Posts Tagged With: Statistical assumptions

More on deconstructing Larry Wasserman (Aris Spanos)

This follows up on yesterday’s deconstruction:


 Aris Spanos (2012)[i] – Comments on: L. Wasserman “Low Assumptions, High Dimensions (2011)*

I’m happy to play devil’s advocate in commenting on Larry’s very interesting and provocative (in a good way) paper on ‘how recent developments in statistical modeling and inference have [a] changed the intended scope of data analysis, and [b] raised new foundational issues that rendered the ‘older’ foundational problems more or less irrelevant’.

The new intended scope, ‘low assumptions, high dimensions’, is delimited by three characteristics:

“1. The number of parameters is larger than the number of data points.

2. Data can be numbers, images, text, video, manifolds, geometric objects, etc.

3. The model is always wrong. We use models, and they lead to useful insights but the parameters in the model are not meaningful.” (p. 1)

In the discussion that follows I focus almost exclusively on the ‘low assumptions’ component of the new paradigm. The discussion by David F. Hendry (2011), “Empirical Economic Model Discovery and Theory Evaluation,” RMM, 2: 115-145,  is particularly relevant to some of the issues raised by the ‘high dimensions’ component in a way that complements the discussion that follows.

My immediate reaction to the demarcation based on 1-3 is that the new intended scope, although interesting in itself, excludes the overwhelming majority of scientific fields where restriction 3 seems unduly limiting. In my own field of economics the substantive information comes primarily in the form of substantively specified mechanisms (structural models), accompanied with theory-restricted and substantively meaningful parameters.

In addition, I consider the assertion “the model is always wrong” an unhelpful truism when ‘wrong’ is used in the sense that “the model is not an exact picture of the ‘reality’ it aims to capture”. Worse, if ‘wrong’ refers to ‘the data in question could not have been generated by the assumed model’, then any inference based on such a model will be dubious at best! Continue reading

Categories: Philosophy of Statistics, Spanos, Statistics, U-Phil, Wasserman | Tags: , , , ,

Stanley Young: better p-values through randomization in microarrays

I wanted to locate some uncluttered lounge space for one of the threads to emerge in comments from 6/14/13. Thanks to Stanley Young for permission to post this. 

YoungPhoto2008 S. Stanley Young, PhD
Assistant Director for Bioinformatics
National Institute of Statistical Sciences
Research Triangle Park, NC

There is a relatively unknown problem with microarray experiments, in addition to the multiple testing problems. Samples should be randomized over important sources of variation; otherwise p-values may be flawed. Until relatively recently, the microarray samples were not sent through assay equipment in random order. Clinical trial statisticians at GSK insisted that the samples go through assay in random order. Rather amazingly the data became less messy and p-values became more orderly. The story is given here:
http://blog.goldenhelix.com/?p=322
Essentially all the microarray data pre-2010 is unreliable. For another example, Mass spec data was analyzed Petrocoin. The samples were not randomized that claims with very small p-values failed to replicate. See K.A. Baggerly et al., “Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments,” Bioinformatics, 20:777-85, 2004. So often the problem is not with p-value technology, but with the design and conduct of the study.

experim_design6

Please check other comments on microarrays from 6/14/13.

Categories: P-values, Statistics | Tags: , ,

U-PHIL: Gandenberger & Hennig: Blogging Birnbaum’s Proof

greg picDefending Birnbaum’s Proof

Greg Gandenberger
PhD student, History and Philosophy of Science
Master’s student, Statistics
University of Pittsburgh

In her 1996 Error and the Growth of Experimental Knowledge, Professor Mayo argued against the Likelihood Principle on the grounds that it does not allow one to control long-run error rates in the way that frequentist methods do.  This argument seems to me the kind of response a frequentist should give to Birnbaum’s proof.  It does not require arguing that Birnbaum’s proof is unsound: a frequentist can accommodate Birnbaum’s conclusion (two experimental outcomes are evidentially equivalent if they have the same likelihood function) by claiming that respecting evidential equivalence is less important than achieving certain goals for which frequentist methods are well suited.

