randomization

S. Senn: “Error point: The importance of knowing how much you don’t know” (guest post)

.

Stephen Senn
Consultant Statistician
Edinburgh

‘The term “point estimation” made Fisher nervous, because he associated it with estimation without regard to accuracy, which he regarded as ridiculous.’ Jimmy Savage [1, p. 453] 

First things second

The classic text by David Cox and David Hinkley, Theoretical Statistics (1974), has two extremely interesting features as regards estimation. The first is in the form of an indirect, implicit, message and the second explicit and both teach that point estimation is far from being an obvious goal of statistical inference. The indirect message is that the chapter on point estimation (chapter 8) comes after that on interval estimation (chapter 7). This may puzzle the reader, who may anticipate that the complications of interval estimation would be handled after the apparently simpler point estimation rather than before. However, with the start of chapter 8, the reasoning is made clear. Cox and Hinkley state:

Superficially, point estimation may seem a simpler problem to discuss than that of interval estimation; in fact, however, any replacement of an uncertain quantity is bound to involve either some arbitrary choice or a precise specification of the purpose for which the single quantity  is required. Note that in interval-estimation we explicitly recognize that the conclusion is uncertain, whereas in point estimation…no explicit recognition is involved in the final answer. [2, p. 250]

In my opinion, a great deal of confusion about statistics can be traced to the fact that the point estimate is seen as being the be all and end all, the expression of uncertainty being forgotten. For example, much of the criticism of randomisation overlooks the fact that the statistical analysis will deliver a probability statement and, other things being equal, the more unobserved prognostic factors there are, the more uncertain the result will be claimed to be. However, statistical statements are not wrong because they are uncertain, they are wrong if claimed to be more certain (or less certain) than they are. Continue reading

Categories: Fisher, randomization, Stephen Senn | Tags: | 7 Comments

Blog at WordPress.com.