Philosophy of Statistics

Statistical Concepts in Their Relation to Reality–E.S. Pearson

11 August 1895 – 12 June 1980

This is my third and final post marking Egon Pearson’s birthday (Aug. 11). The focus is his little-known paper: “Statistical Concepts in Their Relation to Reality” (Pearson 1955). I’ve linked to it several times over the years, but always find a new gem or two, despite its being so short. E. Pearson rejected some of the familiar tenets that have come to be associated with Neyman and Pearson (N-P) statistical tests, notably the idea that the essential justification for tests resides in a repeated applications or long-run control of rates of erroneous interpretations–what he termed the “behavioral” rationale of tests. In an unpublished letter E. Pearson wrote to Birnbaum (1974), he talks about N-P theory admitting of two interpretations: behavioral and evidential:

“I think you will pick up here and there in my own papers signs of evidentiality, and you can say now that we or I should have stated clearly the difference between the behavioral and evidential interpretations. Certainly we have suffered since in the way the people have concentrated (to an absurd extent often) on behavioral interpretations”.

(Nowadays, it might be said that some people concentrate to an absurd extent on “science-wise error rates” in their view of statistical tests as dichotomous screening devices.) Continue reading

Categories: Egon Pearson, phil/history of stat, Philosophy of Statistics | Tags: , , | 1 Comment

Philosophy of socially aware data science conference

I’ll be speaking at this conference in Philly tomorrow. My slides are also below.

 

PDF of my slides: Statistical “Reforms”: Fixing Science or Threats to Replication and Falsification. Continue reading

Categories: Announcement, Philosophy of Statistics, socially aware data science

The Statistics Debate! (NISS DEBATE, October 15, Noon – 2 pm ET)

October 15, Noon – 2 pm ET (Website)

Where do YOU stand?

Given the issues surrounding the misuses and abuse of p-values, do you think p-values should be used? Continue reading

Categories: Announcement, J. Berger, P-values, Philosophy of Statistics, reproducibility, statistical significance tests, Statistics | Tags:

August 6: JSM 2020 Panel on P-values & “Statistical Significance”

SLIDES FROM MY PRESENTATION

July 30 PRACTICE VIDEO for JSM talk (All materials for Practice JSM session here)

JSM 2020 Panel Flyer (PDF)
JSM online program w/panel abstract & information):

Categories: ASA Guide to P-values, Error Statistics, evidence-based policy, JSM 2020, P-values, Philosophy of Statistics, science communication, significance tests

Birthday of Allan Birnbaum: Foundations of Probability and Statistics (27 May 1923 – 1 July 1976)

27 May 1923-1 July 1976

27 May 1923-1 July 1976

Today is Allan Birnbaum’s birthday. In honor of his birthday, I’m posting the articles in the Synthese volume that was dedicated to his memory in 1977. The editors describe it as their way of  “paying homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics”. I had posted the volume before, but there are several articles that are very worth rereading. I paste a few snippets from the articles by Giere and Birnbaum. If you’re interested in statistical foundations, and are unfamiliar with Birnbaum, here’s a chance to catch up. (Even if you are, you may be unaware of some of these key papers.) Continue reading

Categories: Birnbaum, Likelihood Principle, Statistics, strong likelihood principle | Tags:

My Phil Stat Events at LSE

.

.

I will run a graduate Research Seminar at the LSE on Thursdays from May 21-June 18:

.

(See my new blog for specifics (phil-stat-wars.com).
I am co-running a workshop
from 19-20 June, 2020 at LSE (Center for the Philosophy of Natural and Social Sciences CPNSS), with Roman Frigg. Participants include:
Alexander Bird (King’s College London), Mark Burgman (Imperial College London), Daniele Fanelli (LSE), David Hand (Imperial College London), Christian Hennig (University of Bologna), Katrin Hohl (City University London), Daniël Lakens (Eindhoven University of Technology), Deborah Mayo (Virginia Tech), Richard Morey (Cardiff University), Stephen Senn (Edinburgh, Scotland).
If you have a particular Phil Stat event you’d like me to advertise, please send it to me.
Categories: Announcement, Philosophy of Statistics

Exploring a new philosophy of statistics field

This article came out on Monday on our Summer Seminar in Philosophy of Statistics in Virginia Tech News Daily magazine.

