P-values

August 6: JSM 2020 Panel on P-values & “Statistical Significance”

SLIDES FROM MY PRESENTATION

July 30 PRACTICE VIDEO for JSM talk (All materials for Practice JSM session here)

JSM 2020 Panel Flyer (PDF)
JSM online program w/panel abstract & information):

Categories: ASA Guide to P-values, Error Statistics, evidence-based policy, JSM 2020, P-values, Philosophy of Statistics, science communication, significance tests | Leave a comment

JSM 2020: P-values & “Statistical Significance”, August 6


Link: https://ww2.amstat.org/meetings/jsm/2020/onlineprogram/ActivityDetails.cfm?SessionID=219596

To register for JSM: https://ww2.amstat.org/meetings/jsm/2020/registration.cfm

Categories: JSM 2020, P-values | Leave a comment

Bad Statistics is Their Product: Fighting Fire With Fire (ii)

Mayo fights fire w/ fire

I. Doubt is Their Product is the title of a (2008) book by David Michaels, Assistant Secretary for OSHA from 2009-2017. I first mentioned it on this blog back in 2011 (“Will the Real Junk Science Please Stand Up?) The expression is from a statement by a cigarette executive (“doubt is our product”), and the book’s thesis is explained in its subtitle: How Industry’s Assault on Science Threatens Your Health. Imagine you have just picked up a book, published in 2020: Bad Statistics is Their Product. Is the author writing about how exaggerating bad statistics may serve in the interest of denying well-established risks? [Interpretation A]. Or perhaps she’s writing on how exaggerating bad statistics serves the interest of denying well-established statistical methods? [Interpretation B]. Both may result in distorting science and even in dismantling public health safeguards–especially if made the basis of evidence policies in agencies. A responsible philosopher of statistics should care. Continue reading

Categories: ASA Guide to P-values, Error Statistics, P-values, replication research, slides | 33 Comments

My paper, “P values on Trial” is out in Harvard Data Science Review

.

My new paper, “P Values on Trial: Selective Reporting of (Best Practice Guides Against) Selective Reporting” is out in Harvard Data Science Review (HDSR). HDSR describes itself as a A Microscopic, Telescopic, and Kaleidoscopic View of Data Science. The editor-in-chief is Xiao-li Meng, a statistician at Harvard. He writes a short blurb on each article in his opening editorial of the issue. Continue reading

Categories: multiple testing, P-values, significance tests, Statistics | 29 Comments

The NAS fixes its (main) mistake in defining P-values!

Mayo new elbow

(reasonably) satisfied

Remember when I wrote to the National Academy of Science (NAS) in September pointing out mistaken definitions of P-values in their document on Reproducibility and Replicability in Science? (see my 9/30/19 post). I’d given up on their taking any action, but yesterday I received a letter from the NAS Senior Program officer:

Dear Dr. Mayo,

I am writing to let you know that the Reproducibility and Replicability in Science report has been updated in response to the issues that you have raised.
Two footnotes, on pages 31 35 and 221, highlight the changes. The updated report is available from the following link: NEW 2020 NAS DOC

Thank you for taking the time to reach out to me and to Dr. Fineberg and letting us know about your concerns.
With kind regards and wishes of a happy 2020,
Jenny Heimberg
Jennifer Heimberg, Ph.D.
Senior Program Officer

The National Academies of Sciences, Engineering, and Medicine

Continue reading

Categories: NAS, P-values | 2 Comments

P-Value Statements and Their Unintended(?) Consequences: The June 2019 ASA President’s Corner (b)

2208388671_0d8bc38714

Mayo writing to Kafadar

I never met Karen Kafadar, the 2019 President of the American Statistical Association (ASA), but the other day I wrote to her in response to a call in her extremely interesting June 2019 President’s Corner: “Statistics and Unintended Consequences“:

  • “I welcome your suggestions for how we can communicate the importance of statistical inference and the proper interpretation of p-values to our scientific partners and science journal editors in a way they will understand and appreciate and can use with confidence and comfort—before they change their policies and abandon statistics altogether.”

I only recently came across her call, and I will share my letter below. First, here are some excerpts from her June President’s Corner (her December report is due any day). Continue reading

Categories: ASA Guide to P-values, Bayesian/frequentist, P-values | 3 Comments

On Some Self-Defeating Aspects of the ASA’s (2019) Recommendations on Statistical Significance Tests (ii)

.

