Bayesian/frequentist

3 YEARS AGO (JANUARY 2014): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: January 2014. I mark in red three posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 3 others I’d recommend[2].  Posts that are part of a “unit” or a group count as one. This month, I’m grouping the 3 posts from my seminar with A. Spanos, counting them as 1.

January 2014

  • (1/2) Winner of the December 2013 Palindrome Book Contest (Rejected Post)
  • (1/3) Error Statistics Philosophy: 2013
  • (1/4) Your 2014 wishing well. …
  • (1/7) “Philosophy of Statistical Inference and Modeling” New Course: Spring 2014: Mayo and Spanos: (Virginia Tech)
  • (1/11) Two Severities? (PhilSci and PhilStat)
  • (1/14) Statistical Science meets Philosophy of Science: blog beginnings
  • (1/16) Objective/subjective, dirty hands and all that: Gelman/Wasserman blogolog (ii)
  • (1/18) Sir Harold Jeffreys’ (tail area) one-liner: Sat night comedy [draft ii]
  • (1/22) Phil6334: “Philosophy of Statistical Inference and Modeling” New Course: Spring 2014: Mayo and Spanos (Virginia Tech) UPDATE: JAN 21
  • (1/24) Phil 6334: Slides from Day #1: Four Waves in Philosophy of Statistics
  • (1/25) U-Phil (Phil 6334) How should “prior information” enter in statistical inference?
  • (1/27) Winner of the January 2014 palindrome contest (rejected post)
  • (1/29) BOSTON COLLOQUIUM FOR PHILOSOPHY OF SCIENCE: Revisiting the Foundations of Statistics

    .

  • (1/31) Phil 6334: Day #2 Slides

 

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30, 2016-very convenient.

 

Save

Save

Save

Save

Save

Categories: 3-year memory lane, Bayesian/frequentist, Statistics | 1 Comment

The “P-values overstate the evidence against the null” fallacy

3077175-lg

.

The allegation that P-values overstate the evidence against the null hypothesis continues to be taken as gospel in discussions of significance tests. All such discussions, however, assume a notion of “evidence” that’s at odds with significance tests–generally Bayesian probabilities of the sort used in Jeffrey’s-Lindley disagreement (default or “I’m selecting from an urn of nulls” variety). Szucs and Ioannidis (in a draft of a 2016 paper) claim “it can be shown formally that the definition of the p value does exaggerate the evidence against H0” (p. 15) and they reference the paper I discuss below: Berger and Sellke (1987). It’s not that a single small P-value provides good evidence of a discrepancy (even assuming the model, and no biasing selection effects); Fisher and others warned against over-interpreting an “isolated” small P-value long ago.  But the formulation of the “P-values overstate the evidence” meme introduces brand new misinterpretations into an already confused literature! The following are snippets from some earlier posts–mostly this one–and also includes some additions from my new book (forthcoming). 

Categories: Bayesian/frequentist, fallacy of rejection, highly probable vs highly probed, P-values, Statistics | 46 Comments

3 YEARS AGO (DECEMBER 2013): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: December 2013. I mark in red three posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 3 others I’d recommend[2].  Posts that are part of a “unit” or a group count as one. In this post, that makes 12/27-12/28 count as one.

December 2013

  • (12/3) Stephen Senn: Dawid’s Selection Paradox (guest post)
  • (12/7) FDA’s New Pharmacovigilance
  • (12/9) Why ecologists might want to read more philosophy of science (UPDATED)
  • (12/11) Blog Contents for Oct and Nov 2013
  • (12/14) The error statistician has a complex, messy, subtle, ingenious piece-meal approach
  • (12/15) Surprising Facts about Surprising Facts
  • (12/19) A. Spanos lecture on “Frequentist Hypothesis Testing
  • (12/24) U-Phil: Deconstructions [of J. Berger]: Irony & Bad Faith 3
  • (12/25) “Bad Arguments” (a book by Ali Almossawi)
  • (12/26) Mascots of Bayesneon statistics (rejected post)
  • (12/27) Deconstructing Larry Wasserman
  • (12/28) More on deconstructing Larry Wasserman (Aris Spanos)
  • (12/28) Wasserman on Wasserman: Update! December 28, 2013
  • (12/31) Midnight With Birnbaum (Happy New Year)

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30, 2016-very convenient.