October 28, 2019

.

From universities around the world, participants in a summer session gathered to discuss the merits of the philosophy of statistics. Co-director Deborah Mayo, left, hosted an evening for them at her home.

Continue reading

Categories: Philosophy of Statistics, Summer Seminar in PhilStat

Statistical Concepts in Their Relation to Reality–E.S. Pearson

11 August 1895 – 12 June 1980

In marking Egon Pearson’s birthday (Aug. 11), I’ll  post some Pearson items this week. They will contain some new reflections on older Pearson posts on this blog. Today, I’m posting “Statistical Concepts in Their Relation to Reality” (Pearson 1955). I’ve linked to it several times over the years, but always find a new gem or two, despite its being so short. E. Pearson rejected some of the familiar tenets that have come to be associated with Neyman and Pearson (N-P) statistical tests, notably the idea that the essential justification for tests resides in a long-run control of rates of erroneous interpretations–what he termed the “behavioral” rationale of tests. In an unpublished letter E. Pearson wrote to Birnbaum (1974), he talks about N-P theory admitting of two interpretations: behavioral and evidential:

“I think you will pick up here and there in my own papers signs of evidentiality, and you can say now that we or I should have stated clearly the difference between the behavioral and evidential interpretations. Certainly we have suffered since in the way the people have concentrated (to an absurd extent often) on behavioral interpretations”.

(Nowadays, it might be said that some people concentrate to an absurd extent on “science-wise error rates” in their view of statistical tests as dichotomous screening devices.) Continue reading

Categories: Egon Pearson, phil/history of stat, Philosophy of Statistics | Tags: , ,

American Phil Assoc Blog: The Stat Crisis of Science: Where are the Philosophers?

Ship StatInfasST

The Statistical Crisis of Science: Where are the Philosophers?

This was published today on the American Philosophical Association blog

“[C]onfusion about the foundations of the subject is responsible, in my opinion, for much of the misuse of the statistics that one meets in fields of application such as medicine, psychology, sociology, economics, and so forth.” (George Barnard 1985, p. 2)

“Relevant clarifications of the nature and roles of statistical evidence in scientific research may well be achieved by bringing to bear in systematic concert the scholarly methods of statisticians, philosophers and historians of science, and substantive scientists…” (Allan Birnbaum 1972, p. 861).

“In the training program for PhD students, the relevant basic principles of philosophy of science, methodology, ethics and statistics that enable the responsible practice of science must be covered.” (p. 57, Committee Investigating fraudulent research practices of social psychologist Diederik Stapel)

I was the lone philosophical observer at a special meeting convened by the American Statistical Association (ASA) in 2015 to construct a non-technical document to guide users of statistical significance tests–one of the most common methods used to distinguish genuine effects from chance variability across a landscape of social, physical and biological sciences.

It was, by the ASA Director’s own description, “historical”, but it was also highly philosophical, and its ramifications are only now being discussed and debated. Today, introspection on statistical methods is rather common due to the “statistical crisis in science”. What is it? In a nutshell: high powered computer methods make it easy to arrive at impressive-looking ‘findings’ that too often disappear when others try to replicate them when hypotheses and data analysis protocols are required to be fixed in advance.

Continue reading

Categories: Error Statistics, Philosophy of Statistics, Summer Seminar in PhilStat

Egon Pearson’s Heresy

E.S. Pearson: 11 Aug 1895-12 June 1980.