“Before we stood on the edge of the precipice, now we have taken a great step forward”

 

What’s self-defeating about pursuing statistical reforms in the manner taken by the American Statistical Association (ASA) in 2019? In case you’re not up on the latest in significance testing wars, the 2016 ASA Statement on P-Values and Statistical Significance, ASA I, arguably, was a reasonably consensual statement on the need to avoid some well-known abuses of P-values–notably if you compute P-values, ignoring selective reporting, multiple testing, or stopping when the data look good, the computed P-value will be invalid. (Principle 4, ASA I) But then Ron Wasserstein, executive director of the ASA, and co-editors, decided they weren’t happy with their own 2016 statement because it “stopped just short of recommending that declarations of ‘statistical significance’ be abandoned” altogether. In their new statement–ASA II(note)–they announced: “We take that step here….Statistically significant –don’t say it and don’t use it”.

Why do I say it is a mis-take to have taken the supposed next “great step forward”? Why do I count it as unsuccessful as a piece of statistical science policy? In what ways does it make the situation worse? Let me count the ways. The first is in this post. Others will come in following posts, until I become too disconsolate to continue.[i] Continue reading

Categories: P-values, stat wars and their casualties, statistical significance tests | 14 Comments

National Academies of Science: Please Correct Your Definitions of P-values

Mayo banging head

If you were on a committee to highlight issues surrounding P-values and replication, what’s the first definition you would check? Yes, exactly. Apparently, when it came to the recently released National Academies of Science “Consensus Study” Reproducibility and Replicability in Science 2019, no one did. Continue reading

Categories: ASA Guide to P-values, Error Statistics, P-values | 20 Comments

Hardwicke and Ioannidis, Gelman, and Mayo: P-values: Petitions, Practice, and Perils (and a question for readers)

.

The October 2019 issue of the European Journal of Clinical Investigations came out today. It includes the PERSPECTIVE article by Tom Hardwicke and John Ioannidis, an invited editorial by Gelman and one by me:

Petitions in scientific argumentation: Dissecting the request to retire statistical significance, by Tom Hardwicke and John Ioannidis

When we make recommendations for scientific practice, we are (at best) acting as social scientists, by Andrew Gelman

P-value thresholds: Forfeit at your peril, by Deborah Mayo

I blogged excerpts from my preprint, and some related posts, here.

All agree to the disagreement on the statistical and metastatistical issues: Continue reading

Categories: ASA Guide to P-values, P-values, stat wars and their casualties | 16 Comments

(Excerpts from) ‘P-Value Thresholds: Forfeit at Your Peril’ (free access)

.

A key recognition among those who write on the statistical crisis in science is that the pressure to publish attention-getting articles can incentivize researchers to produce eye-catching but inadequately scrutinized claims. We may see much the same sensationalism in broadcasting metastatistical research, especially if it takes the form of scapegoating or banning statistical significance. A lot of excitement was generated recently when Ron Wasserstein, Executive Director of the American Statistical Association (ASA), and co-editors A. Schirm and N. Lazar, updated(note) the 2016 ASA Statement on P-Values and Statistical Significance (ASA I). In their 2019 interpretation, ASA I “stopped just short of recommending that declarations of ‘statistical significance’ be abandoned,” and in their new statement (ASA II) announced: “We take that step here….’statistically significant’ –don’t say it and don’t use it”. To herald the ASA II(note), and the special issue “Moving to a world beyond ‘p < 0.05’”, the journal Nature requisitioned a commentary from Amrhein, Greenland and McShane “Retire Statistical Significance” (AGM). With over 800 signatories, the commentary received the imposing title “Scientists rise up against significance tests”! Continue reading

Categories: ASA Guide to P-values, P-values, stat wars and their casualties | 6 Comments

Palavering about Palavering about P-values

.

Nathan Schachtman (who was a special invited speaker at our recent Summer Seminar in Phil Stat) put up a post on his law blog the other day (“Palavering About P-values”) on an article by a statistics professor at Stanford, Helena Kraemer. “Palavering” is an interesting word choice of Schachtman’s. Its range of meanings is relevant here [i]; in my title, I intend both, in turn. You can read Schachtman’s full post here, it begins like this:

The American Statistical Association’s most recent confused and confusing communication about statistical significance testing has given rise to great mischief in the world of science and science publishing.[ASA II 2019] Take for instance last week’s opinion piece about “Is It Time to Ban the P Value?” Please.

