S. Senn

Stephen Senn: The pathetic P-value (Guest Post) [3]

S. Senn

S. Senn

Stephen Senn
Head of Competence Center for Methodology and Statistics (CCMS)
Luxembourg Institute of Health

The pathetic P-value* [3]

This is the way the story is now often told. RA Fisher is the villain. Scientists were virtuously treading the Bayesian path, when along came Fisher and gave them P-values, which they gladly accepted, because they could get ‘significance’ so much more easily. Nearly a century of corrupt science followed but now there are signs that there is a willingness to return to the path of virtue and having abandoned this horrible Fisherian complication:

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started …

A condition of complete simplicity..

And all shall be well and
All manner of thing shall be well

TS Eliot, Little Gidding

Consider, for example, distinguished scientist David Colquhoun citing the excellent scientific journalist Robert Matthews as follows

“There is an element of truth in the conclusion of a perspicacious journalist:

‘The plain fact is that 70 years ago Ronald Fisher gave scientists a mathematical machine for turning baloney into breakthroughs, and flukes into funding. It is time to pull the plug. ‘

Robert Matthews Sunday Telegraph, 13 September 1998.” [1]

However, this is not a plain fact but just plain wrong. Even if P-values were the guilty ‘mathematical machine’ they are portrayed to be, it is not RA Fisher’s fault. Putting the historical record right helps one to understand the issues better. As I shall argue, at the heart of this is not a disagreement between Bayesian and frequentist approaches but between two Bayesian approaches: it is a conflict to do with the choice of prior distributions[2].

Fisher did not persuade scientists to calculate P-values rather than Bayesian posterior probabilities; he persuaded them that the probabilities that they were already calculating and interpreting as posterior probabilities relied for this interpretation on a doubtful assumption. He proposed to replace this interpretation with one that did not rely on the assumption. Continue reading

Categories: P-values, S. Senn, statistical tests, Statistics

Stephen Senn: Randomization, ratios and rationality: rescuing the randomized clinical trial from its critics

.

Stephen Senn
Head of Competence Center for Methodology and Statistics (CCMS)
Luxembourg Institute of Health

This post first appeared here. An issue sometimes raised about randomized clinical trials is the problem of indefinitely many confounders. This, for example is what John Worrall has to say:

Even if there is only a small probability that an individual factor is unbalanced, given that there are indefinitely many possible confounding factors, then it would seem to follow that the probability that there is some factor on which the two groups are unbalanced (when remember randomly constructed) might for all anyone knows be high. (Worrall J. What evidence is evidence-based medicine? Philosophy of Science 2002; 69: S316-S330: see p. S324 )

It seems to me, however, that this overlooks four matters. The first is that it is not indefinitely many variables we are interested in but only one, albeit one we can’t measure perfectly. This variable can be called ‘outcome’. We wish to see to what extent the difference observed in outcome between groups is compatible with the idea that chance alone explains it. The indefinitely many covariates can help us predict outcome but they are only of interest to the extent that they do so. However, although we can’t measure the difference we would have seen in outcome between groups in the absence of treatment, we can measure how much it varies within groups (where the variation cannot be due to differences between treatments). Thus we can say a great deal about random variation to the extent that group membership is indeed random. Continue reading

Categories: RCTs, S. Senn, Statistics | Tags: ,

Can You change Your Bayesian prior? (ii)

images-1

.

This is one of the questions high on the “To Do” list I’ve been keeping for this blog.  The question grew out of discussions of “updating and downdating” in relation to papers by Stephen Senn (2011) and Andrew Gelman (2011) in Rationality, Markets, and Morals.[i]

“As an exercise in mathematics [computing a posterior based on the client’s prior probabilities] is not superior to showing the client the data, eliciting a posterior distribution and then calculating the prior distribution; as an exercise in inference Bayesian updating does not appear to have greater claims than ‘downdating’.” (Senn, 2011, p. 59)

“If you could really express your uncertainty as a prior distribution, then you could just as well observe data and directly write your subjective posterior distribution, and there would be no need for statistical analysis at all.” (Gelman, 2011, p. 77)

But if uncertainty is not expressible as a prior, then a major lynchpin for Bayesian updating seems questionable. If you can go from the posterior to the prior, on the other hand, perhaps it can also lead you to come back and change it.

Is it legitimate to change one’s prior based on the data?

I don’t mean update it, but reject the one you had and replace it with another. My question may yield different answers depending on the particular Bayesian view. I am prepared to restrict the entire question of changing priors to Bayesian “probabilisms”, meaning the inference takes the form of updating priors to yield posteriors, or to report a comparative Bayes factor. Interpretations can vary. In many Bayesian accounts the prior probability distribution is a way of introducing prior beliefs into the analysis (as with subjective Bayesians) or, conversely, to avoid introducing prior beliefs (as with reference or conventional priors). Empirical Bayesians employ frequentist priors based on similar studies or well established theory. There are many other variants.

images

.