More recently, Mayo has shown that Birnbaum’s premises cannot be reformulated as claims about what sampling distribution should be used for inference while retaining the soundness of his proof.  It does not follow that Birnbaum’s proof is unsound because Birnbaum’s original premises are not claims about what sampling distribution should be used for inference but instead as sufficient conditions for experimental outcomes to be evidentially equivalent.

Mayo acknowledges that the premises she uses in her argument against Birnbaum’s proof differ from Birnbaum’s original premises in a recent blog post in which she distinguishes between “the Sufficient Principle (general)” and “the Sufficiency Principle applied in sampling theory.“  One could make a similar distinction for the Weak Conditionality Principle.  There is indeed no way to formulate Sufficiency and Weak Conditionality Principles “applied in sampling theory” that are consistent and imply the Likelihood Principle.  This fact is not surprising: sampling theory is incompatible with the Likelihood Principle!

Birnbaum himself insisted that his premises were to be understood as “equivalence relations” rather than as “substitution rules” (i.e., rules about what sampling distribution should be used for inference) and recognized the fact that understanding them in this way was necessary for his proof.  As he put it in his 1975 rejoinder to Kalbfleisch’s response to his proof, “It was the adoption of an unqualified equivalence formulation of conditionality, and related concepts, which led, in my 1972 paper, to the monster of the likelihood axiom” (263).

Because Mayo’s argument against Birnbaum’s proof requires reformulating Birnbaum’s premises, it is best understood as an argument not for the claim that Birnbaum’s original proof is invalid, but rather for the claim that Birnbaum’s proof is valid only when formulated in a way that is irrelevant to a sampling theorist.  Reformulating Birnbaum’s premises as claims about what sampling distribution should be used for inference is the only way for a fully committed sampling theorist to understand them.  Any other formulation of those premises is either false or question-begging.

Mayo’s argument makes good sense when understood in this way, but it requires a strong prior commitment to sampling theory. Whether various arguments for sampling theory such as those Mayo gives in Error and the Growth of Experimental Knowledge are sufficient to warrant such a commitment is a topic for another day.  To those who lack such a commitment, Birnbaum’s original premises may seem quite compelling.  Mayo has not refuted the widespread view that those premises do in fact entail the Likelihood Principle.

Mayo has objected to this line of argument by claiming that her reformulations of Birnbaum’s principles are just instantiations of Birnbaum’s principles in the context of frequentist methods. But they cannot be instantiations in a literal sense because they are imperatives, whereas Birnabaum’s original premises are declaratives.  They are instead instructions that a frequentist would have to follow in order to avoid violating Birnbaum’s principles. The fact that one cannot follow them both is only an objection to Birnbaum’s principles on the question-begging assumption that evidential meaning depends on sampling distributions.

 ********

Birnbaum’s proof is not wrong but error statisticians don’t need to bother

Christian Hennig
Department of Statistical Science
University College London

I was impressed by Mayo’s arguments in “Error and Inference” when I came across them for the first time. To some extent, I still am. However, I have also seen versions of Birnbaum’s theorem and proof presented in a mathematically sound fashion with which I as a mathematician had no issue.

After having discussed this a bit with Phil Dawid, and having thought and read more on the issue, my conclusion is that
1) Birnbaum’s theorem and proof are correct (apart from small mathematical issues resolved later in the literature), and they are not vacuous (i.e., there are evidence functions that fulfill them without any contradiction in the premises),
2) however, Mayo’s arguments actually do raise an important problem with Birnbaum’s reasoning.