Admittedly, their recent statement, which I refer to as ASA II, has seemed to open the floodgates to some very zany remarks about P-values, their meaning and role in statistical testing. Continuing with Schachtman’s post: Continue reading

Categories: ASA Guide to P-values, P-values | Tags: | 12 Comments

Diary For Statistical War Correspondents on the Latest Ban on Speech

When science writers, especially “statistical war correspondents”, contact you to weigh in on some article, they may talk to you until they get something spicy, and then they may or may not include the background context. So a few writers contacted me this past week regarding this article (“Retire Statistical Significance”)–a teaser, I now suppose, to advertise the ASA collection(note) growing out of that conference “A world beyond P ≤ .05” way back in Oct 2017, where I gave a paper*. I jotted down some points, since Richard Harris from NPR needed them immediately, and I had just gotten off a plane when he emailed. He let me follow up with him, which is rare and greatly appreciated. So I streamlined the first set of points, and dropped any points he deemed technical. I sketched the third set for a couple of other journals who contacted me, who may or may not use them. Here’s Harris’ article, which includes a couple of my remarks. Continue reading

Categories: ASA Guide to P-values, P-values | 42 Comments

A letter in response to the ASA’s Statement on p-Values by Ionides, Giessing, Ritov and Page

I came across an interesting letter in response to the ASA’s Statement on p-values that I hadn’t seen before. It’s by Ionides, Giessing, Ritov and Page, and it’s very much worth reading. I make some comments below. Continue reading

Categories: ASA Guide to P-values, P-values | 7 Comments

A small amendment to Nuzzo’s tips for communicating p-values

.

I’ve been asked if I agree with Regina Nuzzo’s recent note on p-values [i]. I don’t want to be nit-picky, but one very small addition to Nuzzo’s helpful tips for communicating statistical significance can make it a great deal more helpful. Here’s my friendly amendment. She writes: Continue reading

Categories: P-values, science communication | 2 Comments

Statistics and the Higgs Discovery: 5-6 yr Memory Lane

.

I’m reblogging a few of the Higgs posts at the 6th anniversary of the 2012 discovery. (The first was in this post.) The following, was originally “Higgs Analysis and Statistical Flukes: part 2″ (from March, 2013).[1]

Some people say to me: “This kind of [severe testing] reasoning is fine for a ‘sexy science’ like high energy physics (HEP)”–as if their statistical inferences are radically different. But I maintain that this is the mode by which data are used in “uncertain” reasoning across the entire landscape of science and day-to-day learning (at least, when we’re trying to find things out)[2] Even with high level theories, the particular problems of learning from data are tackled piecemeal, in local inferences that afford error control. Granted, this statistical philosophy differs importantly from those that view the task as assigning comparative (or absolute) degrees-of-support/belief/plausibility to propositions, models, or theories.  Continue reading

Categories: Higgs, highly probable vs highly probed, P-values | 1 Comment

Why significance testers should reject the argument to “redefine statistical significance”, even if they want to lower the p-value*

.

An argument that assumes the very thing that was to have been argued for is guilty of begging the question; signing on to an argument whose conclusion you favor even though you cannot defend its premises is to argue unsoundly, and in bad faith. When a whirlpool of “reforms” subliminally alter  the nature and goals of a method, falling into these sins can be quite inadvertent. Start with a simple point on defining the power of a statistical test.

I. Redefine Power?

Given that power is one of the most confused concepts from Neyman-Pearson (N-P) frequentist testing, it’s troubling that in “Redefine Statistical Significance”, power gets redefined too. “Power,” we’re told, is a Bayes Factor BF “obtained by defining H1 as putting ½ probability on μ = ± m for the value of m that gives 75% power for the test of size α = 0.05. This H1 represents an effect size typical of that which is implicitly assumed by researchers during experimental design.” (material under Figure 1). Continue reading

Categories: Bayesian/frequentist, fallacy of rejection, P-values, reforming the reformers, spurious p values | 15 Comments

Erich Lehmann’s 100 Birthday: Neyman Pearson vs Fisher on P-values

Erich Lehmann 20 November 1917 – 12 September 2009

Erich Lehmann was born 100 years ago today! (20 November 1917 – 12 September 2009). Lehmann was Neyman’s first student at Berkeley (Ph.D 1942), and his framing of Neyman-Pearson (NP) methods has had an enormous influence on the way we typically view them.*

.