S. SENN: According to Senn, one test of whether an approach is Bayesian is that while Continue reading

Categories: Bayesian/frequentist, Gelman, S. Senn, Statistics

From our “Philosophy of Statistics” session: APS 2015 convention

aps_2015_logo_cropped-1

.

“The Philosophy of Statistics: Bayesianism, Frequentism and the Nature of Inference,” at the 2015 American Psychological Society (APS) Annual Convention in NYC, May 23, 2015:

 

D. Mayo: “Error Statistical Control: Forfeit at your Peril” 

 

S. Senn: “‘Repligate’: reproducibility in statistical studies. What does it mean and in what sense does it matter?”

 

A. Gelman: “The statistical crisis in science” (this is not his exact presentation, but he focussed on some of these slides)

 

For more details see this post.

Categories: Bayesian/frequentist, Error Statistics, P-values, reforming the reformers, reproducibility, S. Senn, Statistics

Stephen Senn: The pathetic P-value (Guest Post)

S. Senn

S. Senn

Stephen Senn
Head of Competence Center for Methodology and Statistics (CCMS)
Luxembourg Institute of Health

The pathetic P-value

This is the way the story is now often told. RA Fisher is the villain. Scientists were virtuously treading the Bayesian path, when along came Fisher and gave them P-values, which they gladly accepted, because they could get ‘significance’ so much more easily. Nearly a century of corrupt science followed but now there are signs that there is a willingness to return to the path of virtue and having abandoned this horrible Fisherian complication:

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started …

A condition of complete simplicity..

And all shall be well and
All manner of thing shall be well

TS Eliot, Little Gidding

Consider, for example, distinguished scientist David Colquhoun citing the excellent scientific journalist Robert Matthews as follows

“There is an element of truth in the conclusion of a perspicacious journalist:

‘The plain fact is that 70 years ago Ronald Fisher gave scientists a mathematical machine for turning baloney into breakthroughs, and flukes into funding. It is time to pull the plug. ‘

Robert Matthews Sunday Telegraph, 13 September 1998.” [1]

However, this is not a plain fact but just plain wrong. Even if P-values were the guilty ‘mathematical machine’ they are portrayed to be, it is not RA Fisher’s fault. Putting the historical record right helps one to understand the issues better. As I shall argue, at the heart of this is not a disagreement between Bayesian and frequentist approaches but between two Bayesian approaches: it is a conflict to do with the choice of prior distributions[2].

Fisher did not persuade scientists to calculate P-values rather than Bayesian posterior probabilities; he persuaded them that the probabilities that they were already calculating and interpreting as posterior probabilities relied for this interpretation on a doubtful assumption. He proposed to replace this interpretation with one that did not rely on the assumption. Continue reading

Categories: P-values, S. Senn, statistical tests, Statistics

Stephen Senn: Is Pooling Fooling? (Guest Post)

Stephen Senn

.

Stephen Senn
Head, Methodology and Statistics Group,
Competence Center for Methodology and Statistics (CCMS), Luxembourg

Is Pooling Fooling?

‘And take the case of a man who is ill. I call two physicians: they differ in opinion. I am not to lie down, and die between them: I must do something.’ Samuel Johnson, in Boswell’s A Journal of a Tour to the Hebrides

A common dilemma facing meta-analysts is what to put together with what? One may have a set of trials that seem to be approximately addressing the same question but some features may differ. For example, the inclusion criteria might have differed with some trials only admitting patients who were extremely ill but with other trials treating the moderately ill as well. Or it might be the case that different measurements have been taken in different trials. An even more extreme case occurs when different, if presumed similar, treatments have been used.

It is helpful to make a point of terminology here. In what follows I shall be talking about pooling results from various trials. This does not involve naïve pooling of patients across trials. I assume that each trial will provide a valid within- trial comparison of treatments. It is these comparisons that are to be pooled (appropriately).

A possible way to think of this is in terms of a Bayesian model with a prior distribution covering the extent to which results might differ as features of trials are changed. I don’t deny that this is sometimes an interesting way of looking at things (although I do maintain that it is much more tricky than many might suppose[1]) but I would also like to draw attention to the fact that there is a frequentist way of looking at this problem that is also useful.

Suppose that we have k ‘null’ hypotheses that we are interested in testing, each being capable of being tested in one of k trials. We can label these Hn1, Hn2, … Hnk. We are perfectly entitled to test the null hypothesis Hjoint that they are all jointly true. In doing this we can use appropriate judgement to construct a composite statistic based on all the trials whose distribution is known under the null. This is a justification for pooling. Continue reading

Categories: evidence-based policy, PhilPharma, S. Senn, Statistics

Blog at WordPress.com.