment

Replication Crises and the Statistics Wars: Hidden Controversies

.

Below are the slides from my June 14 presentation at the X-Phil conference on Reproducibility and Replicability in Psychology and Experimental Philosophy at University College London. What I think must be examined seriously are the “hidden” issues that are going unattended in replication research and related statistics wars. An overview of the “hidden controversies” are on slide #3. Although I was presenting them as “hidden”, I hoped they wouldn’t be quite as invisible as I found them through the conference. (Since my talk was at the start, I didn’t know what to expect–else I might have noted some examples that seemed to call for further scrutiny). Exceptions came largely (but not exclusively) from a small group of philosophers (me, Machery and Fletcher). Then again,there were parallel sessions, so I missed some.  However, I did learn something about X-phil, particularly from the very interesting poster session [1]. This new area should invite much, much more scrutiny of statistical methodology from philosophers of science.

[1] The women who organized and ran the conference did an excellent job: Lara Kirfel, a psychology PhD student at UCL, and Pascale Willemsen from Ruhr University.

Categories: Philosophy of Statistics, replication research, slides | Leave a comment

Your data-driven claims must still be probed severely

Vagelos Education Center

Below are the slides from my talk today at Columbia University at a session, Philosophy of Science and the New Paradigm of Data-Driven Science, at an American Statistical Association Conference on Statistical Learning and Data Science/Nonparametric Statistics. Todd was brave to sneak in philosophy of science in an otherwise highly mathematical conference.

Philosophy of Science and the New Paradigm of Data-Driven Science : (Room VEC 902/903)
Organizer and Chair: Todd Kuffner (Washington U)

  1. Deborah Mayo (Virginia Tech) “Your Data-Driven Claims Must Still be Probed Severely”
  2.  Ian McKeague (Columbia) “On the Replicability of Scientific Studies”
  3.  Xiao-Li Meng (Harvard) “Conducting Highly Principled Data Science: A Statistician’s Job and Joy

 

Categories: slides, Statistics and Data Science | 5 Comments

Blog at WordPress.com.