Posts Tagged With: frequentist foundations

The Error Statistical Philosophy and The Practice of Bayesian Statistics: Comments on Gelman and Shalizi

Mayo elbowThe following is my commentary on a paper by Gelman and Shalizi, forthcoming (some time in 2013) in the British Journal of Mathematical and Statistical Psychology* (submitted February 14, 2012).

The Error Statistical Philosophy and the Practice of Bayesian Statistics: Comments on A. Gelman and C. Shalizi: Philosophy and the Practice of Bayesian Statistics**
Deborah G. Mayo

  1. Introduction

I am pleased to have the opportunity to comment on this interesting and provocative paper. I shall begin by citing three points at which the authors happily depart from existing work on statistical foundations.

First, there is the authors’ recognition that methodology is ineluctably bound up with philosophy. If nothing else “strictures derived from philosophy can inhibit research progress” (p. 4). They note, for example, the reluctance of some Bayesians to test their models because of their belief that “Bayesian models were by definition subjective,” or perhaps because checking involves non-Bayesian methods (4, n4).

Second, they recognize that Bayesian methods need a new foundation. Although the subjective Bayesian philosophy, “strongly influenced by Savage (1954), is widespread and influential in the philosophy of science (especially in the form of Bayesian confirmation theory),”and while many practitioners perceive the “rising use of Bayesian methods in applied statistical work,” (2) as supporting this Bayesian philosophy, the authors flatly declare that “most of the standard philosophy of Bayes is wrong” (2 n2). Despite their qualification that “a statistical method can be useful even if its philosophical justification is in error”, their stance will rightly challenge many a Bayesian.

Continue reading

Categories: Statistics | Tags: , , , ,

Painting-by-Number #1

In an exchange with an anonymous commentator, responding to my May 23 blog post, I was asked what I meant by an argument (in favor of a method) based on “painting-by-number” reconstructions. “Painting-by-numbers” refers to reconstructing an inference or application of method X (analogous to a method of painting) to make it consistent with an application of method Y (painting with a paint-by-number kit). The locution comes from EGEK (Mayo 1996) and alludes to a kind of argument sometimes used to garner “success stories” for a method: i.e., show that any case, given enough latitude, could be reconstructed so as to be an application of (or at least consistent with) the preferred method.

Referring to specific applications of error-statistical methods, I wrote in (EGEK, (pp. 100-101):

We may grant that experimental inferences, once complete, may be reconstructed so as to be seen as applications of Bayesian methods—even though that would be stretching it in many cases. My point is that the inferences actually made are applications of standard non-Bayesian methods [e.g., significance tests]. . . . The point may be made with an analogy. Imagine the following conversation: Continue reading

Categories: Statistics | Tags: , , ,

Frequentists in Exile: The Purpose of this Blog

Confronted with the position that “arguments for this personalistic theory were so persuasive that anything to any extent inconsistent with that theory should be discarded” (Cox 2006, 196), frequentists might have seen themselves in a kind of exile when it came to foundations, even those who had been active in the dialogues of an earlier period.  Sometime around the late 1990s there were signs that this was changing.  Regardless of the explanation, the fact that it did occur and is occurring is of central importance to statistical philosophy.

Now that Bayesians have stepped off their a priori pedestal, it may be hoped that a genuinely deep scrutiny of the frequentist and Bayesian accounts will occur.  In some corners of practice it appears that frequentist error statistical foundations are being discovered anew.  Perhaps frequentist foundations, never made fully explicit, but at most lying deep below the ocean floor, are finally being disinterred.  But let’s learn from some of the mistakes in the earlier attempts to understand it.  With this goal I invite you to join me in some deep water drilling, here as I cast about on my Isle of Elba.

Cox, D. R. (2006), Principles of Statistical Inference, CUP.

Categories: Statistics | Tags: , ,

Blog at