Here is why. Note that Mayo’s arguments are based on the implicit (error statistical) assumption that the sampling distribution of an inference method is relevant. In that case, application of the sufficiency principle to Birnbaum’s mixture distribution enforces the use of the sampling distribution under the mixture distribution as it is, whereas application of the conditionality principle enforces the use of the sampling distribution under the experiment that actually produced the data, which is different in the usual examples. So the problem is not that Birnbaum’s proof is wrong, but that enforcing both principles at the same time in the mixture experiment is in contradiction to the relevance of the sampling distribution (and therefore to error statistical inference). It is a case in which the sufficiency principle suppresses information that is clearly relevant under the conditionality principle. This means that the justification of the sufficiency principle (namely that all relevant information is in the sufficient statistic) breaks down in this case.

Frequentists/error statisticians therefore don’t need to worry about the likelihood principle because they shouldn’t accept the sufficiency principle in the generality that is required for Birnbaum’s proof.

Having understood this, I toyed around with the idea of writing this down as a publishable paper, but I now came across a paper in which this argument can already be found (although in a less straightforward and more mathematical manner), namely:
M. J. Evans, D. A. S. Fraser and G. Monette (1986) On Principles and Arguments to Likelihood. Canadian Journal of Statistics 14, 181-194, http://www.jstor.org/stable/3314794, particularly Section 7 (the rest is interesting, too).

NOTE: This is the last of this group of U-Phils. Mayo will issue a brief response tomorrow. Background to these U-Phils may be found here.

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , ,

Stephen Senn: The nuisance parameter nuisance

Senn in China

Stephen Senn

Competence Centre for Methodology and Statistics
CRP Santé
Strassen, Luxembourg

“The nuisance parameter nuisance”

 A great deal of statistical debate concerns ‘univariate’ error, or disturbance, terms in models. I put ‘univariate’ in inverted commas because as soon as one writes a model of the form (say) Yi =Xiβ + Єi, i = 1 … n and starts to raise questions about the distribution of the disturbance terms, Єi one is frequently led into multivariate speculations, such as, ‘is the variance identical for every disturbance term?’ and, ‘are the disturbance terms independent?’ and not just speculations such as, ‘is the distribution of the disturbance terms Normal?’. Aris Spanos might also want me to put inverted commas around ‘disturbance’ (or ‘error’) since what I ought to be thinking about is the joint distribution of the outcomes, Yi conditional on the predictors.

However, in my statistical world of planning and analysing clinical trials, the differences made to inferences according to whether one uses parametric versus non-parametric methods is often minor. Of course, using non-parametric methods does nothing to answer the problem of non-independent observations but for experiments, as opposed to observational studies, you can frequently design-in independence. That is a major potential pitfall avoided but then there is still the issue of Normality. However, in my experience, this is rarely where the action is. Inferences rarely change dramatically on using ‘robust’ approaches (although one can always find examples with gross-outliers where they do). However, there are other sorts of problem that can affect data which can make a very big difference. Continue reading

Categories: Philosophy of Statistics, Statistics | Tags: , , ,

U-PHIL: Wasserman Replies to Spanos and Hennig

Wasserman on Spanos and Hennig on  “Low Assumptions, High Dimensions” (2011)

(originating U-PHIL : “Deconstructing Larry Wasserman” by Mayo )

________

Thanks to Aris and others for comments .

Response to Aris Spanos:

1. You don’t prefer methods based on weak assumptions? Really? I suspect Aris is trying to be provocative. Yes such inferences can be less precise. Good. Accuracy is an illusion if it comes from assumptions, not from data.

2. I do not think I was promoting inferences based on “asymptotic grounds.” If I did, that was not my intent. I want finite sample, distribution free methods. As an example, consider the usual finite sample (order statistics based) confidence interval for the median. No regularity assumptions, no asymptotics, no approximations. What is there to object to?

3. Indeed, I do have to make some assumptions. For simplicity, and because it is often reasonable, I assumed iid in the paper (as I will here). Other than that, where am I making any untestable assumptions in the example of the median?