 

Save

Save

Save

Save

Save

Categories: 3-year memory lane, Bayesian/frequentist, Error Statistics, Statistics | 1 Comment

“Tests of Statistical Significance Made Sound”: excerpts from B. Haig

images-34

.

I came across a paper, “Tests of Statistical Significance Made Sound,” by Brian Haig, a psychology professor at the University of Canterbury, New Zealand. It hits most of the high notes regarding statistical significance tests, their history & philosophy and, refreshingly, is in the error statistical spirit! I’m pasting excerpts from his discussion of “The Error-Statistical Perspective”starting on p.7.[1]

The Error-Statistical Perspective

An important part of scientific research involves processes of detecting, correcting, and controlling for error, and mathematical statistics is one branch of methodology that helps scientists do this. In recognition of this fact, the philosopher of statistics and science, Deborah Mayo (e.g., Mayo, 1996), in collaboration with the econometrician, Aris Spanos (e.g., Mayo & Spanos, 2010, 2011), has systematically developed, and argued in favor of, an error-statistical philosophy for understanding experimental reasoning in science. Importantly, this philosophy permits, indeed encourages, the local use of ToSS, among other methods, to manage error. Continue reading

Categories: Bayesian/frequentist, Error Statistics, fallacy of rejection, P-values, Statistics | 12 Comments

Gelman at the PSA: “Confirmationist and Falsificationist Paradigms in Statistical Practice”: Comments & Queries

screen-shot-2016-10-26-at-10-23-07-pmTo resume sharing some notes I scribbled down on the contributions to our Philosophy of Science Association symposium on Philosophy of Statistics (Nov. 4, 2016), I’m up to Gelman. Comments on Gigerenzer and Glymour are here and here. Gelman didn’t use slides but gave a very thoughtful, extemporaneous presentation on his conception of “falsificationist Bayesianism”, its relation to current foundational issues, as well as to error statistical testing. My comments follow his abstract.

Confirmationist and Falsificationist Paradigms in Statistical Practice

gelman5

.

Andrew Gelman

There is a divide in statistics between classical frequentist and Bayesian methods. Classical hypothesis testing is generally taken to follow a falsificationist, Popperian philosophy in which research hypotheses are put to the test and rejected when data do not accord with predictions. Bayesian inference is generally taken to follow a confirmationist philosophy in which data are used to update the probabilities of different hypotheses. We disagree with this conventional Bayesian-frequentist contrast: We argue that classical null hypothesis significance testing is actually used in a confirmationist sense and in fact does not do what it purports to do; and we argue that Bayesian inference cannot in general supply reasonable probabilities of models being true. The standard research paradigm in social psychology (and elsewhere) seems to be that the researcher has a favorite hypothesis A. But, rather than trying to set up hypothesis A for falsification, the researcher picks a null hypothesis B to falsify, which is then taken as evidence in favor of A. Research projects are framed as quests for confirmation of a theory, and once confirmation is achieved, there is a tendency to declare victory and not think too hard about issues of reliability and validity of measurements. Continue reading

Categories: Bayesian/frequentist, Gelman, Shalizi, Statistics | 148 Comments

Taking errors seriously in forecasting elections

1200x-1

.

Science isn’t about predicting one-off events like election results, but that doesn’t mean the way to make election forecasts scientific (which they should be) is to build “theories of voting.” A number of people have sent me articles on statistical aspects of the recent U.S. election, but I don’t have much to say and I like to keep my blog non-political. I won’t violate this rule in making a couple of comments on Faye Flam’s Nov. 11 article: “Why Science Couldn’t Predict a Trump Presidency”[i].

