Here are the slides from my discussion of Nancy Reid today at BFF4: The Fourth Bayesian, Fiducial, and Frequentist Workshop: May 1-3, 2017 (hosted by Harvard University)
“Fusion-Confusion?” My Discussion of Nancy Reid: “BFF Four- Are we Converging?”
Categories: Bayesian/frequentist, C.S. Peirce, confirmation theory, fiducial probability, Fisher, law of likelihood, Popper
| Tags: Hacking
One thought on ““Fusion-Confusion?” My Discussion of Nancy Reid: “BFF Four- Are we Converging?””

The Statistics Wars & Their Casualties
Blog links (references)
Reviews of Statistical Inference as Severe Testing (SIST)
- P. Bandyopadhyay (2019) Notre Dame Philosophical Reviews
- C. Hennig (2019) Statistical Modeling, Causal. Inference, and Social Science blog
- A. Spanos (2019) OEconomia: History, Methodology, Philosophy
- R. Cousins 2020 (Preprint)
- S. Fletcher (2020) Philosophy of Science
- B. Haig (2020) Methods in Psychology
- C. Mayo-Wilson (2020 forthcoming) Philosophical Review
- T. Sterkenburg (2020) Journal for General Philosophy of Science
Interviews & Debates on PhilStat (2020)
- The Statistics Debate!with Jim Berger, Deborah Mayo, David Trafimow & Dan Jeske, moderator (10/15/20)
- The Filter podcast with Matt Asher (11/23/20)
- Philosophy of Data Science Series Keynote Episode 1: Revolutions, Reforms, and Severe Testing in Data Science with Glen Wright Colopy (11/24/20)
- Philosophy of Data Science Series Keynote Episode 2: The Philosophy of Science & Statistics with Glen Wright Colopy (12/01/20)
Interviews on PhilStat (2019)
Top Posts & Pages
- D. Lakens responds to confidence interval crusading journal editors
- S. Senn: Randomisation is not about balance, nor about homogeneity but about randomness (Guest Post)
- 10 years after the July 4 statistical discovery of the the Higgs & the value of negative results
- Update on Higgs data analysis: statistical flukes (part 1)
- Higgs Discovery two years on (1: "Is particle physics bad science?")
- Higgs Boson: Bayesian "Digest and Discussion"
- Higgs analysis and statistical flukes (part 2)
- Scalar or Technicolor? S. Weinberg, "Why the Higgs?"
- “Did Higgs Physicists Miss an Opportunity by Not Consulting More With Statisticians?”
- Spurious Correlations: Death by getting tangled in bedsheets and the consumption of cheese! (Aris Spanos)
Conferences & Workshops
RMM Special Topic
Mayo & Spanos, Error Statistics
My Websites
Recent Posts: PhilStatWars
January 11: Phil Stat (Remote) Forum
WORKSHOP
The (Vaccine) Booster Wars: A prepost
June 24: “Have Covid-19 lockdowns led to an increase in domestic violence? Drawing inferences from police administrative data” (Katrin Hohl)
May 20: “Objective Bayesianism from a philosophical perspective” (Jon Williamson)
LOG IN/OUT
Archives
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
In my talk I alluded to the analogy: Carnap is to Bayesians as Popper is to frequentists. A questioner began by saying that in social science it’s typical to go from a statistically significant result e to infer one’s favorite explanation H’. He asked: Doesn’t this mean that statistical tests (or maybe only significance tests) are in opposition with Popper? The answer is no, although going from statistically significant e to H’ is about as glaring a fallacy as one can imagine (unless Ho and H’ exhaust the possibilities). If you understand Popper, statistical tests, and a bit of logic, you will see that non-fallacious uses of tests are Popperian.
1. First: a side trip to underdetermination. The most well-known problem with making inferences from data x to hypotheses that might explain them is underdetermination: data underdetermine hypotheses and theories insofar as there’s more than 1 hypothesis to “explain” them. That is why hypothetical deductive HD inference is inadequate. HD inference goes from “H entails e, and e, to H” –deductively invalid. The statistical version of HD inference goes from:
H is made more probable by e than it was to start; e is observed, therefore H gets “confirmed” in the sense of getting a Bayesian boost.
The problem of underdetermination is exacerbated with the statistical version of HD: there are many incompatible hypotheses that can be found to give H the B-boost. The problem of underdetermination is NOT a problem with any statistical tools, it’s a fact of life. It IS a problem if your statistical tools inadequately cope with it.
2. To cope with underdetermination, good tests demand something beyond “confirmation”(in the Bayesian sense of a B-boost). Popper said that e can’t count in support of H’ unless e reports the result of H SURVIVING or passing a severe test of H’s flaws.
The probability of H’ passing such a stringent test, if H is false is low. One may infer the absence of specific flaws in H’, only if with high probability the method would have unearthed them, and yet it does not. The probability attaches to the method! It describes the method’s probative capability.
3. Meehl’s criticism. Many accept the Popperian standpoint:
The more stringent and precise is the test of a discrepancy between H and data, the better H is corroborated when no such discrepancy is found. H is NOT assigned a probability, but it’s corroborated.
Their complaint (emphasized by Meehl) is this: Suppose a test of a null hypothesis (no effect) Ho is highly precise or powerful. And suppose (statistically) falsifying Ho is taken to corroborate or support a substantive H’ (which would “explain” x). Then, the highly precise test will make it easier to find support for H’. This is at odds with Popper.
Indeed! And it is also at odds with statistical tests. If you insist these are N-P tests, fine.
If you seek to infer H’, you must stringently probe flaws of H’! You are entitled to infer H’ only if you’ve stringently probed how H’ may be wrong, and didn’t find any flaws.
Corroboration comes from FAILING TO FALSIFY H’, i.e., from H’ surviving.
Meehl was describing a fallacious use of tests.
4. Popper’s criticism of fallacious uses of significance tests. Rejecting a null hypothesis Ho (of no effect) might entitle you to infer the existence of a genuine discrepancy from Ho. Call that inference e. So long as many explanations for e exist—e underdetermines its explanation. But the corroboration or severity requirement blocks inferring any particular explanation H’. So do statistical tests! Moving from statistical effect e to a particular explanation of e, when that explanation hasn’t been well probed, is a fallacy of significance tests! It is permitted by Carnapian or other B-boost accounts. That was Popper’s criticism.
Does that mean you can never corroborate a hypothesis H’? No! It means you need to actually test H’ before you can corroborate it! It means you shouldn’t settle for a report that says it’s OK to infer H’ so long as H’ is more probable than Ho, nor that H’ is more likely than Ho. Those inference methods do not yield corroboration, but only a claim of comparative fit: H’ “explains” the data better than does Ho. That might be interesting to know, but doesn’t go very far. Not so long as there are zillions of other hypotheses that also agree with the data, but which haven’t been probed at all. They haven’t been ruled out in the slightest.
5. Corroborating H’. Nor does highly corroborating H’ require listing all the possible alternatives to it. Scientists don’t do that. Inference proceeds in stages. H’ may describe an explanation at a certain level of approximation. For example, we don’t have a full theory of prion transmission (in cases of diseases like mad cow), but we can infer, with severity, a theory H’ that explains the transmission by protein misfolding, without DNA. We’ve rejected, with severity, the denial of H’ and learned this much about the mechanism.
In my view, an inference account must also report on what hasn’t been well probed–that’s the source of insights for going further and building higher level theories.