Today is Egon Pearson’s birthday. In honor of his birthday, I am posting “Statistical Concepts in Their Relation to Reality” (Pearson 1955). I’ve posted it several times over the years, but always find a new gem or two, despite its being so short. E. Pearson rejected some of the familiar tenets that have come to be associated with Neyman and Pearson (N-P) statistical tests, notably the idea that the essential justification for tests resides in a long-run control of rates of erroneous interpretations–what he termed the “behavioral” rationale of tests. In an unpublished letter E. Pearson wrote to Birnbaum (1974), he talks about N-P theory admitting of two interpretations: behavioral and evidential:

“I think you will pick up here and there in my own papers signs of evidentiality, and you can say now that we or I should have stated clearly the difference between the behavioral and evidential interpretations. Certainly we have suffered since in the way the people have concentrated (to an absurd extent often) on behavioral interpretations”.

Continue reading

Categories: phil/history of stat, Philosophy of Statistics, Statistics | Tags: , ,

Replication Crises and the Statistics Wars: Hidden Controversies

.

Below are the slides from my June 14 presentation at the X-Phil conference on Reproducibility and Replicability in Psychology and Experimental Philosophy at University College London. What I think must be examined seriously are the “hidden” issues that are going unattended in replication research and related statistics wars. An overview of the “hidden controversies” are on slide #3. Although I was presenting them as “hidden”, I hoped they wouldn’t be quite as invisible as I found them through the conference. (Since my talk was at the start, I didn’t know what to expect–else I might have noted some examples that seemed to call for further scrutiny). Exceptions came largely (but not exclusively) from a small group of philosophers (me, Machery and Fletcher). Then again,there were parallel sessions, so I missed some.  However, I did learn something about X-phil, particularly from the very interesting poster session [1]. This new area should invite much, much more scrutiny of statistical methodology from philosophers of science.

[1] The women who organized and ran the conference did an excellent job: Lara Kirfel, a psychology PhD student at UCL, and Pascale Willemsen from Ruhr University.

Categories: Philosophy of Statistics, replication research, slides

“Intentions (in your head)” is the code word for “error probabilities (of a procedure)”: Allan Birnbaum’s Birthday

27 May 1923-1 July 1976

27 May 1923-1 July 1976

Today is Allan Birnbaum’s Birthday. Birnbaum’s (1962) classic “On the Foundations of Statistical Inference,” in Breakthroughs in Statistics (volume I 1993), concerns a principle that remains at the heart of today’s controversies in statistics–even if it isn’t obvious at first: the Likelihood Principle (LP) (also called the strong likelihood Principle SLP, to distinguish it from the weak LP [1]). According to the LP/SLP, given the statistical model, the information from the data are fully contained in the likelihood ratio. Thus, properties of the sampling distribution of the test statistic vanish (as I put it in my slides from this post)! But error probabilities are all properties of the sampling distribution. Thus, embracing the LP (SLP) blocks our error statistician’s direct ways of taking into account “biasing selection effects” (slide #10). [Posted earlier here.] Interesting, as seen in a 2018 post on Neyman, Neyman did discuss this paper, but had an odd reaction that I’m not sure I understand. (Check it out.) Continue reading

Categories: Birnbaum, Birnbaum Brakes, frequentist/Bayesian, Likelihood Principle, phil/history of stat, Statistics

Getting Up to Speed on Principles of Statistics

.

“If a statistical analysis is clearly shown to be effective … it gains nothing from being … principled,” according to Terry Speed in an interesting IMS article (2016) that Harry Crane tweeted about a couple of days ago [i]. Crane objects that you need principles to determine if it is effective, else it “seems that a method is effective (a la Speed) if it gives the answer you want/expect.” I suspected that what Speed was objecting to was an appeal to “principles of inference” of the type to which Neyman objected in my recent post. This turns out to be correct. Here are some excerpts from Speed’s article (emphasis is mine): Continue reading

Categories: Likelihood Principle, Philosophy of Statistics

Deconstructing “A World Beyond P-values”

.A world beyond p-values?