For many people, Donald Trump’s surprise election victory was a jolt to very idea that humans are rational creatures. It tore away the comfort of believing that science has rendered our world predictable. The upset led two New York Times reporters to question whether data science could be trusted in medicine and business. A Guardian columnist declared that big data works for physics but breaks down in the realm of human behavior. Continue reading

Categories: Bayesian/frequentist, evidence-based policy | 15 Comments

For Statistical Transparency: Reveal Multiplicity and/or Just Falsify the Test (Remark on Gelman and Colleagues)

images-31

.

Gelman and Loken (2014) recognize that even without explicit cherry picking there is often enough leeway in the “forking paths” between data and inference so that by artful choices you may be led to one inference, even though it also could have gone another way. In good sciences, measurement procedures should interlink with well-corroborated theories and offer a triangulation of checks– often missing in the types of experiments Gelman and Loken are on about. Stating a hypothesis in advance, far from protecting from the verification biases, can be the engine that enables data to be “constructed”to reach the desired end [1].

[E]ven in settings where a single analysis has been carried out on the given data, the issue of multiple comparisons emerges because different choices about combining variables, inclusion and exclusion of cases…..and many other steps in the analysis could well have occurred with different data (Gelman and Loken 2014, p. 464).

An idea growing out of this recognition is to imagine the results of applying the same statistical procedure, but with different choices at key discretionary junctures–giving rise to a multiverse analysis, rather than a single data set (Steegen, Tuerlinckx, Gelman, and Vanpaemel 2016). One lists the different choices thought to be plausible at each stage of data processing. The multiverse displays “which constellation of choices corresponds to which statistical results” (p. 797). The result of this exercise can, at times, mimic the delineation of possibilities in multiple testing and multiple modeling strategies. Continue reading

Categories: Bayesian/frequentist, Error Statistics, Gelman, P-values, preregistration, reproducibility, Statistics | 9 Comments

A new front in the statistics wars? Peaceful negotiation in the face of so-called ‘methodological terrorism’

images-30I haven’t been blogging that much lately, as I’m tethered to the task of finishing revisions on a book (on the philosophy of statistical inference!) But I noticed two interesting blogposts, one by Jeff Leek, another by Andrew Gelman, and even a related petition on Twitter, reflecting a newish front in the statistics wars: When it comes to improving scientific integrity, do we need more carrots or more sticks? 

Leek’s post, from yesterday, called “Statistical Vitriol” (29 Sep 2016), calls for de-escalation of the consequences of statistical mistakes:

Over the last few months there has been a lot of vitriol around statistical ideas. First there were data parasites and then there were methodological terrorists. These epithets came from established scientists who have relatively little statistical training. There was the predictable backlash to these folks from their counterparties, typically statisticians or statistically trained folks who care about open source.
Continue reading

Categories: Anil Potti, fraud, Gelman, pseudoscience, Statistics | 15 Comments

Peircean Induction and the Error-Correcting Thesis (Part I)

C. S. Peirce: 10 Sept, 1839-19 April, 1914

C. S. Peirce: 10 Sept, 1839-19 April, 1914

Today is C.S. Peirce’s birthday. He’s one of my all time heroes. You should read him: he’s a treasure chest on essentially any topic, and he anticipated several major ideas in statistics (e.g., randomization, confidence intervals) as well as in logic. I’ll reblog the first portion of a (2005) paper of mine. Links to Parts 2 and 3 are at the end. It’s written for a very general philosophical audience; the statistical parts are pretty informal. Happy birthday Peirce.

Peircean Induction and the Error-Correcting Thesis
Deborah G. Mayo
Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, Volume 41, Number 2, 2005, pp. 299-319

Peirce’s philosophy of inductive inference in science is based on the idea that what permits us to make progress in science, what allows our knowledge to grow, is the fact that science uses methods that are self-correcting or error-correcting:

Induction is the experimental testing of a theory. The justification of it is that, although the conclusion at any stage of the investigation may be more or less erroneous, yet the further application of the same method must correct the error. (5.145)

Continue reading

Categories: Bayesian/frequentist, C.S. Peirce, Error Statistics, Statistics | 18 Comments

TragiComedy hour: P-values vs posterior probabilities vs diagnostic error rates

Did you hear the one about the frequentist significance tester when he was shown the nonfrequentist nature of p-values?

