Posts Tagged With: Peter Achinstein

Comedy hour at the Bayesian (epistemology) retreat: highly probable vs highly probed (vs B-boosts)

Since we’ll be discussing Bayesian confirmation measures in next week’s seminar—the relevant blogpost being here--let’s listen in to one of the comedy hours at the Bayesian retreat as reblogged from May 5, 2012.

Did you hear the one about the frequentist error statistical tester who inferred a hypothesis H passed a stringent test (with data x)?

The problem was, the epistemic probability in H was so low that H couldn’t be believed!  Instead we believe its denial H’!  So, she will infer hypotheses that are simply unbelievable!

So it appears the error statistical testing account fails to serve as an account of knowledge or evidence (i.e., an epistemic account). However severely I might wish to say that a hypothesis H has passed a test, this Bayesian critic assigns a sufficiently low prior probability to H so as to yield a low posterior probability in H[i].  But this is no argument about why this counts in favor of, rather than against, their particular Bayesian computation as an appropriate assessment of the warrant to be accorded to hypothesis H.

To begin with, in order to use techniques for assigning frequentist probabilities to events, their examples invariably involve “hypotheses” that consist of asserting that a sample possesses a characteristic, such as “having a disease” or “being college ready” or, for that matter, “being true.”  This would not necessarily be problematic if it were not for the fact that their criticism requires shifting the probability to the particular sample selected—for example, a student Isaac is college-ready, or this null hypothesis (selected from a pool of nulls) is true.  This was, recall, the fallacious probability assignment that we saw in Berger’s attempt, later (perhaps) disavowed. Also there are just two outcomes, say s and ~s, and no degrees of discrepancy from H. Continue reading

Categories: Comedy, confirmation theory | Tags: , , , ,

Comedy hour at the Bayesian (epistemology) retreat: highly probable vs highly probed (vs what ?)

Our favorite high school student, Isaac, gets a better shot at showing his college readiness using one of the comparative measures of support or confirmation discussed last week. Their assessment thus seems more in sync with the severe tester, but they are not purporting that z is evidence for inferring (or even believing) an H to which z affords a high B-boost*. Their measures identify a third category that reflects the degree to which H would predict z (where the comparison might be predicting without z, or under ~H or the like).  At least if we give it an empirical, rather than a purely logical, reading. Since it’s Saturday night let’s listen in to one of the comedy hours at the Bayesian retreat as reblogged from May 5, 2012.

Did you hear the one about the frequentist error statistical tester who inferred a hypothesis H passed a stringent test (with data x)?

The problem was, the epistemic probability in H was so low that H couldn’t be believed!  Instead we believe its denial H’!  So, she will infer hypotheses that are simply unbelievable!

So it appears the error statistical testing account fails to serve as an account of knowledge or evidence (i.e., an epistemic account). However severely I might wish to say that a hypothesis H has passed a test, this Bayesian critic assigns a sufficiently low prior probability to H so as to yield a low posterior probability in H[i].  But this is no argument about why this counts in favor of, rather than against, their particular Bayesian computation as an appropriate assessment of the warrant to be accorded to hypothesis H.

To begin with, in order to use techniques for assigning frequentist probabilities to events, their examples invariably involve “hypotheses” that consist of asserting that a sample possesses a characteristic, such as “having a disease” or “being college ready” or, for that matter, “being true.”  This would not necessarily be problematic if it were not for the fact that their criticism requires shifting the probability to the particular sample selected—for example, a student Isaac is college-ready, or this null hypothesis (selected from a pool of nulls) is true.  This was, recall, the fallacious probability assignment that we saw in Berger’s attempt, later (perhaps) disavowed. Also there are just two outcomes, say s and ~s, and no degrees of discrepancy from H. Continue reading

Categories: Comedy, confirmation theory, Statistics | Tags: , , , ,

Comedy Hour at the Bayesian (Epistemology) Retreat: Highly Probable vs Highly Probed

Bayesian philosophers (among others) have analogous versions of the criticism in my April 28 blogpost: error probabilities (associated with inferences to hypotheses) may conflict with chosen posterior probabilities in hypotheses. Since it’s Saturday night let’s listen in to one of the comedy hours at the Bayesian retreat (note the sedate philosopher’s comedy club backdrop):

Did you hear the one about the frequentist error statistical tester who inferred a hypothesis H passed a stringent test (with data x)?

The problem was, the epistemic probability in H was so low that H couldn’t be believed!  Instead we believe its denial H’!  So, she will infer hypotheses that are simply unbelievable!

So clearly the error statistical testing account fails to serve in an account of knowledge or inference (i.e., an epistemic account). However severely I might wish to say that a hypothesis H has passed a test, the Bayesian critic assigns a sufficiently low prior probability to H so as to yield a low posterior probability in H[i].  But this is no argument about why this counts in favor of, rather than against, their Bayesian computation as an appropriate assessment of the warrant to be accorded to hypothesis H.

To begin with, in order to use techniques for assigning frequentist probabilities to events, their examples invariably involve “hypotheses” that consist of asserting that a sample possesses a characteristic, such as “having a disease” or “being college ready” or, for that matter, “being true.”  This would not necessarily be problematic if it were not for the fact that their criticism requires shifting the probability to the particular sample selected—for example, a student Isaac is college-ready, or this null hypothesis (selected from a pool of nulls) is true.  This was, recall, the fallacious probability assignment that we saw in Berger’s attempt, later (perhaps) disavowed. Also there are just two outcomes, say s and ~s, and no degrees of discrepancy from H. Continue reading

Categories: philosophy of science, Statistics | Tags: , , , ,

Blog at WordPress.com.