I was asked to write something explaining the background of my slides (posted here) in relation to the recent ASA “A World Beyond P-values” conference. I took advantage of some long flight delays on my return to jot down some thoughts:

The contrast between the closing session of the conference “A World Beyond P-values,” and the gist of the conference itself, shines a light on a pervasive tension within the “Beyond P-Values” movement. Two very different debates are taking place. First there’s the debate about how to promote better science. This includes welcome reminders of the timeless demands of rigor and integrity required to avoid deceiving ourselves and others–especially crucial in today’s world of high-powered searches and Big Data. That’s what the closing session was about. [1] Continue reading

Categories: P-values, Philosophy of Statistics, reforming the reformers

George Barnard’s birthday: stopping rules, intentions

G.A. Barnard: 23 Sept.1915 – 9 Aug.2002

Today is George Barnard’s birthday. I met him in the 1980s and we corresponded off and on until 1999. Here’s a snippet of his discussion with Savage (1962) (link below [i]) that connects to issues often taken up on this blog: stopping rules and the likelihood principle. (It’s a slightly revised reblog of an earlier post.) I’ll post some other items related to Barnard this week, in honor of his birthday.

Happy Birthday George!

Barnard: I have been made to think further about this issue of the stopping rule since I first suggested that the stopping rule was irrelevant (Barnard 1947a,b). This conclusion does not follow only from the subjective theory of probability; it seems to me that the stopping rule is irrelevant in certain circumstances.  Since 1947 I have had the great benefit of a long correspondence—not many letters because they were not very frequent, but it went on over a long time—with Professor Bartlett, as a result of which I am considerably clearer than I was before. My feeling is that, as I indicated [on p. 42], we meet with two sorts of situation in applying statistics to data One is where we want to have a single hypothesis with which to confront the data. Do they agree with this hypothesis or do they not? Now in that situation you cannot apply Bayes’s theorem because you have not got any alternatives to think about and specify—not yet. I do not say they are not specifiable—they are not specified yet. And in that situation it seems to me the stopping rule is relevant. Continue reading

Categories: Likelihood Principle, Philosophy of Statistics | Tags:

Egon Pearson’s Heresy

E.S. Pearson: 11 Aug 1895-12 June 1980.

Here’s one last entry in honor of Egon Pearson’s birthday: “Statistical Concepts in Their Relation to Reality” (Pearson 1955). I’ve posted it several times over the years (6!), but always find a new gem or two, despite its being so short. E. Pearson rejected some of the familiar tenets that have come to be associated with Neyman and Pearson (N-P) statistical tests, notably the idea that the essential justification for tests resides in a long-run control of rates of erroneous interpretations–what he termed the “behavioral” rationale of tests. In an unpublished letter E. Pearson wrote to Birnbaum (1974), he talks about N-P theory admitting of two interpretations: behavioral and evidential:

“I think you will pick up here and there in my own papers signs of evidentiality, and you can say now that we or I should have stated clearly the difference between the behavioral and evidential interpretations. Certainly we have suffered since in the way the people have concentrated (to an absurd extent often) on behavioral interpretations”.

(Nowadays, some people concentrate to an absurd extent on “science-wise error rates in dichotomous screening”.) Continue reading

Categories: phil/history of stat, Philosophy of Statistics, Statistics | Tags: , ,

Allan Birnbaum: Foundations of Probability and Statistics (27 May 1923 – 1 July 1976)

27 May 1923-1 July 1976

27 May 1923-1 July 1976

Today is Allan Birnbaum’s birthday. In honor of his birthday, I’m posting the articles in the Synthese volume that was dedicated to his memory in 1977. The editors describe it as their way of  “paying homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics”. I paste a few snippets from the articles by Giere and Birnbaum. If you’re interested in statistical foundations, and are unfamiliar with Birnbaum, here’s a chance to catch up. (Even if you are, you may be unaware of some of these key papers.)

HAPPY BIRTHDAY ALLAN!