Critic: I just simulated a long series of tests on a pool of null hypotheses, and I found that among tests with p-values of .05, at least 22%—and typically over 50%—of the null hypotheses are true!

Frequentist Significance Tester: Scratches head: But rejecting the null with a p-value of .05 ensures erroneous rejection no more than 5% of the time!

Raucous laughter ensues!

(Hah, hah… “So funny, I forgot to laugh! Or, I’m crying and laughing at the same time!) Continue reading

Categories: Bayesian/frequentist, Comedy, significance tests, Statistics | 9 Comments

Er, about those “other statistical approaches”: Hold off until a balanced critique is in?

street-chalk-art-optical-illusion-6

.

I could have told them that the degree of accordance enabling the “6 principles” on p-values was unlikely to be replicated when it came to most of the “other approaches” with which some would supplement or replace significance tests– notably Bayesian updating, Bayes factors, or likelihood ratios (confidence intervals are dual to hypotheses tests). [My commentary is here.] So now they may be advising a “hold off” or “go slow” approach until some consilience is achieved. Is that it? I don’t know. I was tweeted an article about the background chatter taking place behind the scenes; I wasn’t one of people interviewed for this. Here are some excerpts, I may add more later after it has had time to sink in. (check back later)

“Reaching for Best Practices in Statistics: Proceed with Caution Until a Balanced Critique Is In”

J. Hossiason

“[A]ll of the other approaches*, as well as most statistical tools, may suffer from many of the same problems as the p-values do. What level of likelihood ratio in favor of the research hypothesis will be acceptable to the journal? Should scientific discoveries be based on whether posterior odds pass a specific threshold (P3)? Does either measure the size of an effect (P5)?…How can we decide about the sample size needed for a clinical trial—however analyzed—if we do not set a specific bright-line decision rule? 95% confidence intervals or credence intervals…offer no protection against selection when only those that do not cover 0, are selected into the abstract (P4). (Benjamini, ASA commentary, pp. 3-4)

What’s sauce for the goose is sauce for the gander right?  Many statisticians seconded George Cobb who urged “the board to set aside time at least once every year to consider the potential value of similar statements” to the recent ASA p-value report. Disappointingly, a preliminary survey of leaders in statistics, many from the original p-value group, aired striking disagreements on best and worst practices with respect to these other approaches. The Executive Board is contemplating a variety of recommendations, minimally, Continue reading

Categories: Bayesian/frequentist, Statistics | 84 Comments

“P-values overstate the evidence against the null”: legit or fallacious?

The allegation that P-values overstate the evidence against the null hypothesis continues to be taken as gospel in discussions of significance tests. All such discussions, however, assume a notion of “evidence” that’s at odds with significance tests–generally likelihood ratios, or Bayesian posterior probabilities (conventional or of the “I’m selecting hypotheses from an urn of nulls” variety). I’m reblogging the bulk of an earlier post as background for a new post to appear tomorrow.  It’s not that a single small P-value provides good evidence of a discrepancy (even assuming the model, and no biasing selection effects); Fisher and others warned against over-interpreting an “isolated” small P-value long ago.  The problem is that the current formulation of the “P-values overstate the evidence” meme is attached to a sleight of hand (on meanings) that is introducing brand new misinterpretations into an already confused literature! 

 

Categories: Bayesian/frequentist, fallacy of rejection, highly probable vs highly probed, P-values | 3 Comments

“On the Brittleness of Bayesian Inference,” Owhadi and Scovel (PUBLISHED)

a0a82d0b0dc678502499eaa33d4f4c79

.

The record number of hits on this blog goes to “When Bayesian Inference shatters,” where Houman Owhadi presents a “Plain Jane” explanation of results now published in “On the Brittleness of Bayesian Inference”. A follow-up was 1 year ago. Here’s how their paper begins:

owhadi

.

Houman Owhadi
Professor of Applied and Computational Mathematics and Control and Dynamical Systems, Computing + Mathematical Sciences,
California Institute of Technology, USA+

Clintpic

.