I got to know Erich in 1997, shortly after publication of EGEK (1996). One day, I received a bulging, six-page, handwritten letter from him in tiny, extremely neat scrawl (and many more after that).  He began by telling me that he was sitting in a very large room at an ASA (American Statistical Association) meeting where they were shutting down the conference book display (or maybe they were setting it up), and on a very long, wood table sat just one book, all alone, shiny red.

He said ” I wonder if it might be of interest to me!”  So he walked up to it….  It turned out to be my Error and the Growth of Experimental Knowledge (1996, Chicago), which he reviewed soon after[0]. (What are the chances?) Some related posts on Lehmann’s letter are here and here.

Continue reading

Categories: Fisher, P-values, phil/history of stat | 3 Comments

Yoav Benjamini, “In the world beyond p < .05: When & How to use P < .0499…"

.

These were Yoav Benjamini’s slides,”In the world beyond p<.05: When & How to use P<.0499…” from our session at the ASA 2017 Symposium on Statistical Inference (SSI): A World Beyond p < 0.05. (Mine are in an earlier post.) He begins by asking:

However, it’s mandatory to adjust for selection effects, and Benjamini is one of the leaders in developing ways to carry out the adjustments. Even calling out the avenues for cherry-picking and multiple testing, long known to invalidate p-values, would make replication research more effective (and less open to criticism). Continue reading

Categories: Error Statistics, P-values, replication research, selection effects | 22 Comments

Going round and round again: a roundtable on reproducibility & lowering p-values

.

There will be a roundtable on reproducibility Friday, October 27th (noon Eastern time), hosted by the International Methods Colloquium, on the reproducibility crisis in social sciences motivated by the paper, “Redefine statistical significance.” Recall, that was the paper written by a megateam of researchers as part of the movement to require p ≤ .005, based on appraising significance tests by a Bayes Factor analysis, with prior probabilities on a point null and a given alternative. It seems to me that if you’re prepared to scrutinize your frequentist (error statistical) method on grounds of Bayes Factors, then you must endorse using Bayes Factors (BFs) for inference to begin with. If you don’t endorse BFs–and, in particular, the BF required to get the disagreement with p-values–*, then it doesn’t make sense to appraise your non-Bayesian method on grounds of agreeing or disagreeing with BFs. For suppose you assess the recommended BFs from the perspective of an error statistical account–that is, one that checks how frequently the method would uncover or avoid the relevant mistaken inference.[i] Then, if you reach the stipulated BF level against a null hypothesis, you will find the situation is reversed, and the recommended BF exaggerates the evidence!  (In particular, with high probability, it gives an alternative H’ fairly high posterior probability, or comparatively higher probability, even though H’ is false.) Failing to reach the BF cut-off, by contrast, can find no evidence against, and even finds evidence for, a null hypothesis with high probability, even when non-trivial discrepancies exist. They’re measuring very different things, and it’s illicit to expect an agreement on numbers.[ii] We’ve discussed this quite a lot on this blog (2 are linked below [iii]).

If the given list of panelists is correct, it looks to be 4 against 1, but I’ve no doubt that Lakens can handle it.

Continue reading

Categories: Announcement, P-values, reforming the reformers, selection effects | 5 Comments

Deconstructing “A World Beyond P-values”

.A world beyond p-values?

I was asked to write something explaining the background of my slides (posted here) in relation to the recent ASA “A World Beyond P-values” conference. I took advantage of some long flight delays on my return to jot down some thoughts:

The contrast between the closing session of the conference “A World Beyond P-values,” and the gist of the conference itself, shines a light on a pervasive tension within the “Beyond P-Values” movement. Two very different debates are taking place. First there’s the debate about how to promote better science. This includes welcome reminders of the timeless demands of rigor and integrity required to avoid deceiving ourselves and others–especially crucial in today’s world of high-powered searches and Big Data. That’s what the closing session was about. [1] Continue reading

Categories: P-values, Philosophy of Statistics, reforming the reformers | 9 Comments

Blog at WordPress.com.