Wasserman

Wasserman on Wasserman: Update! December 28, 2013

Professor Larry Wasserman

Professor Larry Wasserman

I had invited Larry to give an update, and I’m delighted that he has! The discussion relates to the last post (by Spanos), which follows upon my deconstruction of Wasserman*. So, for your Saturday night reading pleasure, join me** in reviewing this and the past two blogs and the links within.

“Wasserman on Wasserman: Update! December 28, 2013”

My opinions have shifted a bit.

My reference to Franken’s joke suggested that the usual philosophical 
debates about the foundations of statistics were un-important, much 
like the debate about media bias. I was wrong on both counts.

First, I now think Franken was wrong. CNN and network news have a 
strong liberal bias, especially on economic issues. FOX has an 
obvious right wing, and anti-atheist bias. (At least FOX has some 
libertarians on the payroll.) And this does matter. Because people
 believe what they see on TV and what they read in the NY times. Paul
 Krugman’s socialist bullshit parading as economics has brainwashed 
millions of Americans. So media bias is much more than who makes 
better hummus.

Similarly, the Bayes-Frequentist debate still matters. And people —
including many statisticians — are still confused about the 
distinction. I thought the basic Bayes-Frequentist debate was behind 
us. A year and a half of blogging (as well as reading other blogs) 
convinced me I was wrong here too. And this still does matter. Continue reading

Categories: Error Statistics, frequentist/Bayesian, Statistics, Wasserman | 56 Comments

More on deconstructing Larry Wasserman (Aris Spanos)

This follows up on yesterday’s deconstruction:


 Aris Spanos (2012)[i] – Comments on: L. Wasserman “Low Assumptions, High Dimensions (2011)*

I’m happy to play devil’s advocate in commenting on Larry’s very interesting and provocative (in a good way) paper on ‘how recent developments in statistical modeling and inference have [a] changed the intended scope of data analysis, and [b] raised new foundational issues that rendered the ‘older’ foundational problems more or less irrelevant’.

The new intended scope, ‘low assumptions, high dimensions’, is delimited by three characteristics:

“1. The number of parameters is larger than the number of data points.

2. Data can be numbers, images, text, video, manifolds, geometric objects, etc.

3. The model is always wrong. We use models, and they lead to useful insights but the parameters in the model are not meaningful.” (p. 1)

In the discussion that follows I focus almost exclusively on the ‘low assumptions’ component of the new paradigm. The discussion by David F. Hendry (2011), “Empirical Economic Model Discovery and Theory Evaluation,” RMM, 2: 115-145,  is particularly relevant to some of the issues raised by the ‘high dimensions’ component in a way that complements the discussion that follows.

My immediate reaction to the demarcation based on 1-3 is that the new intended scope, although interesting in itself, excludes the overwhelming majority of scientific fields where restriction 3 seems unduly limiting. In my own field of economics the substantive information comes primarily in the form of substantively specified mechanisms (structural models), accompanied with theory-restricted and substantively meaningful parameters.

In addition, I consider the assertion “the model is always wrong” an unhelpful truism when ‘wrong’ is used in the sense that “the model is not an exact picture of the ‘reality’ it aims to capture”. Worse, if ‘wrong’ refers to ‘the data in question could not have been generated by the assumed model’, then any inference based on such a model will be dubious at best! Continue reading

Categories: Philosophy of Statistics, Spanos, Statistics, U-Phil, Wasserman | Tags: , , , , | 5 Comments

Blog at WordPress.com.