Clint Scovel
Senior Scientist,
Computing + Mathematical Sciences,

California Institute of Technology, USA

 

“On the Brittleness of Bayesian Inference”

ABSTRACT: With the advent of high-performance computing, Bayesian methods are becoming increasingly popular tools for the quantification of uncertainty throughout science and industry. Since these methods can impact the making of sometimes critical decisions in increasingly complicated contexts, the sensitivity of their posterior conclusions with respect to the underlying models and prior beliefs is a pressing question to which there currently exist positive and negative answers. We report new results suggesting that, although Bayesian methods are robust when the number of possible outcomes is finite or when only a finite number of marginals of the data-generating distribution are unknown, they could be generically brittle when applied to continuous systems (and their discretizations) with finite information on the data-generating distribution. If closeness is defined in terms of the total variation (TV) metric or the matching of a finite system of generalized moments, then (1) two practitioners who use arbitrarily close models and observe the same (possibly arbitrarily large amount of) data may reach opposite conclusions; and (2) any given prior and model can be slightly perturbed to achieve any desired posterior conclusion. The mechanism causing brittleness/robustness suggests that learning and robustness are antagonistic requirements, which raises the possibility of a missing stability condition when using Bayesian inference in a continuous world under finite information.

© 2015, Society for Industrial and Applied Mathematics
Permalink: http://dx.doi.org/10.1137/130938633 Continue reading

Categories: Bayesian/frequentist, Statistics | 16 Comments

Gelman on ‘Gathering of philosophers and physicists unaware of modern reconciliation of Bayes and Popper’

 I’m reblogging Gelman’s post today: “Gathering of philosophers and physicists unaware of modern reconciliation of Bayes and Popper”. I concur with Gelman’s arguments against all Bayesian “inductive support” philosophies, and welcome the Gelman and Shalizi (2013) ‘meeting of the minds’ between an error statistical philosophy and Bayesian falsification (which I regard as a kind of error statistical Bayesianism). Just how radical a challenge these developments pose to other stripes of Bayesianism has yet to be explored. My comment on them is here.

Screen Shot 2015-12-16 at 11.17.09 PM

“Gathering of philosophers and physicists unaware of modern reconciliation of Bayes and Popper” by Andrew Gelman

Hiro Minato points us to a news article by physicist Natalie Wolchover entitled “A Fight for the Soul of Science.”

I have no problem with most of the article, which is a report about controversies within physics regarding the purported untestability of physics models such as string theory (as for example discussed by my Columbia colleague Peter Woit). Wolchover writes:

Whether the fault lies with theorists for getting carried away, or with nature, for burying its best secrets, the conclusion is the same: Theory has detached itself from experiment. The objects of theoretical speculation are now too far away, too small, too energetic or too far in the past to reach or rule out with our earthly instruments. . . .

Over three mild winter days, scholars grappled with the meaning of theory, confirmation and truth; how science works; and whether, in this day and age, philosophy should guide research in physics or the other way around. . . .

To social and behavioral scientists, this is all an old old story. Concepts such as personality, political ideology, and social roles are undeniably important but only indirectly related to any measurements. In social science we’ve forever been in the unavoidable position of theorizing without sharp confirmation or falsification, and, indeed, unfalsifiable theories such as Freudian psychology and rational choice theory have been central to our understanding of much of the social world.

But then somewhere along the way the discussion goes astray: Continue reading

Categories: Bayesian/frequentist, Error Statistics, Gelman, Shalizi, Statistics | 20 Comments

Return to the Comedy Hour: P-values vs posterior probabilities (1)

Comedy Hour

Comedy Hour

Did you hear the one about the frequentist significance tester when he was shown the nonfrequentist nature of p-values?

JB [Jim Berger]: I just simulated a long series of tests on a pool of null hypotheses, and I found that among tests with p-values of .05, at least 22%—and typically over 50%—of the null hypotheses are true!(1)

Frequentist Significance Tester: Scratches head: But rejecting the null with a p-value of .05 ensures erroneous rejection no more than 5% of the time!

