Posts Tagged With: model specification

Lifting a piece from Spanos’ contribution* will usefully add to the mix

The following two sections from Aris Spanos’ contribution to the RMM volume are relevant to the points raised by Gelman (as regards what I am calling the “two slogans”)**.

 6.1 Objectivity in Inference (From Spanos, RMM 2011, pp. 166-7)

The traditional literature seems to suggest that ‘objectivity’ stems from the mere fact that one assumes a statistical model (a likelihood function), enabling one to accommodate highly complex models. Worse, in Bayesian modeling it is often misleadingly claimed that as long as a prior is determined by the assumed statistical model—the so called reference prior—the resulting inference procedures are objective, or at least as objective as the traditional frequentist procedures:

“Any statistical analysis contains a fair number of subjective elements; these include (among others) the data selected, the model assumptions, and the choice of the quantities of interest. Reference analysis may be argued to provide an ‘objective’ Bayesian solution to statistical inference in just the same sense that conventional statistical methods claim to be ‘objective’: in that the solutions only depend on model assumptions and observed data.” (Bernardo 2010, 117)

This claim brings out the unfathomable gap between the notion of ‘objectivity’ as understood in Bayesian statistics, and the error statistical viewpoint. As argued above, there is nothing ‘subjective’ about the choice of the statistical model Mθ(z) because it is chosen with a view to account for the statistical regularities in data z0, and its validity can be objectively assessed using trenchant M-S testing. Model validation, as understood in error statistics, plays a pivotal role in providing an ‘objective scrutiny’ of the reliability of the ensuing inductive procedures.

Continue reading

Categories: Philosophy of Statistics, Statistics, Testing Assumptions, U-Phil | Tags: , , , ,

Blog at