Irony and Bad Faith

U-Phil: Deconstructions [of J. Berger]: Irony & Bad Faith 3

Memory Lane: 2 years ago:
My efficient Errorstat Blogpeople1 have put forward the following 3 reader-contributed interpretive efforts2 as a result of the “deconstruction” exercise from December 11, (mine, from the earlier blog, is at the end) of what I consider:

“….an especially intriguing remark by Jim Berger that I think bears upon the current mindset (Jim is aware of my efforts):

Too often I see people pretending to be subjectivists, and then using “weakly informative” priors that the objective Bayesian community knows are terrible and will give ridiculous answers; subjectivism is then being used as a shield to hide ignorance. . . . In my own more provocative moments, I claim that the only true subjectivists are the objective Bayesians, because they refuse to use subjectivism as a shield against criticism of sloppy pseudo-Bayesian practice. (Berger 2006, 463)” (From blogpost, Dec. 11, 2011)
_________________________________________________
Andrew Gelman:

The statistics literature is big enough that I assume there really is some bad stuff out there that Berger is reacting to, but I think that when he’s talking about weakly informative priors, Berger is not referring to the work in this area that I like, as I think of weakly informative priors as specifically being designed to give answers that are _not_ “ridiculous.”

Keeping things unridiculous is what regularization’s all about, and one challenge of regularization (as compared to pure subjective priors) is that the answer to the question, What is a good regularizing prior?, will depend on the likelihood.  There’s a lot of interesting theory and practice relating to weakly informative priors for regularization, a lot out there that goes beyond the idea of noninformativity.

To put it another way:  We all know that there’s no such thing as a purely noninformative prior:  any model conveys some information.  But, more and more, I’m coming across applied problems where I wouldn’t want to be noninformative even if I could, problems where some weak prior information regularizes my inferences and keeps them sane and under control. Continue reading

Categories: Gelman, Irony and Bad Faith, J. Berger, Statistics, U-Phil | Tags: , , , | 3 Comments

JIM BERGER ON JIM BERGER!

Fortunately, we have Jim Berger interpreting himself this evening (see December 11)

Jim Berger writes: 

A few comments:

1. Objective Bayesian priors are often improper (i.e., have infinite total mass), but this is not a problem when they are developed correctly. But not every improper prior is satisfactory. For instance, the constant prior is known to be unsatisfactory in many situations. The ‘solution’ pseudo-Bayesians often use is to choose a constant prior over a large but bounded set (a ‘weakly informative’ prior), saying it is now proper and so all is well. This is not true; if the constant prior on the whole parameter space is bad, so will be the constant prior over the bounded set. The problem is, in part, that some people confuse proper priors with subjective priors and, having learned that true subjective priors are fine, incorrectly presume that weakly informative proper priors are fine. Continue reading

Categories: Irony and Bad Faith, Statistics, U-Phil | Tags: , , , | 13 Comments

Contributed Deconstructions: Irony & Bad Faith 3

My efficient Errorstat Blogpeople1 have put forward the following 3 reader-contributed interpretive efforts2 as a result of the “deconstruction” exercise from December 11, (mine, from the earlier blog, is at the end) of what I consider:

“….an especially intriguing remark by Jim Berger that I think bears upon the current mindset (Jim is aware of my efforts):

Too often I see people pretending to be subjectivists, and then using “weakly informative” priors that the objective Bayesian community knows are terrible and will give ridiculous answers; subjectivism is then being used as a shield to hide ignorance. . . . In my own more provocative moments, I claim that the only true subjectivists are the objective Bayesians, because they refuse to use subjectivism as a shield against criticism of sloppy pseudo-Bayesian practice. (Berger 2006, 463)” (From blogpost, Dec. 11, 2011) Continue reading

Categories: Irony and Bad Faith, Statistics, U-Phil | Tags: , , , | 11 Comments

Deconstructing and Deep-Drilling* 2

Constructing Thebes Library: 2002

Deconstructing: The deconstructionist idea, initially associated with French philosophers like Derrida, and literary theory, denies that a “text” has a single interpretation, intended by the author, but rather that the reader constructs its meaning, unearthing conscious or unconscious significations. While the general philosophy is linked with relativism, postmodernism, and social constructivism—positions to which I am highly allergic—one needn’t embrace them to accord validity to the activity of disinterring meanings: ironies, deceptions, and unintended assumptions and twists in an author’s writing. The passage I cited from Berger seems to offer an example for creative deconstruction of the statistical kind. I wouldn’t have proposed the exercise if I didn’t suspect we might learn something of relevance to our deep-sea drilling activity…. Please continue to send your ponderings….

* DO stock is nearly at a year low! (I surmise a fairly quick trip back up 10 points)

Categories: Irony and Bad Faith, philosophy of science, U-Phil | Tags: , , , | Leave a comment

Irony and Bad Faith: Deconstructing Bayesians 1

Some time in 2006 (shortly after my ERROR06 conference), the trickle of irony and sometime flood of family feuds issuing from Bayesian forums drew me back into the Bayesian-frequentist debates.1 2  Suddenly sparks were flying, mostly kept shrouded within Bayesian walls, but nothing can long be kept secret even there. Spontaneous combustion is looming. The true-blue subjectivists were accusing the increasingly popular “objective” and “reference” Bayesians of practicing in bad faith; the new O-Bayesians (and frequentist-Bayesian unificationists) were taking pains to show they were not subjective; and some were calling the new Bayesian kids on the block “pseudo Bayesian.” Then there were the Bayesians somewhere in the middle (or perhaps out in left field) who, though they still use the Bayesian umbrella, were flatly denying the very idea that Bayesian updating fits anything they actually do in statistics.3 Obeisance to Bayesian reasoning remained, but on some kind of a priori philosophical grounds. Doesn’t the methodology used in practice really need a philosophy of its own? I say it does, and I want to provide this. Continue reading

Categories: Irony and Bad Faith, U-Phil | Tags: , , , , | 6 Comments

Blog at WordPress.com.