Raucous laughter ensues!

(Hah, hah,…. I feel I’m back in high school: “So funny, I forgot to laugh!)

The frequentist tester should retort:

Frequentist Significance Tester: But you assumed 50% of the null hypotheses are true, and  computed P(H0|x) (imagining P(H0)= .5)—and then assumed my p-value should agree with the number you get, if it is not to be misleading!

Yet, our significance tester is not heard from as they move on to the next joke…. Continue reading

Categories: Bayesian/frequentist, Comedy, PBP, significance tests, Statistics | 27 Comments

S. McKinney: On Efron’s “Frequentist Accuracy of Bayesian Estimates” (Guest Post)

SMWorkPhoto_IMG_2432

.

Steven McKinney, Ph.D.
Statistician
Molecular Oncology and Breast Cancer Program
British Columbia Cancer Research Centre

                    

On Bradley Efron’s: “Frequentist Accuracy of Bayesian Estimates”

Bradley Efron has produced another fine set of results, yielding a valuable estimate of variability for a Bayesian estimate derived from a Markov Chain Monte Carlo algorithm, in his latest paper “Frequentist accuracy of Bayesian estimates” (J. R. Statist. Soc. B (2015) 77, Part 3, pp. 617–646). I give a general overview of Efron’s brilliance via his Introduction discussion (his words “in double quotes”).

“1. Introduction

The past two decades have witnessed a greatly increased use of Bayesian techniques in statistical applications. Objective Bayes methods, based on neutral or uniformative priors of the type pioneered by Jeffreys, dominate these applications, carried forward on a wave of popularity for Markov chain Monte Carlo (MCMC) algorithms. Good references include Ghosh (2011), Berger (2006) and Kass and Wasserman (1996).”

A nice concise summary, one that should bring joy to anyone interested in Bayesian methods after all the Bayesian-bashing of the middle 20th century. Efron himself has crafted many beautiful results in the Empirical Bayes arena. He has reviewed important differences between Bayesian and frequentist outcomes that point to some as-yet unsettled issues in statistical theory and philosophy such as his scales of evidence work. Continue reading

Categories: Bayesian/frequentist, objective Bayesians, Statistics | 44 Comments

Statistical “reforms” without philosophy are blind (v update)

following-leader-off-cliff

.

Is it possible, today, to have a fair-minded engagement with debates over statistical foundations? I’m not sure, but I know it is becoming of pressing importance to try. Increasingly, people are getting serious about methodological reforms—some are quite welcome, others are quite radical. Too rarely do the reformers bring out the philosophical presuppositions of the criticisms and proposed improvements. Today’s (radical?) reform movements are typically launched from criticisms of statistical significance tests and P-values, so I focus on them. Regular readers know how often the P-value (that most unpopular girl in the class) has made her appearance on this blog. Here, I tried to quickly jot down some queries. (Look for later installments and links.) What are some key questions we need to ask to tell what’s true about today’s criticisms of P-values? 

I. To get at philosophical underpinnings, the single most import question is this:

(1) Do the debaters distinguish different views of the nature of statistical inference and the roles of probability in learning from data? Continue reading

Categories: Bayesian/frequentist, Error Statistics, P-values, significance tests, Statistics, strong likelihood principle | 193 Comments

Oy Faye! What are the odds of not conflating simple conditional probability and likelihood with Bayesian success stories?

Unknown

Faye Flam

ONE YEAR AGO, the NYT “Science Times” (9/29/14) published Fay Flam’s article, first blogged here.