Synthese Volume 36, No. 1 Sept 1977: Foundations of Probability and Statistics, Part I

Editorial Introduction:

This special issue of Synthese on the foundations of probability and statistics is dedicated to the memory of Professor Allan Birnbaum. Professor Birnbaum’s essay ‘The Neyman-Pearson Theory as Decision Theory; and as Inference Theory; with a Criticism of the Lindley-Savage Argument for Bayesian Theory’ was received by the editors of Synthese in October, 1975, and a decision was made to publish a special symposium consisting of this paper together with several invited comments and related papers. The sad news about Professor Birnbaum’s death reached us in the summer of 1976, but the editorial project could nevertheless be completed according to the original plan. By publishing this special issue we wish to pay homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics. We are grateful to Professor Ronald Giere who wrote an introductory essay on Professor Birnbaum’s concept of statistical evidence and who compiled a list of Professor Birnbaum’s publications.

THE EDITORS

Continue reading

Categories: Birnbaum, Likelihood Principle, Statistics, strong likelihood principle | Tags:

Slides from the Boston Colloquium for Philosophy of Science: “Severe Testing: The Key to Error Correction”

Slides from my March 17 presentation on “Severe Testing: The Key to Error Correction” given at the Boston Colloquium for Philosophy of Science Alfred I.Taub forum on “Understanding Reproducibility and Error Correction in Science.”

 

Categories: fallacy of rejection, Fisher, fraud, frequentist/Bayesian, Likelihood Principle, reforming the reformers

BOSTON COLLOQUIUM FOR PHILOSOPHY OF SCIENCE: Understanding Reproducibility & Error Correction in Science

BOSTON COLLOQUIUM FOR PHILOSOPHY OF SCIENCE

2016–2017
57th Annual Program

Download the 57th Annual Program

The Alfred I. Taub forum:

UNDERSTANDING REPRODUCIBILITY & ERROR CORRECTION IN SCIENCE

Cosponsored by GMS and BU’s BEST at Boston University.
Friday, March 17, 2017
1:00 p.m. – 5:00 p.m.
The Terrace Lounge, George Sherman Union
775 Commonwealth Avenue

  • Reputation, Variation, &, Control: Historical Perspectives
    Jutta Schickore History and Philosophy of Science & Medicine, Indiana University, Bloomington.
  • Crisis in Science: Time for Reform?
    Arturo Casadevall Molecular Microbiology & Immunology, Johns Hopkins
  • Severe Testing: The Key to Error Correction
    Deborah Mayo Philosophy, Virginia Tech
  • Replicate That…. Maintaining a Healthy Failure Rate in Science
    Stuart Firestein Biological Sciences, Columbia

 

boston-mayo-2017

Categories: Announcement, philosophy of science, Philosophy of Statistics, Statistical fraudbusting, Statistics

The Myth of ‘The Myth of Objectivity” (i)

images-28Objectivity in statistics, as in science more generally, is a matter of both aims and methods. Objective science, in our view, aims to find out what is the case as regards aspects of the world [that hold] independently of our beliefs, biases and interests; thus objective methods aim for the critical control of inference and hypotheses, constraining them by evidence and checks of error. (Cox and Mayo 2010, p. 276)


I. The myth of objectivity.
Whenever you come up against blanket slogans such as “no methods are objective” or “all methods are equally objective and subjective,” it is a good guess that the problem is being trivialized into oblivion. Yes, there are judgments, disagreements, and values in any human activity, which alone makes it too trivial an observation to distinguish among very different ways that threats of bias and unwarranted inferences may be controlled. Is the objectivity-subjectivity distinction really toothless as many will have you believe? I say no.

Cavalier attitudes toward objectivity are in tension with widely endorsed movements to promote replication, reproducibility, and to come clean on a number of sources behind illicit results: multiple testing, cherry picking, failed assumptions, researcher latitude, publication bias and so on. The moves to take back science–if they are not mere lip-service–are rooted in the supposition that we can more objectively scrutinize results,even if it’s only to point out those that are poorly tested. The fact that the term “objectivity” is used equivocally should not be taken as grounds to oust it, but rather to engage in the difficult work of identifying what there is in “objectivity” that we won’t give up, and shouldn’t. Continue reading

Categories: Background knowledge | Tags:

Blog at WordPress.com.