4. I gave a very terse and incomplete summary of Davies’ work. I urge readers to look at Davies’ papers; my summary does not do the work justice. He certainly did not advocate eyeballing the data. Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , ,

U-PHIL: Hennig and Gelman on Wasserman (2011)

Two further contributions in relation to

Low Assumptions, High Dimensions” (2011)

Please also see : “Deconstructing Larry Wasserman” by Mayo, and Comments by Spanos

Christian Hennig:  Some comments on Larry Wasserman, “Low Assumptions, High Dimensions”

I enjoyed reading this stimulating paper. These are very important issues indeed. I’ll comment on both main concepts in the text.

1) Low Assumptions. I think that the term “assumption” is routinely misused and misunderstood in statistics. In Wasserman’s paper I can’t see such misuse explicitly, but I think that the “message” of the paper may be easily misunderstood because Wasserman doesn’t do much to stop people from this kind of misunderstanding.

Here is what I mean. The arithmetic mean can be derived as optimal estimator under an i.i.d. Gaussian model, which is often interpreted as “model assumption” behind it. However, we don’t really need the Gaussian distribution to be true for the mean to do a good job. Sometimes the mean will do a bad job in a non-Gaussian situation (for example in presence of gross outliers), but sometimes not. The median has nice robustness properties and is seen as admissible for ordinal data. It is therefore usually associated with “weaker assumptions”. However, the median may be worse than the mean in a situation where the Gaussian “assumption” of the mean is grossly violated. At UCL we ask students on a -2/-1/0/1/2 Likert scale for their general opinion about our courses. The distributions that we get here are strongly discrete and the scale is usually interpreted as of ordinal type. Still, for ranking courses, the median is fairly useless (pretty much all courses end up with a median of 0 or 1); whereas, the arithmetic mean can still detect statistically significant meaningful differences between courses.

Why? Because it’s not only the “official” model assumptions that matter but also whether a statistic uses all the data in an appropriate manner for the given application. Here it’s fatal that the median ignores all differences among observations north and south of it. Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , ,

U-PHIL: Aris Spanos on Larry Wasserman

Our first outgrowth of “Deconstructing Larry Wasserman”. 

Aris Spanos – Comments on:

Low Assumptions, High Dimensions” (2011)

by Larry Wasserman*

I’m happy to play devil’s advocate in commenting on Larry’s very interesting and provocative (in a good way) paper on ‘how recent developments in statistical modeling and inference have [a] changed the intended scope of data analysis, and [b] raised new foundational issues that rendered the ‘older’ foundational problems more or less irrelevant’.

The new intended scope, ‘low assumptions, high dimensions’, is delimited by three characteristics:

“1. The number of parameters is larger than the number of data points.

2. Data can be numbers, images, text, video, manifolds, geometric objects, etc.

3. The model is always wrong. We use models, and they lead to useful insights but the parameters in the model are not meaningful.” (p. 1)

In the discussion that follows I focus almost exclusively on the ‘low assumptions’ component of the new paradigm. The discussion by David F. Hendry (2011), “Empirical Economic Model Discovery and Theory Evaluation,” RMM, 2: 115-145,  is particularly relevant to some of the issues raised by the ‘high dimensions’ component in a way that complements the discussion that follows.

My immediate reaction to the demarcation based on 1-3 is that the new intended scope, although interesting in itself, excludes the overwhelming majority of scientific fields where restriction 3 seems unduly limiting. In my own field of economics the substantive information comes primarily in the form of substantively specified mechanisms (structural models), accompanied with theory-restricted and substantively meaningful parameters.

In addition, I consider the assertion “the model is always wrong” an unhelpful truism when ‘wrong’ is used in the sense that “the model is not an exact picture of the ‘reality’ it aims to capture”. Worse, if ‘wrong’ refers to ‘the data in question could not have been generated by the assumed model’, then any inference based on such a model will be dubious at best! Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , ,

Blog at WordPress.com.