Congratulations to Faye Flam for finally getting her article published at the Science Times at the New York Times, “The odds, continually updated” after months of reworking and editing, interviewing and reinterviewing. I’m grateful that one remark from me remained. Seriously I am. A few comments: The Monty Hall example is simple probability not statistics, and finding that fisherman who floated on his boots at best used likelihoods. I might note, too, that critiquing that ultra-silly example about ovulation and voting–a study so bad they actually had to pull it at CNN due to reader complaints[i]–scarcely required more than noticing the researchers didn’t even know the women were ovulating[ii]. Experimental design is an old area of statistics developed by frequentists; on the other hand, these ovulation researchers really believe their theory (and can point to a huge literature)….. Anyway, I should stop kvetching and thank Faye and the NYT for doing the article at all[iii]. Here are some excerpts:

30BAYES-master675

silly pic that accompanied the NYT article

…….When people think of statistics, they may imagine lists of numbers — batting averages or life-insurance tables. But the current debate is about how scientists turn data into knowledge, evidence and predictions. Concern has been growing in recent years that some fields are not doing a very good job at this sort of inference. In 2012, for example, a team at the biotech company Amgen announced that they’d analyzed 53 cancer studies and found it could not replicate 47 of them.

Similar follow-up analyses have cast doubt on so many findings in fields such as neuroscience and social science that researchers talk about a “replication crisis”

Continue reading

Categories: Bayesian/frequentist, Statistics | Leave a comment

(Part 2) Peircean Induction and the Error-Correcting Thesis

C. S. Peirce 9/10/1839 – 4/19/1914

C. S. Peirce
9/10/1839 – 4/19/1914

Continuation of “Peircean Induction and the Error-Correcting Thesis”

Deborah G. Mayo
Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, Volume 41, Number 2, 2005, pp. 299-319

Part 1 is here.

There are two other points of confusion in critical discussions of the SCT, that we may note here:

I. The SCT and the Requirements of Randomization and Predesignation

The concern with “the trustworthiness of the proceeding” for Peirce like the concern with error probabilities (e.g., significance levels) for error statisticians generally, is directly tied to their view that inductive method should closely link inferences to the methods of data collection as well as to how the hypothesis came to be formulated or chosen for testing.

This account of the rationale of induction is distinguished from others in that it has as its consequences two rules of inductive inference which are very frequently violated (1.95) namely, that the sample be (approximately) random and that the property being tested not be determined by the particular sample x— i.e., predesignation.

The picture of Peircean induction that one finds in critics of the SCT disregards these crucial requirements for induction: Neither enumerative induction nor H-D testing, as ordinarily conceived, requires such rules. Statistical significance testing, however, clearly does. Continue reading

Categories: Bayesian/frequentist, C.S. Peirce, Error Statistics, Statistics | Leave a comment

Peircean Induction and the Error-Correcting Thesis (Part I)

C. S. Peirce: 10 Sept, 1839-19 April, 1914

C. S. Peirce: 10 Sept, 1839-19 April, 1914

Yesterday was C.S. Peirce’s birthday. He’s one of my all time heroes. You should read him: he’s a treasure chest on essentially any topic. I only recently discovered a passage where Popper calls Peirce one of the greatest philosophical thinkers ever (I don’t have it handy). If Popper had taken a few more pages from Peirce, he would have seen how to solve many of the problems in his work on scientific inference, probability, and severe testing. I’ll blog the main sections of a (2005) paper of mine over the next few days. It’s written for a very general philosophical audience; the statistical parts are pretty informal. I first posted it in 2013Happy (slightly belated) Birthday Peirce.

Peircean Induction and the Error-Correcting Thesis
Deborah G. Mayo
Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, Volume 41, Number 2, 2005, pp. 299-319

Peirce’s philosophy of inductive inference in science is based on the idea that what permits us to make progress in science, what allows our knowledge to grow, is the fact that science uses methods that are self-correcting or error-correcting:

Induction is the experimental testing of a theory. The justification of it is that, although the conclusion at any stage of the investigation may be more or less erroneous, yet the further application of the same method must correct the error. (5.145)

Inductive methods—understood as methods of experimental testing—are justified to the extent that they are error-correcting methods. We may call this Peirce’s error-correcting or self-correcting thesis (SCT):

Self-Correcting Thesis SCT: methods for inductive inference in science are error correcting; the justification for inductive methods of experimental testing in science is that they are self-correcting. Continue reading

Categories: Bayesian/frequentist, C.S. Peirce, Error Statistics, Statistics | Leave a comment

Blog at WordPress.com.